Fall 2003 BMI 226 / CS 426 Notes K-1

AUTOMATIC SYNTHESIS OF ELECTRICAL CIRCUITS USING DEVELOPMENTAL GENETIC PROGRAMMING

PART 1 - METHODS

Fall 2003 BMI 226 / CS 426 Notes K-2

OUTLINE

- The design process
- Circuit Synthesis using developmental genetic programming
- Initial circuit (embryo plus test fixture)
- Circuit-constructing program trees
- Component-creating functions
- Topology-modifying functions
- Development-controlling functions

Fall 2003 BMI 226 / CS 426 Notes K-3

EXAMPLES

- Filters (lowpass, highpass, bandpass bandstop)
- Filters (Campbell, Zobel, Johnson, Butterworth, Chebychev, Cauer [elliptic])
- Crossover filters (woofer-tweeter, woofer-midrange-tweeter)
- Source Identification Problem (three-way and four-way - with changing environment) - Amplifiers ($\mathbf{1 0} \mathbf{~ d B}, 40 \mathrm{~dB}, 60 \mathrm{~dB}, 96 \mathrm{~dB}$)
- Computational circuits (squaring, cubing, square root, cube root, logarithmic, Gaussian)
- Circuit for time-optimal fly-to controller
- Temperature-sensing circuit
- Voltage reference circuit
- Philbrick circuit
- NAND gate
- Digital-to-analog converter (DAC)
- 6 post- 2000 patented inventions

Fall 2003 BMI 226 / CS 426 Notes K-4

DESIGN

- Find a structure, composed of components of various types, that satisfies user-specified goals
- Design is a major activity of practicing engineers
- The design process typically entails tradeoffs between competing considerations
- The end product of the design process is usually a satisfactory and compliant design as opposed to a perfect design
- Design is usually viewed as requiring human intelligence

Fall 2003 BMI 226 / CS 426 Notes K-5

DESIGN USING GENETIC PROGRAMMING

- Can be done with a minimum of domainspecific knowledge and no mathematical analysis, abstractions, or formal models
- Starts with a set of ingredients and information concerning the number of inputs and outputs
- Is driven by the user's design goals (implemented as a single scalar "fitness" value).
- It's (almost) WYWIWYG - "What You Want Is What You Get" (pronounced "wow-eee-wig")
- However, as they, be careful what you ask for because the process is, more precisely, WYGIWYAF - "What You Get Is What You Ask For"

Fall 2003 BMI 226 / CS 426 Notes K-6

THE SEARCH SPACE FOR EVEN A SIMPLE ELECTRICAL CIRCUIT IS VERY LARGE

ASSUMPTIONS FOR ILLUSTRATIVE EXAMPLE

- Assume only a one-input, one-output circuit - Assume we know exact size of ultimate circuit in advance and that it is only 20 components (Note: the number of components is, in general, unknowable in advance and 20 is small)
- Assume only two-leaded components
- Assume only 3 types of such components: Resistor (R), Capacitor (C), Inductor (I)
- Assume only 20 component values per decade (i.e., dividing each decade into 5\% slices) and 10 decades of component values (i.e., a total of only $\mathbf{2 0 0}$ possible values)

Fall 2003 BMI 226 / CS 426 Notes K-7

LARGE SEARCH SPACE FOR EVEN A SIMPLE ELECTRICAL CIRCUIT CONTINUED

- The calculation below is overly simplified, but suggestive of large size of the search space
- Then, given the above assumptions, there are 861 ways of choosing two leads from 42 leads $(20 \times 2+2=42)$ and thus a total of 2861 (~ 10260) ways of making undirected connections between two leads
- There are $320(\sim 109)$ possible ways of picking the type of component - There are 20020 (~ 1052) possible ways of the value of each of the 20 components
- Thus, there are approximately up to 10321 possible circuits with exactly 20 components (and with the above assumptions)
- And, of course, one would rarely know, in advance, that the requisite circuit had precisely 20 components

