Fall 2003 BMI 226 / CS 426 Notes KKK-1

AUTOMATIC SYNTHESIS OF ELECTRICAL CIRCUITS USING DEVELOPMENTAL GENETIC PROGRAMMING

PART 3 - ACTIVE CIRCUIT EXAMPLES

Fall 2003 BMI 226 / CS 426 Notes KKK-2

DESIGN OF A 10 DB AMPLIFIER

- Function set for construction-continuing subtrees
$F_{\text {ccs }}=\{R, C, Q T 0, Q T 1, Q T 2, Q T 3, Q T 4$, QT5, QT6, QT7, QT8, QT9, QT10, QT11, SERIES, PARALLEL0, FLIP, NOP, THGND, THPOS, THVIA0, THVIA1, THVIA2, THVIA3, THVIA4, THVIA5, THVIA6, THVIA7\}
- Terminal set for construction-continuing subtrees
$\mathrm{T}_{\mathrm{ccs}}=\{\mathrm{END}, \mathrm{CUT}\}$
- Function set, for arithmetic-performing subtrees
$\mathrm{F}_{\text {aps }}=\{+,-\}$
- Terminal set for arithmetic-performing subtrees
$\mathrm{T}_{\text {aps }}=\{\mathfrak{R}\}$

Fall 2003 BMI 226 / CS 426 Notes KKK-3

FITNESS MEASURE FOR AN AMPLIFIER (10 DB PROBLEM)

- Frequency domain
- The incoming AC signal source is 500 millivolts in amplitude
- Very simple

Fall 2003 BMI 226 / CS 426 Notes KKK-4

REDRAWN BEST-OF-GENERATION GENETICALLY EVOLVED AMPLIFIER FROM GENERATION 45 SHOWING THE VOLTAGE GAIN STAGE AND DARLINGTON EMITTER FOLLOWER SECTION (10 DB PROBLEM)

Darlington - U.S. Patent 2,663,806

TWELVE INSTANCES IN GENETIC PROGRAMMING III BOOK (1999) WHERE GENETIC PROGRAMMING APPEARS TO HAVE INFRINGED DARLINGTON'S PATENT $(2,663,806)$

Figure	Circuit	Transistors	Patent claim
$\mathbf{4 5 . 1 6}$	96 dB amplifier	Q5 and Q25	$\mathbf{1}$
45.16	96 dB amplifier	Q53, Q32	$\mathbf{3}$
47.6	Squaring computational	Q101, Q119	$\mathbf{1}$
47.6	Squaring computational	Q29, Q88	$\mathbf{4}$
47.10	Cubing computational	Q27, Q46	$\mathbf{3}$
47.10	Cubing computational	Q46, Q35	$\mathbf{3}$
47.11	Cubing computational	Q35, Q49	$\mathbf{3}$
47.12	Square root computational	Q120, Q155	$\mathbf{2}$
47.15	Cube root computational	QNC19, QNC24	$\mathbf{2}$
47.16	Cube root computational	QNC73, QNC74	$\mathbf{1}$
47.16	Cube root computational	QNC74, QNC48	$\mathbf{2}$
47.17	Logarithmic computational	Q22, Q66	$\mathbf{4}$

Fall 2003 BMI 226 / CS 426 Notes KKK-6

FEEDBACK EMBRYO WITH THREE WRITING HEADS (60 DB AMPLIFIER)

$(60 \mathrm{DB}=1000-\mathrm{TO}-1)$

Fall 2003 BMI 226 / CS 426 Notes KKK-7

ARCHITECTURE OF CIRCUITCONSTRUCTING PROGRAM TREE (60 DB AMPLIFIER)

- The circuit-constructing program tree has three result-producing branches (called RPB0, RPB1, and RPB2).
- The circuit-constructing program tree also has two function-defining branches, each consisting of one-argument automatically defined function (called $A D F O$ and $A D F 1$).
- Each program tree has a total of five branches (i.e., two function-defining branches and three result-producing branches) joined by a connective LIST function.

