
 1

AUTOMATED INVENTION BY MEANS
OF GENETIC PROGRAMMING

AAAI-2004 TUTORIAL—SAN JOSE

SUNDAY JULY 25, 2004—9AM

John R. Koza
Stanford University

koza@stanford.edu
http://smi-web.stanford.edu/people/koza/

http://www.genetic-programming.org

Lee Spector
Hampshire College

lspector@hampshire.edu
http://hampshire.edu/lspector

 2

THE CHALLENGE

"How can computers learn to solve problems without
being explicitly programmed? In other words, how
can computers be made to do what is needed to be
done, without being told exactly how to do it?"

  Attributed to Arthur Samuel (1959)

CRITERION FOR SUCCESS
"The aim [is] ... to get machines to exhibit behavior,
which if done by humans, would be assumed to
involve the use of intelligence."

  Arthur Samuel (1983)

MAIN POINTS OF TUTORIAL
• Genetic programming now routinely delivers high-return
human-competitive machine intelligence
• Genetic programming is an automated invention machine
• Genetic programming has delivered a progression of
qualitatively more substantial results in synchrony with five
approximately order-of-magnitude increases in the
expenditure of computer time

 3

FLOWCHART FOR GENETIC
PROGRAMMING (GP)

Perform Reproduction

Yes

No

Gen := Gen + 1

Select Two Individuals
Based on Fitness

Perform
Crossover

Perform Mutation Insert Mutant into
New Population

Copy into New
Population

i := i + 1

Select One Individual
Based on Fitness

Pr

Pc

Pm

Select Genetic Operation

i = M?

Create Initial Random
Population for Run

No

Termination Criterion
Satisfied for Run?

Yes

Gen := 0 Run := Run + 1

Designate
Result for Run

End

Run := 0

i := 0

No
Run = N?

Yes

i := 0

i := i + 1i = M?

Apply Fitness Measure to Individual in the Population

Yes

No

Select One Individual
Based on Fitness

Insert Offspring
into New

Population
i := i + 1

Select an Architecture Altering Operation
Based on its Specified Probability

Perform the
Architecture Altering

Operation

Insert Offspring into
New Population

Select One Individual
Based on Fitness

 4

COMPUTER PROGRAM
=PARSE TREE=PROGRAM TREE

=PROGRAM IN LISP=DATA IN LISP

• Terminal set T = {1, 2, 10, 3, 4, TIME}
• Function set F = {+, IF, >}

+

>

10

43

21

TIME

IF

(+ 1 2 (IF (> TIME 10) 3 4))

• Creation of initial population (GIF)
• Reproduction operation
• Mutation operation (GIF)
• Crossover (recombination) operation (GIF)

 5

FIVE MAJOR PREPARATORY STEPS
FOR GP

• Determining the set of terminals
• Determining the set of functions
• Determining the fitness measure
• Determining the parameters for the run

• population size
• number of generations
• minor parameters

• Determining the method for designating a
result and the criterion for terminating a run

Terminal Set
Function Set
Fitness Measure
Parameters
Termination
Criterion

GP A Computer
Program

 6

TABLEAU FOR SYMBOLIC
REGRESSION OF QUADRATIC

POLYNOMIAL X2 + X + 1
 Objective: Find a computer program with one

input (independent variable x),
whose output equals the value of the
quadratic polynomial x2 + x + 1 in
range from -1 to +1.

1 Terminal set: T = {X}
2 Function set: F = {+, -, *, %}

NOTE: The protected division
function % returns a value of 1 when
division by 0 is attempted (including
0 divided by 0)

3 Fitness: The sum of the absolute value of the
differences (errors), computed (in
some way) over values of the
independent variable x from –1.0 to
+1.0, between the program’s output
and the target quadratic polynomial
x2 + x + 1.

4 Parameters: Population size M = 4.
5 Termination: An individual emerges whose sum

of absolute errors is less than 0.1

 7

SYMBOLIC REGRESSION OF
QUADRATIC POLYNOMIAL X2 + X + 1

INITIAL POPULATION—GENERATION 0

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

X + 1 X2 + 1 2 X

FITNESS

0.67 1.00 1.70 2.67

GENERATION 1

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

x + 1

1

X

x2 + x + 1

 8

Copy of (a) Mutant of (c)

—picking “2”
as mutation
point

First
offspring of
crossover of
(a) and (b)

—picking “+”
of parent (a)
and left-most
“x” of parent
(b) as
crossover
points

Second
offspring of
crossover of
(a) and (b)

—picking “+”
of parent (a)
and left-most
“x” of parent
(b) as
crossover
points

 9

CLASSIFICATION PROBLEM
INTER-TWINED SPIRALS

 10

GP TABLEAU – INTERTWINED SPIRALS
Objective: Find a program to classify a given point

in the x-y plane to the red or blue spiral.
Terminal set: X, Y, ℜ , where ℜ is the ephemeral

random floating-point constant ranging
between –1.000 and +1.000.

Function set: +, -, *, %, IFLTE, SIN, COS.
Fitness cases: 194 points in the x-y plane.
Raw fitness: The number of correctly classified points

(0 – 194)
Standardized
fitness:

The maximum raw fitness (i.e., 194)
minus the raw fitness.

Hits: Equals raw fitness.
Wrapper: Maps any individual program returning

a positive value to class +1 (red) and
maps all other values to class –1 (blue).

Parameters: M = 10,000 (with over-selection). G = 51.
Success
predicate:

An individual program scores 194 hits.