Fall 2003 BMI 226 / CS 426 Notes K-8

DIFFICULTY OF AUTOMATED ANALOG CIRCUIT DESIGN

- Analysis of a circuit is itself difficult, and there is no previous general way to automate the synthesis of an analog electrical circuit from a high-level statement of the circuit's behavior and characteristics
- A hard problem
- Exponential in the number of components
- More than 10300 circuits with a mere 20 components

Fall 2003 BMI 226 / CS 426 Notes K-9

DIFFICULTY OF AUTOMATED ANALOG CIRCUIT DESIGN - CONTINUED

- An important problem
- Too few analog designers
- There is a comparatively small "egg shell" of analog circuitry around almost all digital circuits
- The time required for the total design is often controlled by the time required to design the analog portion
- Analog circuits must be redesigned with each new generation of solid-state process technology
- Solid-state process technology is optimized for digital circuits - thus making analog design even more difficult

Fall 2003 BMI 226 / CS 426 Notes K-10

DEVELOPMENTAL GENETIC PROGRAMMING FOR AUTOMATED SYNTHESIS OF ANALOG CIRCUITS

Fall 2003 BMI 226 / CS 426 Notes K-11

ONE-INPUT, ONE-OUTPUT INITIAL CIRCUIT

- Initial circuit consists of embryo and test fixture
- Embryo has modifiable wires (e.g., ZO AND Z1)
- Test fixture has input and output ports and usually has source resistor and load resistor. There are no modifiable wires (or modifiable components) in the test fixture.

Fall 2003 BMI 226 / CS 426 Notes K-12

THE INITIAL CIRCUIT

- Circuit-constructing program tree contains
- Component-creating functions
- Topology-modifying functions
- Development-controlling functions
- Circuit-constructing program tree has one result-producing branch for each modifiable wire in embryo of the initial circuit
- There is a writing head linking each modifiable wire (or modifiable component) with one point of the program tree

TWO PARTS OF AN INITIAL CIRCUIT

EMBRYO WITH TWO MODIFIABLE WIRES, Z0 AND Z1 AND THREE PORTS (EMBRYO_INPUT, EMBRYO_OUTPUT, AND EMBRYO_GROUND)

Fall 2003 BMI 226 / CS 426 Notes K-14

TWO PARTS OF AN INITIAL CIRCUIT

ONE-INPUT, ONE-OUTPUT TEST FIXTURE WITH THREE PORTS TO THE EMBRYO

Fall 2003 BMI 226 / CS 426 Notes K-15

TWO PARTS OF AN INITIAL CIRCUIT

THE EMBRYO

- An embryo contains at least one modifiable wire. A modifiable wire is a wire that is capable of being converted into electrical components, other modifiable wires, and nonmodifiable wires during the developmental process.
- The embryo is very simple - often as little as one (or a few) modifiable wires
- An embryo has one or more ports that enable it to be embedded into a test fixture.
- When the embryo is embedded in the test fixture, the result is typically a useless and degenerate circuit

Fall 2003 BMI 226 / CS 426 Notes K-16

TWO PARTS OF AN INITIAL CIRCUIT

THE EMBRYO - CONTINUED

- Occasionally, an embryo may also contain non-modifiable wires, non-modifiable electrical components, or modifiable electrical components.
- The developmental process operates on the embryo (not the test fixture)
- The distinctive feature of the embryo is that it contains at least one modifiable wire.

TWO PARTS OF AN INITIAL CIRCUIT

THE TEST FIXTURE

- The test fixture is a fixed (hard-wired) substructure composed of nonmodifiable wires and nonmodifiable electrical components.
- Its purpose is to provide a means for testing another electrical substructure, namely the embryo.
- A test fixture has one or more ports that enable an embryo to be embedded into it.
- The test fixture provides access to the circuit's external input(s) and outputs and permits probing of the circuit's output.