Fall 2003 BMI 226 / CS 426 Notes KKK-8

FUNCTION AND TERMINAL SETS OF RESULT PRODUCING BRANCHES (60 DB AMPLIFIER)

- For the three result-producing branches, the function set, $\mathrm{F}_{\text {css-rpb }}$, for each constructioncontinuing subtree is
$\mathrm{F}_{\mathrm{ccs}-\mathrm{rpb}}=\{$ ADF $0, \mathrm{ADF} 1, \mathrm{R}, \mathrm{C}, \mathrm{SERIES}$,
PARALLEL0, PARALLEL1, FLIP, NOP,
NEW_T_GND_0, NEW_T_GND_1,
NEW_T_POS_0, NEW_T_POS_1,
NEW_T_NEG_0, NEW_T_NEG_1,
PAIR_CONNECT_0, PAIR_CONNECT_1,
Q_D_NPN, Q_D_PNP, Q_3_NPN0, ...,
Q_3_NPN11, Q_3_PNP 0, ..., Q_3_PNP11,
Q_POS_COLL_NPN, Q_GND_EMIT_NPN,
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP,
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP\}
- For the three result-producing branches, the terminal set, $T_{\text {ccs-rpb }}$, for each construction-continuing subtree consists of $\mathrm{T}_{\mathrm{ccs}-\mathrm{rpb}}=\{$ END, SAFE_CUT $\}$.

Fall 2003 BMI 226 / CS 426 Notes KKK-9

FUNCTION AND TERMINAL SETS FOR FUNCTION-DEFINING BRANCHES (60 DB AMPLIFIER)

- For the function-defining branches (automatically defined functions), the function set, $F_{\text {css-adf }}$, for each constructioncontinuing subtree is
$\mathrm{F}_{\mathrm{ccs}-\mathrm{df}}=\mathrm{F}_{\mathrm{ccs}-\mathrm{ppb}}-\{\operatorname{ADF} 0, A D F 1\}$.
- The terminal sets are identical for both function-defining branches (automatically defined functions) of the program trees for this problem. The function sets are identical for both function-defining branches (automatically defined functions).
- For the function-defining branches, the terminal set, $T_{\text {ccs-adf, }}$, for each constructioncontinuing subtree is
$\mathrm{T}_{\mathrm{ccs} \text {-adf }}=\mathrm{T}_{\mathrm{ccs} \text {-adf }} \approx\{$ ARGO $\}$.

Fall 2003 BMI 226 / CS 426 Notes KKK-10

FUNCTION AND TERMINAL SETS FOR ARITHMETIC-PERFORMING SUBTREES (FOUND IN BOTH RbPs AND ADFs) (60 DB AMPLIFIER)

- The terminal set, Taps, for each arithmeticperforming subtree consists of
Taps $=\{\mathfrak{R}\}$,
where \mathfrak{R} represents floating-point random constants from -1.0 to +1.0.
- The function set, Faps, for each arithmeticperforming subtree is,
Faps $=\{+,-\}$.

Fall 2003 BMI 226 / CS 426 Notes KKK-11

FITNESS MEASURE (60 DB AMPLIFIER)

- Fitness is the sum of the amplification penalty, the bias penalty, and the two nonlinearity penalties.
- First, the overall amplification factor of the circuit is measured using the overall value for gain of the circuit as measured by the slope of the straight line between the output for $\mathbf{- 1 0}$ millivolts and the output for +10 millivolts (i.e., between the outputs for the endpoints of the DC sweep).
- If the amplification factor is less than the maximum possible amplification (1,000 -to- 1 for this problem), the penalty is equal to the numerical difference between the maximum possible gain and the actual gain. For example, if the gain were 100 -to- 1 , there would be a detrimental contribution of 900 to the fitness measure.

Fall 2003 BMI 226 / CS 426 Notes KKK-12

FITNESS MEASURE (60 DB AMPLIFIER) - CONTINUED

- Second, the linearity is measured by the deviation between the slope of each of two shorter lines and the overall amplification factor of the circuit. The first shorter line segment connects the output value associated with an input of $\mathbf{- 1 0} \mathbf{~ m v}$ and the output value associated with an input of -5 mv .

The second shorter line segment connects the output value for +5 mv and the output value for +10 mv . Each of these two shorter line segments contributes to the fitness.

The detrimental contribution to fitness of each shorter line segment is equal to the weighted absolute value of the difference between the slope of shorter line segment and the overall amplification factor of the circuit.

Fall 2003 BMI 226 / CS 426 Notes KKK-13

FITNESS MEASURE (60 DB AMPLIFIER) - CONTINUED

- Third, the bias is computed using the DC output associated with a DC input of 0 volts.

There is a penalty equal to the bias times a weight (which, for this problem, is 0.1).