 11

WALL-FOLLOWING PROBLEM

S00 = 12.4

S01 = 16.4 S02 = 12.0 S03 = 12.0 S04 = 16.4

S05 = 9.0

S06 = 16.2

S07 = 22.1S08 = 16.6

S09 = 9.4

S10 = 17.0

S11 = 12.4

EVOLVED WALL-FOLLOWER

 12

SOME OF THE PROBLEMS SOLVED IN
GENETIC PROGRAMMING (KOZA 1992)

• Symbolic Regression
• Intertwined Spirals
• Wall Following
• Box Moving
• Truck Backer Upper
• Broom Balancing
• Artificial Ant
• Discrete Pursuer-Evader Game
• Differential Pursuer-Evader Game
• Co-Evolution of Game-Playing Strategies
• Inverse Kinematics
• Emergent Collecting
• Central Place Foraging
• Block Stacking
• Randomizer
• 1-D Cellular Automata
• 2-D Cellular Automata
• Task Prioritization
• Programmatic Image Compression
• Finding 3√2
• Econometric Exchange Equation
• Optimization (Lizard)
• Boolean 11-Multiplexer
• 11-Parity–Automatically Defined Functions

 13

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

Potential
Recursions

Potential
Internal
Storage

Program

Potential
Subroutines

Input Output

Potential
Loops

• Subroutines provide one way to REUSE code  possibly
with different instantiations of the dummy variables (formal
parameters)
• Loops (and iterations) provide a 2nd way to REUSE code
• Recursion provide a 3rd way to REUSE code
• Memory provides a 4th way  to REUSE the results of
executing code

 14

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

10 FITNESS-CASES SHOWING THE

VALUE OF THE DEPENDENT
VARIABLE, D, ASSOCIATED WITH THE

VALUES OF THE SIX INDEPENDENT
VARIABLES, L0, W0, H0, L1, W1, H1

Fitness
case

L0 W0 H0 L1 W1 H1 Dependent
variable D

1 3 4 7 2 5 3 54
2 7 10 9 10 3 1 600
3 10 9 4 8 1 6 312
4 3 9 5 1 6 4 111
5 4 3 2 7 6 1 –18
6 3 3 1 9 5 4 –171
7 5 9 9 1 7 6 363
8 1 2 9 3 9 2 –36
9 2 6 8 2 6 10 –24
10 8 1 10 7 5 1 45

L1

W1

H1

L0

W0

H0

 15

SOLUTION WITHOUT ADFS
(- (* (* W0 L0) H0)
 (* (* W1 L1) H1))

W0 H0

* L0

*

*

L1 H1

*

W1

–

SOLUTION WITH ADFS

(progn
 (defun volume (arg0 arg1 arg2)
 (values
 (* arg0 (* arg1 arg2))))
(values (- (volume L0 W0 H0)
 (volume L1 W1 H1))))

progn

(ARG0 ARG1

defun

ARG0 *

ARG2ARG1

*

valuesVOLUME

–

values

L1 W1 H1

VOLUME

W0 H0L0

VOLUME

 16

ADFS (SUBROUTINES)
Fitness
case

L0 W0 H0 L1 W1 H1 V0 V1 D

1 3 4 7 2 5 3 84 30 54
2 7 10 9 10 3 1 630 30 600
3 10 9 4 8 1 6 360 48 312
4 3 9 5 1 6 4 135 24 111
5 4 3 2 7 6 1 24 42 –18
6 3 3 1 9 5 4 9 180 –171
7 5 9 9 1 7 6 405 42 363
8 1 2 9 3 9 2 18 54 –36
9 2 6 8 2 6 10 96 120 –24
10 8 1 10 7 5 1 80 35 45

TOP-DOWN VIEW

Subproblem 1

Subproblem 2

Original
problem

Solution to
original problem

Solution to subproblem 1

Solution to subproblem 2

Decompose Solve
subproblems

Solve original
problem

BOTTOM-UP VIEW

Identify
regularities

Change
representation Solve

Second recoding rule

First recoding ruleOriginal
representation

of the
problem

New
representation

of the
 problem

Solution to
problem

 17

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

8 MAIN POINTS FROM BOOK
GENETIC PROGRAMMING II:

AUTOMATIC DISCOVERY OF REUSABLE
PROGRAMS (KOZA 1994)

• ADFs work.
• ADFs do not solve problems in the style of human
programmers.
• ADFs reduce the computational effort required to solve a
problem.
• ADFs usually improve the parsimony of the solutions to a
problem.
• As the size of a problem is scaled up, the size of solutions
increases more slowly with ADFs than without them.
• As the size of a problem is scaled up, the computational
effort required to solve a problem increases more slowly
with ADFs than without them.
• The advantages in terms of computational effort and
parsimony conferred by ADFs increase as the size of the
problem is scaled up.

 18

REUSE

MEMORY AND STORAGE

(A) (B) (C) (D)

• (A) Settable (named) variables (Genetic Programming,
Koza 1992) using setting (writing) functions (SETM0 X)
and (SETM1 Y) and reading by means of terminals M0 and
M1.
• (B) Indexed memory similar to linear (vector) computer
memory (Teller 1994) using (READ K) and(WRITE X K)
• (C) Matrix memory (Andre 1994)
• (D) Relational memory (Brave 1995, 1996)

LANGDON'S DATA STRUCTURES

• Stacks
• Queues
• Lists
• Rings

 19

REUSE

AUTOMATICALLY DEFINED
ITERATIONS (ADIS)

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

• Goal is to classify a given protein segment as being a
transmembrane domain or non-transmembrane domain
• Generation 20  Run 3  Subset-creating version

• in-sample correlation of 0.976
• out-of-sample correlation of 0.968
• out-of-sample error rate 1.6%
(progn