Fall 2003 BMI 226 / CS 426 Notes K-18

TWO PARTS OF AN INITIAL CIRCUIT

THE TEST FIXTURE - CONTINUED

- A test fixture typically incorporates certain fixed elements that are required to test the type of circuit being designed. For example, the test fixture often contains a source resistor reflecting the reality that all sources have resistance and a load resistor representing the load that must be driven by the output.
- The distinctive feature of the test fixture is that it contains no modifiable wires and no modifiable components.

Fall 2003 BMI 226 / CS 426 Notes K-19

DEVELOPMENTAL PROCESS

- In the initial circuit, the test fixture encases only the embryo.
- The developmental process operates on the embryo (not the test fixture)
- The developmental process applies functions in the circuit-constructing program tree to certain designated elements of the embryo (and its successors).
- The functions in the program tree sideeffect the embryo (and its successors during the developmental process).
- The developmental process ends when the program tree is fully executed.
- After the embryo is fully developed, the test fixture encases the nontrivial substructure that is developed from the embryo.

WRITING HEADS

ONE-INPUT, ONE-OUTPUT INITIAL CIRCUIT WITH TWO WRITING HEADS ASSOCIATED WITH THE TWO MODIFIABLE WIRES (Z0 AND Z1) OF THE EMBRYO

COMPONENT-CREATING FUNCTIONS

TWO-LEADED

- Resistor R function
- Capacitor C function
- Inductor L function
- Diode D function
- TWO_LEAD_OPAMP function
- Digital NOT function (inverter)

THREE-LEADED

- Transistor QT function
- THREE_LEAD_OPAMP function
- Digital AND, OR, NAND, NOR functions FOUR-LEADED
- Transformer TRANFORMER function

FIVE-LEADED

- FIVE_LEAD_OPAMP function

Fall 2003 BMI 226 / CS 426 Notes K-22

A PORTION OF A CIRCUIT CONTAINING A MODIFIABLE WIRE ZO

RESULT AFTER R FUNCTION

Fall 2003 BMI 226 / CS 426 Notes K-23

RESULT AFTER C FUNCTION

RESULT AFTER L FUNCTION

Fall 2003 BMI 226 / CS 426 Notes K-24
NETLIST BEFORE EXECUTION OF R FUNCTION

C2 110
C3 111
zO 21
C4 212
C5 213

Note: By convention, the first-listed node is the node connected to the positive lead of a two-leaded component

NETLIST AFTER EXECUTION OF R FUNCTION CREATING A 5- Ω RESISTOR
C2 110
C3 111
R1 21 5ohms
C4 212
C5 213

Fall 2003 BMI 226 / CS 426 Notes K-25
RESULT AFTER QTO FUNCTION

RESULT AFTER ANDO DIGITAL GATE

Fall 2003 BMI 226 / CS 426 Notes K-26

RESULT AFTER TRANFORMERO

FUNCTION

Fall 2003 BMI 226 / CS 426 Notes K-27

RESULT AFTER TWO_LEAD_OPAMP1

RESULT AFTER THREE_LEAD_OPAMP1 FUNCTION

Fall 2003 BMI 226 / CS 426 Notes K-28

RESULT AFTER TRANFORMERO
 FUNCTION

Fall 2003 BMI 226 / CS 426 Notes K-29

A PORTION OF A CIRCUIT CONTAINING A RESISTOR R1

RESULT AFTER FIVE_LEAD_OPAMP3

Fall 2003 BMI 226 / CS 426 Notes K-30

TOPOLOGY-MODIFYING FUNCTIONS

- SERIES division function
- PARALLELO and PARALLEL1 parallel division functions
- STAR division function
- TRIANGLE division function
- VIA function
- FLIP function

Fall 2003 BMI 226 / CS 426 Notes K-31

A CIRCUIT CONTAINING A RESISTOR R1

AFTER THE SERIES FUNCTION

Fall 2003 BMI 226 / CS 426 Notes K-32

NETLIST WITH R1

```
C2 1 10
C3 1 11
R1 2 1 5ohms
C4 2 12
C5 2 13
C2 1 10
C3 1 11
R1 2 4 5ohms
Z6 4 3
R7 3 1 5ohms
C4 2 12
C5 2 13
```