- Unsimulatable programs $=108$ penalty

Fall 2003 BMI 226 / CS 426 Notes KKK-14

CONTROL PARAMETERS (60 DB AMPLIFIER)

- Population size, M, of $\mathbf{6 4 0 , 0 0 0}$
- Maximum number of generations, G, is set to be meaninglessly large
- Maximum of $\boldsymbol{H}_{\mathrm{rpb}}=\mathbf{3 0 0}$ points (functions and terminals) for each result-producing branch
- Maximum of $\boldsymbol{H}_{\text {adf }}=\mathbf{3 0 0}$ points (functions and terminals) for each function-defining branch
- For each generation
- 10% reproductions
- 1% mutations
- 89% crossovers
- Secondary parameters are default values in Koza 1994 (appendix D)

Fall 2003 BMI 226 / CS 426 Notes KKK-15

TERMINATION CRITERION AND RESULTS DESIGNATION (60 DB AMPLIFIER)

- Manual intervention in lieu of preestablished termination criterion
- Best-so-far individual is designated as the result of the run

Fall 2003 BMI 226 / CS 426 Notes KKK-16

PERCENTAGE OF UNSIMULATABLE PROGRAMS (60 DB)

BEST OF GENS 0, 19, 49,109 (60 DB)

Fall 2003 BMI 226 / CS 426 Notes KKK-18

TIME DOMAIN - BEST OF GENS 0, 19, 49,109 (60 DB)

AC SWEEPS - BEST OF GENS 0, 19, 49,109
 (60 DB)

DC SWEEP - BEST OF GENS 0, 19, 49,109
(60 DB)

Fall 2003 BMI 226 / CS 426 Notes KKK-21

ONE-INPUT, ONE-OUTPUT FEEDBACK EMBRYO WITH THREE WRITING HEADS (FOR 96 DB AMPLIFIER)

THESE FEEDBACK RESISTORS LIMIT AMPLIFICATION TO 120 DB

ARCHITECTURE OF CIRCUITCONSTRUCTING PROGRAM TREE (FOR 96 DB AMPLIFIER)

- The circuit-constructing program tree has three result-producing branches (called RPB0, RPB1, and RPB2).
- The number of automatically defined functions, if any, will emerge as a consequence of the evolutionary process using the architecture-altering operations.
- Each program in the initial population of programs has a uniform architecture with no automatically defined functions (i.e., three result-producing branches).
- A connective LIST function joins the three result-producing branches) to whatever function-defining branches, if any, are present.

Fall 2003 BMI 226 / CS 426 Notes KKK-23

ARCHITECTURE-ALTERING OPERATIONS

- Branch duplication
- Argument duplication
- Branch deletion
- Argument deletion
- Branch creation
- Argument creation

Fall 2003 BMI 226 / CS 426 Notes KKK-24

ARCHITECTURE-ALTERING OPERATIONS

PROGRAM WITH 1 TWO-ARGUMENT AUTOMATICALLY DEFINED FUNCTION (ADF0) AND 1 RESULT-PRODUCING BRANCH - ARGUMENT MAP OF $\{\mathbf{2}\}$

Fall 2003 BMI 226 / CS 426 Notes KKK-25

PROGRAM WITH ARGUMENT MAP OF $\{2,2\}$ CREATED USING THE OPERATION OF BRANCH DUPLICATION

Fall 2003 BMI 226 / CS 426 Notes KKK-26

PROGRAM WITH ARGUMENT MAP OF \{3\} CREATED USING THE OPERATION OF ARGUMENT DUPLICATION

Fall 2003 BMI 226 / CS 426 Notes KKK-27

FUNCTION AND TERMINAL SETS OF RESULT PRODUCING BRANCHES (FOR 96 DB AMPLIFIER)

- The initial function set, Fccs-initial, for each construction-continuing subtree is $F_{\text {ccs-rpb }}=\{R, C, S E R I E S$, PARALLEL0,

PARALLEL1, FLIP, NOP, NEW_T_GND_0,
NEW_T_GND_1, NEW_T_POS_0,
NEW_T_POS_1, NEW_T_NEG_0,
NEW_T_NEG_1, PAIR_CONNECT_0,
PAIR_CONNECT_1, Q_D_NPN,
Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11,
Q_3_PNP 0, ..., Q_3_PNP11,
Q_POS_COLL_NPN, Q_GND_EMIT_NPN,
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP,
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP\}

- The initial terminal set, Tces-initial, for each construction-continuing subtree is $\mathrm{T}_{\mathrm{ccs}-\mathrm{rpb}}=\{$ END, SAFE_CUT $\}$.