 (defun ADF0 ()
(ORN (ORN (ORN (I?) (H?)) (ORN (P?) (G?))) (ORN (ORN
(ORN (Y?) (N?)) (ORN (T?) (Q?))) (ORN (A?) (H?))))))
 (defun ADF1 ()
(values (ORN (ORN (ORN (A?) (I?)) (ORN (L?) (W?)))
(ORN (ORN (T?) (L?)) (ORN (T?) (W?))))))
 (defun ADF2 ()
(values (ORN (ORN (ORN (ORN (ORN (D?) (E?)) (ORN (ORN
(ORN (D?) (E?)) (ORN (ORN (T?) (W?)) (ORN (Q?)
(D?)))) (ORN (K?) (P?)))) (ORN (K?) (P?))) (ORN (T?)
(W?))) (ORN (ORN (E?) (A?)) (ORN (N?) (R?))))))
 (progn (loop-over-residues
 (SETM0 (+ (- (ADF1) (ADF2)) (SETM3 M0))))
 (values (% (% M3 M0) (% (% (% (- L -0.53) (* M0
M0)) (+ (% (% M3 M0) (% (+ M0 M3) (% M1 M2))) M2)) (%
M3 M0))))))

 20

REUSE

AUTOMATICALLY DEFINED LOOP
(ADL0)

SETM1

0

IFLTE

LEN M1 -73 +22

values

SETM0

M0

+

values

READV

M1

SETM1LIST
progn

%

M0 LEN

ADL0+

M1 1

defloop

progn

ADL0

400

410

411 412 413

414

415

416

417

420

440

450

460

470

AUTOMATICALLY DEFINED

RECURSION (ADR0)
progn

defrecursion values

ADL0 LIST values IFGTZ * IFGTZ ADR0

ARG0 IFGTZ 1 3 RLI -1 1 5

ARG01ARG0 -1

ADR0 IFGTZ IFGTZ

-

ARG0 1

RLI -1 1

ARG0

RLI 1 -1

ARG0

600

610 670

611 612

613

620

621

622 623 624

630

631 635 640

632

633 634

636

637

638 639 641 643 644

642

650

651 652

660 680

661

662

663 664 681

 21

ARCHITECTURE-ALTERING
OPERATIONS

progn

400

defun

ADF0 values

OR

ARG1

ARG0ARG1

AND

LIST

410

411
412 419

ARG1ARG0
413 414 420

421
422

423 424

values

AND

D1 D2 D0

D3

D4 D0

ADF0 NAND

ADF0

NOR

470

481

482 483 486

480

485

487

489

490

488

491

progn

defun

ADF0 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

541

520

values

AND

D1 D2 D0

D3

D4 D0

ADF1 NAND

ADF0

NOR

defun

ADF1 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

550

549

500

510

511

540 570

581

582 583

588

587

589

590 591

519

543 544

542

(GIFS)

 22

16 ATTRIBUTES OF A SYSTEM FOR
AUTOMATICALLY CREATING

COMPUTER PROGRAMS

1  Starts with "What needs to be done"
2  Tells us "How to do it"
3  Produces a computer program
4  Automatic determination of program size
5  Code reuse
6  Parameterized reuse
7  Internal storage
8  Iterations, loops, and recursions
9  Self-organization of hierarchies
10  Automatic determination of program architecture
11  Wide range of programming constructs
12  Well-defined
13  Problem-independent
14  Wide applicability
15  Scalable
16  Competitive with human-produced results

 23

ARCHITECTURE-ALTERING
OPERATIONS

GENETIC PROGRAMMING
PROBLEM SOLVER (GPPS)

 VERSION 2.0

POTENTIAL
RECURSIONS

POTENTIAL
INTERNAL
STORAGE

INPUT(0)

INPUT(1)

INPUT(2)

INPUT(N1)

GPPS 2.0
PROGRAM

POTENTIAL
SUBROUTINES

POTENTIAL
LOOPS

INPUT
VECTOR

•
•
•

OUTPUT(0)

OUTPUT(1)

OUTPUT(2)

OUTPUT(N2)

OUTPUT
VECTOR

•
•
•

 24

DEVELOPMENTAL GP
C FLIP

LIST1

2 3

-

(LIST (C (– 0.963 (– (– -0.875 -0.113)
0.880)) (series (flip end) (series (flip
end) (L -0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip (nop (L -
0.657 end)))))

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8

7

9 1 0 1 1 1 2

1 3 1 4 1 5 1 7 1 81 6 1 9 2 0 2 1

2 2

2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

 25

EVALUATION OF FITNESS OF A
CIRCUIT

Program Tree

+ IN OUT z0

Embryonic Circuit

Fully Designed Circuit (NetGraph)

Circuit Netlist (ascii)

Circuit Simulator (SPICE)

Circuit Behavior (Output)

Fitness

 26

BEHAVIOR OF A LOWPASS FILTER
VIEWED IN THE FREQUENCY DOMAIN

• Examine circuit's behavior for each of 101 frequency
values chosen over five decades of frequency (from 1 Hz to
100,000 Hz) with each decade divided into 20 parts (using a
logarithmic scale). The fitness measure

• does not penalize ideal values
• slightly penalizes acceptable deviations
• heavily penalizes unacceptable deviations

• Fitness is sum F(t) =
i = 0

100
∑ [W (f i)d (f i)]

• f(i) is the frequency of fitness case i
•d(x) is the difference between the target and observed
values at frequency of fitness case i
• W(y,x) is the weighting at frequency x

 27

EVOLVED FILTER
U. S. PATENT 1,227,113—GEORGE

CAMPBELL—AT&T—1917

EVOLVED FILTER
U. S. PATENT 1,538,964—OTTO ZOBEL—

AT&T—1925

 28

POST-2000 PATENTED INVENTIONS

LOW-VOLTAGE BALUN CIRCUIT

 29

21 PREVIOUSLY PATENTED
INVENTIONS REINVENTED BY GP

 Invention Date Inventor Place Patent
1 Darlington

emitter-
follower
section

1953 Sidney
Darlington

Bell Telephone
Laboratories

2,663,806

2 Ladder filter 1917 George
Campbell

American
Telephone and
Telegraph

1,227,113

3 Crossover
filter

1925 Otto Julius
Zobel

American
Telephone and
Telegraph

1,538,964

4 “M-derived
half section”
filter

1925 Otto Julius
Zobel

American
Telephone and
Telegraph

1,538,964

5 Cauer
(elliptic)
topology for
filters

1934–
1936

Wilhelm
Cauer

University of
Gottingen

1,958,742,
1,989,545

6 Sorting
network

1962 Daniel G.
O’Connor
and
Raymond J.
Nelson

General Precision,
Inc.