 NETLIST AFTER SERIES FUNCTION
 Fall 2003 BMI 226 / CS 426 Notes K-33

AFTER PARALLELO PARALLEL DIVISION

AFTER PARALLEL1 PARALLEL DIVISION

Fall 2003 BMI 226 / CS 426 Notes K-34

AFTER STAR1 FUNCTION

AFTER TRIANGLE1 FUNCTION

Fall 2003 BMI 226 / CS 426 Notes K-35

A CIRCUIT CONTAINING A RESISTOR R1

AFTER VIAO FUNCTION

Fall 2003 BMI 226 / CS 426 Notes K-36

A CIRCUIT CONTAINING A DIODE D1

AFTER THE FLIP FUNCTION

Fall 2003 BMI 226 / CS 426 Notes K-37

DEVELOPMENT-CONTROLLING FUNCTIONS

- END function
- NOP (No Operation) function

Fall 2003 BMI 226 / CS 426 Notes K-38

A CIRCUIT FROM A CIRCUITCONSTRUCTING PROGRAM TREE

HIGHLIGHTED ARITHMETICPERFORMING SUBTREES

(LIST (C (-0.963 ($-\quad(-\quad-0.875-0.113)$ 0.880) (series (flip end) (series (flip end) (L -0.277 end) end) (L (-0.640 0.749) (L -0.123 end))))
(flip (nop (L -0.657 end))))

Fall 2003 BMI 226 / CS 426 Notes K-39

FUNCTIONS AND TERMINALS FOR ARITHMETIC-PERFORMING SUBTREES

Name	Short Description	Arity
\mathfrak{R}	Random constants	0
+	Addition	2
-	Subtraction	2
ADF 0, ADF1,... defined	Automatically function 0, etc.	Uario us
ARG0, ARG1,...	Dummy argument 0 (formal parameter 0), etc.	0

Fall 2003 BMI 226 / CS 426 Notes K-40

LOGARITHMIC INTERPRETATION OF ARITHMETIC-PERFORMING SUBTREES

- The arithmetic-performing subtree produces floating-point number X.
- X is used to produce an intermediate value U in the range of -5 to +5 .

- If the return value X is between -5.0 and +5.0 , an intermediate value U is set to the value X returned by the subtree.
- If the return value X is less than -100 or greater than $+100, U$ is set to a saturating value of zero.
- If the return value X is between -100 and 5.0, U is found from the straight line connecting the points $(-100,0)$ and $(-5,-5)$.
- If the return value X is between +5.0 and $+100, U$ is found from the straight line connecting $(5,5)$ and $(100,0)$.

Fall 2003 BMI 226 / CS 426 Notes K-41

POTENTIAL FUNCTIONS AND TERMINALS FOR AUTOMATICALLY DEFINED FUNCTIONS

Name	Short Description	Range of Arity
ADF-i	Automatically defined function i	0 to $M A X_{\mathrm{a} d f}$
ARG-i to	Dummy variable i (formal parameter) of automatically defined function(s)	0 arg

Fall 2003 BMI 226 / CS 426 Notes K-42
DEVELOPMENT OF A CIRCUIT FROM A CIRCUIT-CONSTRUCTING PROGRAM TREE AND THE INITIAL CIRCUIT
(LIST (C (- 0.963 (- (- $-0.875-0.113$) 0.880) (series (flip end) (series (flip end) ($\mathrm{L}-0.277$ end) end) (L (-0.640 $0.749)(\mathrm{L}-0.123$ end))) (flip (nop (L 0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes K-43

INITIAL CIRCUIT WITH TWO WRITING HEADS

Fall 2003 BMI 226 / CS 426 Notes K-44

RESULT OF THE C (2) FUNCTION

(LIST (C $(-0.963 \quad(-\quad(-\quad-0.875-0.113)$ 0.880)) (series (flip end) (series (flip end) (L -0.277 end) end) (L (- -0.640 0.749) (L -0.123 end)))) (flip (nop (L 0.657 end)))))