Fall 2003 BMI 226 / CS 426 Notes KKK-28

FUNCTION AND TERMINAL SETS FOR FUNCTION-DEFINING BRANCHES (FOR 96 DB AMPLIFIER)

The set of potential new functions, Fpotential, is

Fpotential $=\{\operatorname{ADF} 0, \mathrm{ADF} 1, \mathrm{ADF} 2, \mathrm{ADF} 3\}$. The set of potential new terminals, Tpotential, is
Tpotential $=\{$ ARGO $\}$.

- The architecture-altering operations change the function set, Fces for each construction-continuing subtree of all three result-producing branches and the functiondefining branches, so
Fces $=$ Fces-initial \approx Fpotential.

Fall 2003 BMI 226 / CS 426 Notes KKK-29

FUNCTION AND TERMINAL SETS FOR ARITHMETIC-PERFORMING SUBTREES (FOUND IN BOTH RBPs AND ADFs) (FOR 96 DB AMPLIFIER)

- The terminal set, Taps, for each arithmeticperforming subtree consists of
Taps $=\{\mathfrak{R}\}$,
where \mathfrak{R} represents floating-point random constants from $\mathbf{- 1 . 0}$ to $\mathbf{+ 1 . 0}$.
- The function set, Faps, for each arithmeticperforming subtree is,
Faps $=\{+,-\}$.

Fall 2003 BMI 226 / CS 426 Notes KKK-30

FITNESS MEASURE (96 DB AMPLIFIER)

- An ideal inverting amplifier circuit would receive a $D C$ input, invert it, and multiply it by the amplification factor.
- The starting point for evaluating the fitness of a circuit is its response to a DC input. A circuit is flawed to the extent that it does not achieve the desired amplification; to the extent that the output signal is not centered on 0 Volts (i.e., it has a bias); and to the extent that the DC response is not linear.
- The fitness measure is based on SPICE's DC sweep. The circuits were analyzed with a 5 point DC sweep ranging from $\mathbf{- 1 0}$ millvolts to $+\mathbf{1 0} \mathbf{~ m V}$, with input points at $\mathbf{- 1 0} \mathbf{~ m V},-5$ $\mathrm{mV}, 0 \mathrm{mV},+5 \mathrm{mV}$, and +10 mV .
- Fitness is the sum of
- the amplification penalty,
- the bias penalty, and
- the two non-linearity penalties.

FITNESS MEASURE (FOR 96 DB AMPLIFIER)

- AMPLIFICATION PENALTY: The amplification factor of the circuit is measured by the slope of the straight line between the output for $\mathbf{- 1 0} \mathbf{~ m V}$ and the output for +10 mV (i.e., between the outputs for the endpoints of the DC sweep). If the amplification factor is less than the maximum allowed by the feedback resistor (120 dB for this problem), there is a penalty equal to the shortfall in amplification.
- BIAS PENALTY: The bias is computed using the DC output associated with a DC input of 0 Volts. The penalty is equal to the bias times a weight. For this problem, a weight of 0.1 is used.

Fall 2003 BMI 226 / CS 426 Notes KKK-32

FITNESS MEASURE (FOR 96 DB AMPLIFIER)

- TWO NON-LINEARITY PENALTIES:

The linearity is measured by the deviation between the slope of each of two line segments and the overall amplification factor of the circuit. The first line segment spans the output values associated with inputs of $\mathbf{- 1 0}$ mv through $\mathbf{- 5} \mathrm{mv}$. The second line segment spans the output values associated with inputs of +5 mv and through +10 mv . The penalty for each of these line segments is equal to the absolute value of the difference in slope between the respective line segment and amplification factor of the circuit.

- Unsimulatable programs $=108$ penalty

Fall 2003 BMI 226 / CS 426 Notes KKK-33

CONTROL PARAMETERS (FOR 96 DB AMPLIFIER)

- Population size, M, of $\mathbf{6 4 0 , 0 0 0}$
- Maximum number of generations, G, is set to be meaninglessly large

Fall 2003 BMI 226 / CS 426 Notes KKK-34

CONTROL PARAMETERS (96 DB AMPLIFIER) - CONTINUED

- The percentage of operations on each generation after generation 5 was
- 86.5% one-offspring crossovers;
- 10% reproductions;
- 1% mutations;
- 1% branch duplications;
- 0.5\% branch deletions;
- 1% branch creations; and
- 0% argument creations.
- The percentage of operations on each generation before generation 6 was
- 78.0\% one-offspring crossovers;
- 10\% reproductions;
- 1% mutations;
- 5.0% branch duplications;
- 1% branch deletions;
- 5.0% branch creations; and
- 0% argument creations.