3,029,413

7 Computation
al circuits

See
text

See text See text See text

8 Electronic
thermometer

See
text

See text See text See text

9 Voltage
reference
circuit

See
text

See text See text See text

10 60 dB and 96
dB amplifiers

See
text

See text See text See text

11 Second-
derivative
controller

1942 Harry Jones Brown Instrument
Company

2,282,726

12 Philbrick
circuit

1956 George
Philbrick

George A.
Philbrick
Researches

2,730,679

13 NAND circuit 1971 David H.
Chung and
Bill H.

Texas Instruments
Incorporated

3,560,760

 30

Terrell
14 PID

(proportional
, integrative,
and
derivative)
controller

1939 Albert
Callender
and Allan
Stevenson

Imperial Chemical
Limited

2,175,985

15 Negative
feedback

1937 Harold S.
Black

American
Telephone and
Telegraph

2,102,670,
2,102,671

16 Low-voltage
balun circuit

2001 Sang Gug
Lee

Information and
Communications
University

6,265,908

17 Mixed
analog-digital
variable
capacitor
circuit

2000 Turgut
Sefket Aytur

Lucent
Technologies Inc.

6,013,958

18 High-current
load circuit

2001 Timothy
Daun-
Lindberg
and Michael
Miller

International
Business Machines
Corporation

6,211,726

19 Voltage-
current
conversion
circuit

2000 Akira
Ikeuchi and
Naoshi
Tokuda

Mitsumi Electric
Co., Ltd.

6,166,529

20 Cubic
function
generator

2000 Stefano
Cipriani and
Anthony A.
Takeshian

Conexant Systems,
Inc.

6,160,427

21 Tunable
integrated
active filter

2001 Robert
Irvine and
Bernd Kolb

Infineon
Technologies AG

6,225,859

2 PATENTABLE INVENTIONS CREATED
BY GENETIC PROGRAMMING

 Claimed invention Date of patent
application

Inventors

1 Improved general-
purpose tuning rules
for a PID controller

July 12, 2002 Martin A. Keane, John R. Koza,
and Matthew J. Streeter

2 Improved general-
purpose non-PID

July 12, 2002 Martin A. Keane, John R. Koza,
and Matthew J. Streeter

 31

controllers

 32

NOVELTY-DRIVEN EVOLUTION

PRIOR ART TEMPLATE

SOLUTION NO. 1

SOLUTION NO. 5

 33

LAYOUT  LOWPASS FILTER
100%-COMPLIANT CIRCUITS

GENERATION 25 WITH 5 CAPACITORS
AND 11 INDUCTORS  AREA OF 1775.2

RLOAD
(39,-2.8)

1K

RSRC
(-38.5,-2.8)

1k

L2
(-24.5,-2.8)
90200uH

G V0

C13
(-31.5,8.2)

8.91nF

L9
(17.5,-2.8)
90200uH

L10
(0.5,-2.8)
90200uH

L11
(-5.5,-2.8)
90200uH

L12
(-11.5,-2.8)
90200uH

L16
(-17.5,8.2)
42700uH

C19
(-25.5,8.2)

1.75nF

L23
(-5.5,-7.2)
90200uH

L26
(9.5,-2.8)
90200uH

C29
(5.5,4)
311nF

L31
(32.5,-2.8)
90200uH

L33
(17.5,8.2)
90200uH

L32
(23.5,-2.8)
90200uH

G

G

G

G

G

C17
(-21.5,4.2)

165nF

C40
(28.5,0.2)

295nF

VOUT

GENERATION 30 WITH 10 INDUCTORS
AND 5 CAPACITORS  AREA OF 950.3

VOUT

RSRC
(-31.5,-3.2)

1K
G V

L2
(16.5,-3.2)
127000uH

L9
(29.5,-3.2)
63500uH

L10
(8.5,-3.2)
63500uH

L11
(16.5,6.5)
63500uH

C13
(12.5,1)
0.317nF

C19
(23,0.8)
176uH

L22
(0.5,-3.2)
319000uH

C25
(4.5,0.9)
256nF

L28
(-26.5,-3.2)
96000uH

C32
(-3.5,0.9)

256nF

L34
(-20.5,-3.2)
96000uH

L35
(-6.5,-3.2)
288000uH

L37
(-14.5,-3.2)

0.214uH

C38
(-10.5,0.9)

256nF

L40
(-20.5,6.5)
96000uH

G G G

G

G
RLOAD
(36,-3.2)

1K
BEST-OF-RUN CIRCUIT OF

GENERATION 138 WITH 4 INDUCTORS
AND 4 CAPACITORS  AREA OF 359.4

RLOAD
(17.5,5.4)

1K

RSRC
(-16,5.4)

1K

L38
(11,5.4)

96100uH
VG G

C12
(-10,0.5)
155nF

G

C18
(-4,1)
256nF

G

L20
(-7,5.4)

253000uH

C27
(2,1.2)
256nF

G

L29
(-1,5.4)

319000uH

C34
(8,1.4)
256nF

G

L36
(5,5.4)

