
Fall 2003 BMI 226 / CS 426 Notes QQQQQ- 1

ASSEMBLY CODE GENETIC
PROGRAMMING

Fall 2003 BMI 226 / CS 426 Notes QQQQQ- 2

MOTIVATION FOR IMPLEMENTATION
OF GP IN ASSEMBLY CODE (NORDIN

1994)

• The division function must be coded as a
multi-step function in order to protect
against division by 0.
• In fact, all arithmetic functions (division,
multiplication, subtraction, and addition) can
potentially produce overflows and
underflows. In processing large populations
over many generations, these overflows and
underflows are inevitable. Therefore, in
practice, all arithmetic functions must be
coded as a multi-step function.
• Exponential functions are another example
of a function that is especially prone to
producing overflows and underflows. It, too,
must be protected.
• Thus, there is a potentially big opportunity
for speeding up GP by evolving sequences of
assembly code.

Fall 2003 BMI 226 / CS 426 Notes QQQQQ- 3

GP ASSEMBLY CODE — CONTINUED

• All general-purpose computers perform
certain very basic operations, such as
addition, subtraction, multiplication,
division, and conditional operations.
• Nordin (1994) started by identifying a small
set of primitive functions that are useful for
large group of problems. One might choose
the arithmetic functions (+, -, *, %), a
conditional operation (IFLTE), and some
logical functions (AND, OR, XOR, XNOR). One
might also choose some shift and other
instructions (e.g., SRL and SLL and SETHI
from Sun 4).

Fall 2003 BMI 226 / CS 426 Notes QQQQQ- 4

GP ASSEMBLY CODE — CONTINUED

• A run starts at generation 0 by creating a
population consisting of random sequences of
assembly code instructions from the chosen
small set of machine code instructions
(strictly limiting references to certain
registers).

• Perform crossover so as to preserve the
integrity of subtrees.

• If ADFs are involved, perform crossover so
as to preserve the integrity of the header and
footer of the called function and the integrity
of the function call.

Fall 2003 BMI 226 / CS 426 Notes QQQQQ- 5

COMPILER FOR GP

• In this approach, one writes a machine-
specific compiler to dynamically compile the
S-expression for an individual in the evolving
population at the moment when is it going to
be evaluated in the run of GP.
• The compiler can be extremely limited and
only be able to handle common GP functions
such as the arithmetic functions (+, -, *, %),
some conditional operations (IFLTE), and
perhaps some logical functions (AND, OR,
XOR, XNOR).
• This approach is especially advantageous
when there is an extremely large number of
fitness cases (e.g., the evolving individual
must be exposed to 50,000 amino acid
residues in a set of protein sequences).