Fall 2003 BMI 226 / CS 426 Notes KKK-35

CONTROL PARAMETERS (FOR 96 DB AMPLIFIER) - CONTINUED

- Maximum of $\boldsymbol{H}_{\mathrm{rpb}}=\mathbf{3 0 0}$ points (functions and terminals) for each result-producing branch
- Maximum of $\boldsymbol{H}_{\text {adf }}=200$ points (functions and terminals) for each function-defining branch
- The maximum number of automatically defined functions is 4 .
- The number of arguments for each automatically defined function is 1 .
- Secondary parameters are default values in Koza 1994 (appendix D)

Fall 2003 BMI 226 / CS 426 Notes KKK-36

TERMINATION CRITERION AND RESULTS DESIGNATION (FOR 96 DB AMPLIFIER)

- Manual intervention in lieu of preestablished termination criterion
- Best-so-far individual is designated as the result of the run

Fall 2003 BMI 226 / CS 426 Notes KKK-37

BEST CIRCUIT OF GENERATION 0
 (96 DB)

Fall 2003 BMI 226 / CS 426 Notes KKK-38
BEST CIRCUIT OF GENERATION 42
(96 DB)

ADFO

Fall 2003 BMI 226 / CS 426 Notes KKK-39
BEST CIRCUIT OF GENERATION 50
(96 DB)

Fall 2003 BMI 226 / CS 426 Notes KKK-40

BEST CIRCUIT OF GENERATION 86

(96 DB)

ADFO

Fall 2003 BMI 226 / CS 426 Notes KKK-41

TIME DOMAIN - BEST OF GENS 0, 42, 50, 86 (96 DB)

Time

Fall 2003 BMI 226 / CS 426 Notes KKK-42

AC SWEEPS - BEST OF GENS 0, 42, 50, 86
 (96 DB)

- $26 * \log 10(\mathrm{u}(\mathrm{r} 13: 1) / \mathrm{u}(\mathrm{u} 0:+))$

Frequency

Frequency

Fall 2003 BMI 226 / CS 426 Notes KKK-43
DC SWEEP - BEST OF GENS 0, 42, 50, 86
(96 DB)

Fall 2003 BMI 226 / CS 426 Notes KKK-44

ONE-INPUT, ONE-OUTPUT EMBRYO WITH ONE WRITING HEAD (ONE MODIFIABLE WIRE) FOR COMPUTATIONAL CIRCUITS

ARCHITECTURE OF CIRCUITCONSTRUCTING PROGRAM TREE FOR COMPUTATIONAL CIRCUITS

- The circuit-constructing program tree has one result-producing branch (RPBO).
- The circuit-constructing program tree has no automatically defined functions.

Fall 2003 BMI 226 / CS 426 Notes KKK-46

FUNCTION AND TERMINAL SETS OF RESULT PRODUCING BRANCHES FOR COMPUTATIONAL CIRCUITS

- For the result-producing branch, the function set, $\mathrm{F}_{\text {css-rpb }}$, for each constructioncontinuing subtree is
$\mathrm{F}_{\mathrm{ccs}-\mathrm{rpb}}=\{\mathrm{R}$, SERIES, PARALLEL0,
\quad PARALLEL1, FLIP, NOP, NEW_T_GND_0, NEW_T_GND_1, NEW_T_POS_0,
NEW_T_POS_1, NEW_T_NEG_0,
NEW_T_NEG_1, PAIR_CONNECT_0,
PAIR_CONNECT_1, Q_D_NPN,
Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11,
Q_3_PNP 0, ..., Q_3_PNP 11,
Q_POS_COLL_NPN, Q_GND_EMIT_NPN,
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP,
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP\}
- For the result-producing branch, the function set, $\mathrm{F}_{\text {css-rpb }}$, for each constructioncontinuing subtree is
$\mathrm{T}_{\mathrm{ccs}-\mathrm{ppb}}=\left\{E N D, S A F E _C U T\right\}$.

Fall 2003 BMI 226 / CS 426 Notes KKK-47

FUNCTION AND TERMINAL SETS FOR ARITHMETIC-PERFORMING SUBTREES (FOUND IN BOTH RBPs AND ADFs) FOR COMPUTATIONAL CIRCUITS

- The terminal set, Taps, for each arithmeticperforming subtree consists of
Taps $=\{\mathfrak{R}\}$,
where \mathfrak{R} represents floating-point random constants from -1.0 to +1.0.
- The function set, Faps, for each arithmeticperforming subtree is,
Faps $=\{+,-\}$.