288000uH

VOUT

 34

CONTROLLERS

PROGN 700

DEFUN 702 VALUES 790

+ 780VALUES 712LIST

706

ADF0

704

- 710

REF

708

PLANT
OUTPUT

794

+214.0

732

ADF0

734

GAIN 730

+1000.0

742

ADF0

744

GAIN 740

1/s 760

+15.5

752

ADF0

754

750

770

GAIN

s

• ADF can be used for internal feedback

BEST-OF-RUN GENETICALLY

EVOLVED CONTROLLER FOR 2-LAG
PLANT

s0837.01+

s168.01

1

+
1−

s156.01
1

+
1−

R(s)

Y(s)
s515.01+

8.15 s0385.01+

U(s)

1
s

1− 918.8

 35

REVERSE ENGINEERING OF
METABOLIC PATHWAYS (4-REACTION
NETWORK IN PHOSPHOLIPID CYCLE)

BEST-OF-GENERATION 66

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.88 (1.95)

Glycerol
kinase

ATP

Glycerol

Glycerol-1-
phosphatase

IntC00162

C00116

Int

C00002

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K = 1.46 (1.45)

EC3.1.3.21
K = 1.20 (1.19)

EC2.7.1.30
K = 1.65 (1.69)

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

DESIRED

ADP

Diacyl-glycerol

Triacylglycerol
lipase

Monoacyl-
glycerol

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.95

sn-glycerol-
3-

phosphate

Glycerol
kinase

ATP

Glycerol

Glycerol-1-
phosphatase

C01885C00162

C00009

C00008

C00116

C00093

Orthophosphate

C00002

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K = 1.45

EC3.1.3.21
K = 1.19

EC2.7.1.30
K = 1.69

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

 36

AUTOMATIC SYNTHESIS OF ANTENNA

1 (PROGN3
2 (TURN-RIGHT 0.125)
3 (LANDMARK
4 (REPEAT 2
5 (PROGN2
6 (DRAW 1.0 HALF-MM-WIRE)
7 (DRAW 0.5 NO-WIRE)))
8 (TRANSLATE-RIGHT 0.125 0.75))

(a) (b) (c) (d) (e) (f) (g)

0 0.5 1 1.5 2
0.2

0

0.2

x(m)

y(
m

)

BEST-OF-RUN ANTENNA

0 0.5 1 1.5 2
0.2

0

0.2

x(m)

y(
m

)

 37

CHARACTERISTICS SUGGESTING THE
USE OF GENETIC PROGRAMMING

(1) discovering the size and shape of the solution,
(2) reusing substructures,
(3) discovering the number of substructures,
(4) discovering the nature of the hierarchical references
among substructures,
(5) passing parameters to a substructure,
(6) discovering the type of substructures (e.g., subroutines,
iterations, loops, recursions, or storage),
(7) discovering the number of arguments possessed by a
substructure,
(8) maintaining syntactic validity and locality by means of a
developmental process, or
(9) discovering a general solution in the form of a
parameterized topology containing free variables

 38

REUSE
LOWPASS FILTER USING ADFS

GENERATION 31  TOPOLOGY OF
CAUER (ELLIPTIC) FILTER

QUINTUPLY-CALLED THREE-PORTED

ADF0

BEHAVIOR IN FREQUENCY DOMAIN

 39

PASSING A PARAMETER TO A
SUBSTRUCTURE

RPB2

execute

ADF4 {1}

RPB1RPB0

ADF3 {1} ADF2 {1}ADF3 {1}

ADF2 {1} ADF2 {1} ADF2 {1}

BEST-OF-RUN CIRCUIT

THREE-PORTED ADF3

 40

VALUE-SETTING SUBTREES—3 WAYS

ARITHMETIC-PERFORMING SUBTREE

3.2921.234

*

+

2.963

C

END

SINGLE PERTURBABLE CONSTANT

4.809

C

END

FREE VARIABLE

3.2921.234

*

+

C

END

F

 41

PARAMETERIZED TOPOLOGIES (GIFS)

VARIABLE CUTOFF LOWPASS FILTER

f
L

7100198.81 ×=

()()
() f

f
f

ff
fffL ln104451.2ln

104636.3
103714.9103331.1107387.4103406.12

8

12

2516128

+×≈+
+×

+×+×+××=
−

f
f

L ln2100262.23
8

+×=

f
L

7107297.34 ×=

f
C

5106786.11 ×=
f

C
5106786.12 ×=

f
C

5103552.13 ×=

f
C

5104484.64 ×=

f
C

5101056.15 ×=

L2

LOWPASS/HIGHPASS FILTER
1

100
=1 F

Fµ
C 1

2.57
=2 F

Fµ
C 1

9.49
=3 F

Fµ
C 1

2.57
=4 F

Fµ
C

1
9.49

=5 F
Fµ

C 1
9.49

=6 F
Fµ

C

1
3.56

=1 F
H

L 1
113

=6 F
H

L
1
3.56

=2 F
H

L 1
3.56

=3 F
H

L 1
3.56

=4 F
H

L 1
3.56

=5 F
H

L

1

113
=1 F

H
L

1
218

=2 F
H

L 1
218

=3 F
H

L 1
218

=4 F
H

L

1
9.58

=5 F
H

L

1
183

=1 F
Fµ

C
1

219
=2 F

Fµ
C 1

219
=3 F

Fµ
C

1
7.91

=4 F
Fµ

C

 42

PARALLELIZATION BY
SUBPOPULATIONS ("ISLAND" OR

"DEME" MODEL OR "DISTRIBUTED
GENETIC ALGORITHM")

DEBUGGER
(optional)

BOSS
(Tram)

HOST
(Pentium PC)