NOTE: Interpretation of arithmetic value

Fall 2003 BMI 226 / CS 426 Notes K-45

RESULT OF THE fLIP (3) - IN 2nd RESULT-PRODUCING BRANCH

(LIST (C (- 0.963 (- (- $-0.875-0.113$) 0.880)) (series (flip end) (series (flip end) (L -0.277 end) end) (L (- -0.640 0.749) (L -0.123 end)))) (flip (nop (L 0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes K-46

RESULT OF SERIES (5) FUNCTION

Fall 2003 BMI 226 / CS 426 Notes K-47
RESULT OF THE FLIP (9) FUNCTION

(LIST (C (- 0.963 (- (- $-0.875-0.113)$ 0.880) (series (flip end) (series (flip end) (L -0.277 end) end) (L (- -0.640 $0.749)(\mathrm{L}-0.123$ end))) (flip (nop (L 0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes K-48

RESULT OF SERIES (10) FUNCTION

(LIST (C (- $0.963(-\quad(-\quad-0.875-0.113)$ 0.880) (series (flip end) (series (flip end) (L -0.277 end) end) (L (-0.640 0.749) (L -0.123 end)))) (flip (nop (L 0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes K-49
RESULT OF L (11) FUNCTION

(LIST (C (- 0.963 (- (- $-0.875-0.113)$ 0.880)) (series (flip end) (series (flip end) (L -0.277 end) end) (L ($-\mathbf{- 0 . 6 4 0}$ 0.749) (L -0.123 end)))) (flip (nop (L 0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes K-50
RESULT OF L (12) FUNCTION

Fall 2003 BMI 226 / CS 426 Notes K-51
RESULT OF L (17) FUNCTION

(LIST (C (- 0.963 (- (- $-0.875-0.113$) 0.880) (series (flip end) (series (flip end) (L -0.277 end) end) (L (- -0.640 0.749) (L -0.123 end))) (flip (nop (L 0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes K-52

RESULT OF L (20) (OVERWRITING)

(LIST (C (- 0.963 (- (- $-0.875-0.113$) 0.880)) (series (flip end) (series (flip end) (L -0.277 end) end) (L (- -0.640 $0.749)(\underline{L}-0.123$ end))) (flip (nop (L 0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes K-53

THE FULLY DEVELOPED EXAMPLE CIRCUIT (BOG 0 - LPF)

Fall 2003 BMI 226 / CS 426 Notes K-54

FITNESS MEASUREMENT PROCESS

Embryonic Circuit

Fully Designed Circuit (NetGraph)

Circuit Netlist (ascii)

Circuit Simulator (SPICE)

Circuit Behavior (Output)

Fitness

SPICE CIRCUIT SIMULATOR

- Developed at Univ. of California - Berkeley
- 217,000 lines of C code
- Hundreds of thousands of users
- Available in many forms from various sources (e.g., PSPICE, HSPICE)
- Input required by SPICE
- Netlist
- SPICE Commands
- Models
- Types of analysis produced by SPICE
- Fourier
- AC Sweep
- DC Sweep
- Transient
- Operating point
- Sensitivity
- Distortion
- Noise
- Pole-Zero
- Transfer function

Fall 2003 BMI 226 / CS 426 Notes K-56

SPICE NETLIST

Circuit Must Have a Title

V0
20
$3 \quad 34$ Q2P3906
$10 \quad 1.00 \mathrm{e}+00 \mathrm{~K}$
$21 \quad 1.00 \mathrm{e}+00 \mathrm{~K}$
R7
QNC9
511 Q2P3906
QGE12
160 Q2N3904
QD13
QNC15
Q17
VNEGQ999
.MODEL
114 Q2P3906
$5 \quad 3 \quad 7$ Q2P3906
760 Q2N3904
$\mathrm{Br}=4.977$
.MODEL
Q2N3904NPN
$B f=416.4$
$\mathrm{Br}=0.7371$
.DC V0 -0.25 0.251 0.025
.PLOT DC V(1)
.OPTIONS NOPAGE NOMOD
.END