Fall 2003 BMI 226 / CS 426 Notes KKK-48

FITNESS MEASURE (FOR COMPUTATIONAL CIRCUITS)

- The target voltage is the square root, cube root, square, cube of the input voltage depending on the particular computational circuit desired.
- The SPICE simulator is requested to perform a DC sweep analysis at 21 equidistant voltages between $\mathbf{- 2 5 0} \mathbf{~ m V}$ and +250 mV for the cube root, square, and cube functions
- but only 0 mV to +500 mV for the square root
- Fitness is the sum, over these 21 fitness cases, of the absolute weighted deviation between the actual value of the voltage that is produced by the circuit at the probe point VOUT and the target value for voltage. The smaller the value of fitness, the better.

Fall 2003 BMI 226 / CS 426 Notes KKK-49

FITNESS MEASURE (FOR COMPUTATIONAL CIRCUITS)

* The fitness measure does not penalize output voltages that perfectly match the target voltages; it slightly penalizes every acceptable deviation from the target voltage; and it heavily penalizes every unacceptable deviation.
- If the output voltage is within 1% of the target voltage value for a particular fitness case, the absolute value of the deviation is weighted by 1 for that fitness case.
- If the output voltage in not within 1% of the target voltage value, the deviation is weighted by 10 for that fitness case.
- This arrangement reflects the fact that a deviation of 1% from the ideal voltage is acceptable, but greater deviations are not.
- Unsimulatable programs $=108$ penalty

Fall 2003 BMI 226 / CS 426 Notes KKK-50

CONTROL PARAMETERS FOR COMPUTATIONAL CIRCUITS

- Population size, M, of $\mathbf{6 4 0 , 0 0 0}$
- Maximum number of generations, G, is set to be meaninglessly large
- Maximum of $\boldsymbol{H}_{\mathrm{rpb}}=\mathbf{6 0 0}$ points (functions and terminals) for each result-producing branch
- For each generation
- 10% reproductions
- 1% mutations
- 89% crossovers
- No architecture-altering operations
- Secondary parameters are default values in Koza 1994 (appendix D)

Fall 2003 BMI 226 / CS 426 Notes KKK-51

TERMINATION CRITERION AND RESULTS DESIGNATION FOR COMPUTATIONAL CIRCUITS

- Manual intervention in lieu of preestablished termination criterion
- Best-so-far individual is designated as the result of the run

Fall 2003 BMI 226 / CS 426 Notes KKK-52

RESULTS FOR CUBE ROOT CIRCUIT FROM GENERATIONS 0, 17, 60

CUBE ROOT CIRCUIT FROM GENERATIONS 60

Fall 2003 BMI 226 / CS 426 Notes KKK-54
EVOLVED SQUARE ROOT CIRCUIT

Fall 2003 BMI 226 / CS 426 Notes KKK-55
EVOLVED SQUARING CIRCUIT

Fall 2003 BMI 226 / CS 426 Notes KKK-56
EVOLVED CUBING CIRCUIT

Fall 2003 BMI 226 / CS 426 Notes KKK-57

FUNCTION AND TERMINAL SETS

- For RPBs, function set for constructioncontinuing subtree
$\mathrm{F}_{\mathrm{ccs}-\mathrm{rpb}}=\{\mathbf{A D F} \mathbf{0}, \mathbf{A D F} 1, \mathbf{A D F} 2, \mathrm{ADF} 3, \mathrm{C}, \mathrm{L}$,
SERIES, PARALLEL0, FLIP, NOP, THGND, CUT, THVIA0, THVIA1, THVIA2,
THVIA3, THVIA4, THVIA5, THVIA6,
THVIA7 $\}$
- For RPBs, terminal set for constructioncontinuing subtree
$\mathrm{T}_{\text {ccs-rpb }}=\{E N D, C U T\}$
- For ADFs, function set for constructioncontinuing subtree
$\mathrm{F}_{\mathrm{ccs}}=\{\mathrm{C}, \mathrm{L}, \mathrm{SERIES}$, PARALLEL0, FLIP,
NOP, THGND, CUT, THVIA0, THVIA1,
THVIA2, THVIA3, THVIA4, THVIA5,
THVIA6, THVIA7\}
- For ADFs, the terminal set for construction-continuing subtree
$\mathrm{T}_{\mathrm{ccs}-\mathrm{adf}}=\{$ END, CUT $\}$