OUTPUT
FILE

CONTROL
PARAMETER

FILE

VIDEO
DISPLAY

KEYBOARD

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

• Like Hormel, Get Everything Out of the Pig, Including the
Oink
• Keep on Trucking
• It Takes a Licking and Keeps on Ticking
• The Whole is Greater than the Sum of the Parts

PETA-OPS
• Human brain operates at 1012 neurons operating at 103
per second = 1015 ops per second
• 1015 ops = 1 peta-op = 1 bs (brain second)

 43

GENETIC PROGRAMMING OVER 15-
YEAR PERIOD 1987–2002

System Period

of
usage

Petacycles
(1015cycles)
per day for

entire
system

Speed-up
over

previous
system

Speed-up
over first
system in
this table

Human-
competitive

results

Serial
Texas
Instruments
LISP
machine

1987–
1994

0.00216 1 (base) 1 (base) 0

64-node
Transtech
transputer
parallel
machine

1994–
1997

0.02 9 9 2

64-node
Parsytec
parallel
machine

1995–
2000

0.44 22 204 12

70-node
Alpha
parallel
machine

1999–
2001

3.2 7.3 1,481 2

1,000-node
Pentium II
parallel
machine

2000–
2002

30.0 9.4 13,900 12

 44

PROGRESSION OF RESULTS
System Period Speed-

up
Qualitative nature of the results produced
by genetic programming

Serial LISP
machine

1987–
1994

1 (base) • Toy problems of the 1980s and early
1990s from the fields of artificial
intelligence and machine learning

64-node
Transtech
8-biy
transputer

1994–
1997

9 •Two human-competitive results involving
one-dimensional discrete data (not patent-
related)

64-node
Parsytec
parallel
machine

1995–
2000

22 • One human-competitive result involving
two-dimensional discrete data
• Numerous human-competitive results
involving continuous signals analyzed in
the frequency domain
• Numerous human-competitive results
involving 20th-century patented inventions

70-node
Alpha
parallel
machine

1999–
2001

7.3 • One human-competitive result involving
continuous signals analyzed in the time
domain
• Circuit synthesis extended from topology
and sizing to include routing and
placement (layout)

1,000-node
Pentium II
parallel
machine

2000–
2002

9.4 • Numerous human-competitive results
involving continuous signals analyzed in
the time domain
• Numerous general solutions to problems
in the form of parameterized topologies
• Six human-competitive results
duplicating the functionality of 21st-
century patented inventions

Long (4-
week) runs
of 1,000-
node
Pentium II
parallel
machine

2002 9.3 • Generation of two patentable new
inventions

 45

EVOLVABLE HARDWARE USING
RAPIDLY RECONFIGURABLE FPGAs

GENETICALLY EVOLVED 7-SORTER

 46

HUMAN-COMPETITIVENESS CRITERIA
 Criterion
A The result was patented as an invention in the past, is an improvement over a patented invention, or

would qualify today as a patentable new invention.
B The result is equal to or better than a result that was accepted as a new scientific result at the time when

it was published in a peer-reviewed scientific journal.
C The result is equal to or better than a result that was placed into a database or archive of results

maintained by an internationally recognized panel of scientific experts.
D The result is publishable in its own right as a new scientific resultindependent of the fact that the

result was mechanically created.
E The result is equal to or better than the most recent human-created solution to a long-standing problem

for which there has been a succession of increasingly better human-created solutions.
F The result is equal to or better than a result that was considered an achievement in its field at the time it

was first discovered.
G The result solves a problem of indisputable difficulty in its field.
H The result holds its own or wins a regulated competition involving human contestants (in the form of

either live human players or human-written computer programs).

37 HUMAN-COMPETITIVE RESULTS
 Claimed instance Basis for claim

of human-
competitiveness

Reference

1 Creation of a better-than-classical quantum
algorithm for the Deutsch-Jozsa “early
promise” problem

B, F Spector, Barnum, and
Bernstein 1998

2 Creation of a better-than-classical quantum
algorithm for Grover’s database search
problem

B, F Spector, Barnum, and
Bernstein 1999

3 Creation of a quantum algorithm for the depth-
two AND/OR query problem that is better than
any previously published result

D Spector, Barnum, Bernstein,
and Swamy 1999; Barnum,
Bernstein, and Spector 2000

4 Creation of a quantum algorithm for the depth-
one OR query problem that is better than any
previously published result

D Barnum, Bernstein, and
Spector 2000

5 Creation of a protocol for communicating
information through a quantum gate that was
previously thought not to permit such
communication

D Spector and Bernstein 2003

6 Creation of a novel variant of quantum dense
coding

D Spector and Bernstein 2003

7 Creation of a soccer-playing program that won
its first two games in the Robo Cup 1997
competition

H Luke 1998

8 Creation of a soccer-playing program that
ranked in the middle of the field of 34 human-
written programs in the Robo Cup 1998
competition

H Andre and Teller 1999

9 Creation of four different algorithms for the
transmembrane segment identification problem
for proteins

B, E Sections 18.8 and 18.10 of GP-
2 book and sections 16.5 and
17.2 of GP-3 book

10 Creation of a sorting network for seven items
using only 16 steps

A, D Sections 21.4.4, 23.6, and
57.8.1 of GP-3 book

 47

11 Rediscovery of the Campbell ladder topology
for lowpass and highpass filters

A, F Section 25.15.1 of GP-3 book
and section 5.2 of GP-4 book

12 Rediscovery of the Zobel “M-derived half
section” and “constant K” filter sections

A, F Section 25.15.2 of GP-3 book

13 Rediscovery of the Cauer (elliptic) topology for
filters

A, F Section 27.3.7 of GP-3 book

14 Automatic decomposition of the problem of
synthesizing a crossover filter

A, F Section 32.3 of GP-3 book

15 Rediscovery of a recognizable voltage gain
stage and a Darlington emitter-follower section
of an amplifier and other circuits