Fall 2003 BMI 226 / CS 426 Notes KKK-58

BEST-OF-RUN CIRCUIT FROM GENERATION 35 USING ADFs

NOTE SYMMETRY

Fall 2003 BMI 226 / CS 426 Notes KKK-59

BEST-OF-RUN PROGRAM TREE FROM GENERATION 35 USING ADFs

Fall 2003 BMI 226 / CS 426 Notes KKK-60

EDITED VERSION OF ADFO FROM BEST-OF-RUN PROGRAM TREE FROM GENERATION 35 USING ADFs

Fall 2003 BMI 226 / CS 426 Notes KKK-61

FUNCTION AND TERMINAL SETS USING ARCHITECTURE-ALTERING OPERATIONS

- For RPBs, function set for constructioncontinuing subtree
$\mathrm{F}_{\mathrm{ccs} \text {-ppb }}=\{\mathrm{C}, \mathrm{L}, \mathrm{SERIES}$, PARALLEL0, FLIP,
NOP, THGND, CUT, THVIA0, THVIA1,
THVIA2, THVIA3, THVIA4, THVIA5,
THVIA6, THVIA7\}
- For RPBs, terminal set for constructioncontinuing subtree
$\mathrm{T}_{\text {ccs-rpb }}=\{\mathrm{END}, \mathrm{CUT}\}$
- For the new ADFs, the set of potential new functions, $\mathrm{F}_{\text {css-pot, }}$, is
$\mathrm{F}_{\text {ccs-pot }}=\{\mathrm{ADF} 0, \mathrm{ADF} 1, \mathrm{ADF} 2, \mathrm{ADF} 3\}$

AUTOMATICALLY DEFINED FUNCTION ADFO OF BEST-OF-RUN CIRCUIT FROM GENERATION 77 USING ARCHITECTURE-ALTERING OPERATIONS

Fall 2003 BMI 226 / CS 426 Notes KKK-63

BEST-OF-RUN CIRCUIT FROM GENERATION 77 USING ARCHITECTURE-ALTERING OPERATIONS

EVOLVING A DOUBLE-BANDPASS FILTER USING ARCHITECTUREALTERING OPERATIONS

Fall 2003 BMI 226 / CS 426 Notes KKK-64

GENERATION 89 - FREQUENCY DOMAIN BEHAVIOR OF THE BEST-OFRUN CIRCUIT

Fall 2003 BMI 226 / CS 426 Notes KKK-65

GENERATION 89 - BEST-OF-RUN CIRCUIT

THREE-PORTED QUADRUPLY-CALLED ADF0

THREE-PORTED ADF1

FOUR-PORTED TWICE-CALLED ADF3

Fall 2003 BMI 226 / CS 426 Notes KKK-66

FREQUENCY DOMAIN BEHAVIOR OF BEST CIRCUIT OF GENERATIONS 0, 8, AND 158 FOR A TWO-BAND CROSSOVER FILTER

Fall 2003 BMI 226 / CS 426 Notes KKK-67

BEST CIRCUIT OF GENERATION 158

- ADF3 supplies one PARAMETERIZED capacitor $C 39$ whose value is determined by ADF3's dummy variable, ARG0.

ADF2 ${ }^{\text {A }}$	
$\underline{1}$	

- ADF3 supplies one unparameterized 5,130 uF capacitor C112.
- ADF3 has one hierarchical reference to ADF2 (which, in turn, supplies one unparameterized $259 \mu \mathrm{H}$ inductor).

Fall 2003 BMI 226 / CS 426 Notes KKK-68

BEST CIRCUIT OF GENERATION 158 CONTINUED

- The combined effect of $A D F 3$ is to supply two capacitors (one of which is parameterized) and one inductor. - ADF 3 has three ports and is called is called once by RPB0 and RPB1.

Fall 2003 BMI 226 / CS 426 Notes KKK-69

BEST CIRCUIT OF GENERATION 158 CONTINUED

- ADFO and ADF1 are not called at all.
- ADF2 has two ports and supplies one unparameterized $259 \mu \mathrm{H}$ inductor L147. $A D F 2$ is called a total of five times - one time by RPB2 directly, twice hierarchically by ADF3 (which is called once by RPBO and RPB1), and twice hierarchically by ADF4 (called by RFP2). Its ARGO plays no role.