A, F Section 42.3 of GP-3 book

16 Synthesis of 60 and 96 decibel amplifiers A, F Section 45.3 of GP-3 book
17 Synthesis of analog computational circuits for

squaring, cubing, square root, cube root,
logarithm, and Gaussian functions

A, D, G Section 47.5.3 of GP-3 book

18 Synthesis of a real-time analog circuit for time-
optimal control of a robot

G Section 48.3 of GP-3 book

19 Synthesis of an electronic thermometer A, G Section 49.3 of GP-3 book
20 Synthesis of a voltage reference circuit A, G Section 50.3 of GP-3 book
21 Creation of a cellular automata rule for the

majority classification problem that is better
than the Gacs-Kurdyumov-Levin (GKL) rule
and all other known rules written by humans

D, E Andre, Bennett, and Koza
1996 and section 58.4 of GP-3
book

22 Creation of motifs that detect the D–E–A–D
box family of proteins and the manganese
superoxide dismutase family

C Section 59.8 of GP-3 book

23 Synthesis of topology for a PID-D2
(proportional, integrative, derivative, and
second derivative) controller

A, F Section 3.7 of GP-4 book

24 Synthesis of an analog circuit equivalent to
Philbrick circuit

A, F Section 4.3 of GP-4 book

25 Synthesis of a NAND circuit A, F Section 4.4 of GP-4 book
26 Simultaneous synthesis of topology, sizing,

placement, and routing of analog electrical
circuits

A. F, G Chapter 5 of GP-4 book

27 Synthesis of topology for a PID (proportional,
integrative, and derivative) controller

A, F Section 9.2 of GP-4 book

28 Rediscovery of negative feedback A, E, F, G Chapter 14 of GP-4 book
29 Synthesis of a low-voltage balun circuit A Section 15.4.1 of GP-4 book
30 Synthesis of a mixed analog-digital variable

capacitor circuit A
Section 15.4.2 of GP-4 book

31 Synthesis of a high-current load circuit A Section 15.4.3 of GP-4 book
32 Synthesis of a voltage-current conversion

circuit A
Section 15.4.4 of GP-4 book

33 Synthesis of a Cubic function generator A Section 15.4.5 of GP-4 book
34 Synthesis of a tunable integrated active filter A Section 15.4.6 of GP-4 book
35 Creation of PID tuning rules that outperform

the Ziegler-Nichols and Åström-Hägglund
tuning rules

A, B, D, E, F, G Chapter 12 of GP-4 book

36 Creation of three non-PID controllers that
outperform a PID controller that use Ziegler-
Nichols or Åström-Hägglund tuning rules

A, B, D, E, F, G Chapter 13 of GP-4 book

37 Antenna for NASA Space Technology 5 Mission B, D, E, G Lohn, Hornby, Linden 2004

 48

PROMISING GP APPLICATION AREAS

• Problem areas involving many variables that are
interrelated in highly non-linear ways
• Inter-relationship of variables is not well understood
• A good approximate solution is satisfactory

• design
• control
• classification and pattern recognition
• data mining
• system identification and forecasting

• Discovery of the size and shape of the solution is a major
part of the problem
• Areas where humans find it difficult to write programs

• parallel computers
• cellular automata
• multi-agent strategies / distributed AI
• FPGAs

• "black art" problems
• synthesis of topology and sizing of analog circuits
• synthesis of topology and tuning of controllers
• quantum computing circuits
• synthesis of designs for antennas

• Areas where you simply have no idea how to program a
solution, but where the objective (fitness measure) is clear
• Problem areas where large computerized databases are
accumulating and computerized techniques are needed to
analyze the data

 49

FUNDAMENTAL DIFFERENCES
BETWEEN GP AND OTHER

APPROACHES TO AI AND ML

(1) Representation: Genetic programming overtly conducts
it search for a solution to the given problem in program
space.
(2) Role of point-to-point transformations in the search:
Genetic programming does not conduct its search by
transforming a single point in the search space into another
single point, but instead transforms a set of points into
another set of points.
(3) Role of hill climbing in the search: Genetic
programming does not rely exclusively on greedy hill
climbing to conduct its search, but instead allocates a certain
number of trials, in a principled way, to choices that are
known to be inferior.
(4) Role of determinism in the search: Genetic
programming conducts its search probabilistically.
(5) Role of an explicit knowledge base: None.
(6) Role of formal logic in the search: None.
(7) Underpinnings of the technique: Biologically inspired.

 50

17 AUTHORED BOOKS ON GP
Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D. 1998.

Genetic Programming - An Introduction. San Francisco, CA: Morgan Kaufman
Publishers and Heidelberg, Germany: dpunkt.verlag.

Babovic, Vladan. 1996b. Emergence, Evolution, Intelligence: Hydroinformatics. Rotterdam,
The Netherlands: Balkema Publishers.

Blickle, Tobias. 1997. Theory of Evolutionary Algorithms and Application to System
Synthesis. TIK-Schriftenreihe Nr. 17. Zurich, Switzerland: vdf Hochschul Verlag AG
and der ETH Zurich. ISBN 3-7281-2433-8.

Jacob, Christian. 1997. Principia Evolvica: Simulierte Evolution mit Mathematica.
Heidelberg, Germany: dpunkt.verlag. In German. English translation forthcoming in
2000 from Morgan Kaufman Publishers.

Jacob, Christian. 2001. Illustrating Evolutionary Computation with Mathematica. San
Francisco: Morgan Kaufmann.

Iba, Hitoshi. 1996. Genetic Programming. Tokyo: Tokyo Denki University Press. In
Japanese.

Koza, John R. 1992. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: The MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA: The MIT Press

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1999a. Genetic
Programming III: Darwinian Invention and Problem Solving. San Francisco, CA:
Morgan Kaufmann Publishers.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William, Yu, Jessen,
and Lanza, Guido. 2003. Genetic Programming IV. Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers.

Langdon, William B. 1998. Genetic Programming and Data Structures: Genetic Programming
+ Data Structures = Automatic Programming! Amsterdam: Kluwer Academic
Publishers.

Langdon, William B. and Poli, Riccardo. 2002. Foundations of Genetic Programming.
Berlin: Springer-Verlag.

Nordin, Peter. 1997. Evolutionary Program Induction of Binary Machine Code and its
Application. Munster, Germany: Krehl Verlag.

O’Neill, Michael and Ryan, Conor. 2003. Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Boston: Kluwer Academic Publishers.

Ryan, Conor. 1999. Automatic Re-engineering of Software Using Genetic Programming.
Amsterdam: Kluwer Academic Publishers.

Spector, Lee. 2004. Automatic Quantum Computer Programming: A Genetic Programming
Approach. Boston: Kluwer Academic Publishers.

Wong, Man Leung and Leung, Kwong Sak. 2000. Data Mining Using Grammar Based
Genetic Programming and Applications. Amsterdam: Kluwer Academic Publishers.

 51

SOME RECENT CONFERENCE
PROCEEDINGS

Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E., Garzon, Max H., Honavar, Vasant, Jakiela,
Mark, and Smith, Robert E. (editors). 1999. GECCO-99: Proceedings of the Genetic
and Evolutionary Computation Conference, July 13-17, 1999, Orlando, Florida USA.
San Francisco, CA: Morgan Kaufmann.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence C. 1998.
Genetic Programming: First European Workshop. EuroGP'98. Paris, France. Lecture
Notes in Computer Science. Volume 1391. Berlin, Germany: Springer-Verlag.

Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996.
Genetic Programming 1996: Proceedings of the First Annual Conference. Cambridge,
MA: The MIT Press.

Foster, James A., Lutton, Evelyne, Miller, Julian, Ryan, Conor, and Tettamanzi, Andrea
G. B. (editors). 2002. Genetic Programming: 5th European Conference, EuroGP 2002,
Kinsale, Ireland, April 2002 Proceedings. Berlin: Springer.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba,
Hitoshi, and Riolo, Rick L. (editors). 1997. Genetic Programming 1997: Proceedings of
the Second Annual Conference. San Francisco, CA: Morgan Kaufmann.

Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo, Marco,
Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and Riolo, Rick.
(editors). 1998. Genetic Programming 1998: Proceedings of the Third Annual
Conference. San Francisco, CA: Morgan Kaufmann.

Miller, Julian, Tomassini, Marco, Lanzi, Pier Luca, Ryan, Conor, Tettamanzi, Andrea G.
B., and Langdon, William B. (editors). 2001. Genetic Programming: 4th European
Conference, EuroGP 2001, Lake Como, Italy, April 2001 Proceedings. Berlin: Springer.

Poli, Riccardo, Nordin, Peter, Langdon, William B., and Fogarty, Terence C. 1999. Genetic
Programming: Second European Workshop. EuroGP'99. Goteborg, Sweden, May 1999.
Lecture Notes in Computer Science. Volume 1598. Berlin, Germany: Springer-Verlag.

Poli, Riccardo, Banzhaf, Wolfgang, Langdon, William B., Miller, Julian, Nordin, Peter,
and Fogarty, Terence C. 2000. Genetic Programming: European Conference, EuroGP
2000, Edinburgh, Scotland, UK, April 2000, Proceedings. Lecture Notes in Computer
Science. Volume 1802. Berlin, Germany: Springer-Verlag. ISBN 3-540-67339-3.

Riolo, Rich and Worzel, William. 2003. Genetic Programming: Theory and Practice. Boston:
Kluwer Academic Publishers.

Spector, Lee, Goodman, E., Wu, A., Langdon, William B., Voigt, H.-M., Gen, M., Sen, S.,
Dorigo, Marco, Pezeshk, S., Garzon, Max, and Burke, E. (editors). 2001. Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO-2001. San
Francisco, CA: Morgan Kaufmann Publishers. Pages 57 - 65. Whitley, Darrell,
Goldberg, David, Cantu-Paz, Erick, Spector, Lee, Parmee, Ian, and Beyer, Hans-
Georg (editors). GECCO-2000: Proceedings of the Genetic and Evolutionary
Computation Conference, July 10 - 12, 2000, Las Vegas, Nevada. San Francisco:
Morgan Kaufmann Publishers.

 52

ADVANCES IN GENETIC PROGRAMMING

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in

Genetic Programming 2. Cambridge, MA: The MIT Press.
Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming.

Cambridge, MA: The MIT Press.
Spector, Lee, Langdon, William B., O'Reilly, Una-May, and Angeline, Peter

(editors). 1999. Advances in Genetic Programming 3. Cambridge, MA:
The MIT Press.

4 VIDEOTAPES ON GP

Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie.
Cambridge, MA: The MIT Press.

Koza, John R. 1994b. Genetic Programming II Videotape: The Next
Generation. Cambridge, MA: The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, Keane, Martin A., and
Brave, Scott. 1999. Genetic Programming III Videotape: Human-
Competitive Machine Intelligence. San Francisco, CA: Morgan Kaufmann
Publishers.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William,
Yu, Jessen, Lanza, Guido, and Fletcher, David. 2003. Genetic
Programming IV Video: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.

WILLIAM LANGDON’S BIBLIOGRAPHY
http://liinwww.ira.uka.de/bibliography/Ai/g
enetic.programming.html

GENETIC PROGRAMMING AND
EVOLVABLE MACHINES JOURNAL

Editor: Wolfgang Banzhaf
WEB

http://www.genetic-programming.org