Fall 2003 BMI 226 / CS 426 Notes KKK-70

BEST CIRCUIT OF GENERATION 158 CONTINUED

- ADF4 has three ports and supplies one unparameterized 3,900 uF capacitor C137 and one unparameterized $5,010 \mathrm{uF}$ capacitor C149. ADF4 has one hierarchical reference to ADF2 (which, in turn, supplies one unparameterized $259 \mu \mathrm{H}$ inductor). Thus, the combined effect of ADF4 is to supply two capacitors and one inductor.

Fall 2003 BMI 226 / CS 426 Notes KKK-71

ONE-INPUT, ONE-OUTPUT EMBRYONIC ELECTRICAL CIRCUIT FOR LOWPASS FILTER

ARCHITECTURE OF CIRCUITCONSTRUCTING PROGRAM TREE FOR LOWPASS FILTER

- Two result-producing branches (RPBO and RPB1) joined by a connective LIST function
- Four automatically defined functions (ADF0, ADF1, ADF2, and ADF3)
- The circuit-constructing program tree has six branches joined by a connective LIST function

Fall 2003 BMI 226 / CS 426 Notes KKK-73

FUNCTION AND TERMINAL SETS FOR LOWPASS FILTER

- For RPBs, function set for constructioncontinuing subtree
$\mathrm{F}_{\mathrm{ccs}-\mathrm{ppb}}=\{\mathbf{A D F} \mathbf{0}, \mathbf{A D F} 1, \mathbf{A D F} \mathbf{2}, \mathbf{A D F} 3, \mathrm{C}, \mathrm{L}$,
SERIES, PARALLEL0, FLIP, NOP, THGND, CUT, THVIA0, THVIA1, THVIA2, THVIA3, THVIA4, THVIA5, THVIA6, THVIA7
- For RPBs, terminal set for constructioncontinuing subtree
$\mathrm{T}_{\text {ccs-rpb }}=\{$ END, CUT $\}$
- For ADFs, function set for constructioncontinuing subtree
$\mathrm{F}_{\mathrm{ccs}}=\{\mathrm{C}, \mathrm{L}$, SERIES, PARALLEL0, FLIP,
NOP, THGND, CUT, THVIA0, THVIA1,
THVIA2, THVIA3, THVIA4, THVIA5, THVIA6, THVIA7\}
- For ADFs, the terminal set for construction-continuing subtree
$\mathrm{T}_{\text {ccs }-\mathrm{adf}}=\{$ END, CUT $\}$

Fall 2003 BMI 226 / CS 426 Notes KKK-74

FITNESS MEASURE FOR LOWPASS

FILTER

- Our modified version of SPICE $(217,000$ lines of C source code) gives output values at probe point VOUT
- 101 frequency values chosen over five decades (from 1 to $100,000 \mathrm{~Hz}$) with each decade divided into 20 parts (using a logarithmic scale).
- do not penalize ideal values
- slightly penalize acceptable deviations
- heavily penalize unacceptable deviations
- Fitness is
$\boldsymbol{F}(\boldsymbol{t})=\sum_{i=0}^{100}\left[W\left(f_{i}\right) d\left(f_{i}\right)\right]$
- $f(i)$ is the frequency (in Hertz) of fitness case i
- $d(x)$ is the difference between the target and observed values at frequency (in Hertz) of fitness case i
- $W(y, x)$ is the weighting at frequency x

Fall 2003 BMI 226 / CS 426 Notes KKK-75

FITNESS - CONTINUED

- 61 points in the 3-decade interval from 1 Hz to $\mathbf{1 , 0 0 0 ~ H z}$
- For voltage equaling the ideal value of 1.0 volts, the deviation is $\mathbf{0 . 0}$
- For voltage between 970 and 1,000 millivolts, the absolute value of the deviation from 1,000 millivolts is weighted by $\mathbf{1 . 0}$
- For voltage less than 970 millivolts, the absolute value of the deviation from 1,000 millivolts is weighted by a factor of $\mathbf{1 0 . 0}$
- 35 points from $2,000 \mathrm{~Hz}$ to $100,000 \mathrm{~Hz}$
- For voltage equaling the ideal value of 0.0 volts, the deviation is $\mathbf{0 . 0}$
- For voltage between 0 millivolts and 1 millivolt, the absolute value of the deviation from 0 millivolts is weighted by $\mathbf{1 . 0}$
- For voltage above 1 millvolt, the absolute value of the deviation from 0 millivolts is weighted by factor of $\mathbf{1 0 . 0}$
- 5 "don't care" points between $1,000 \mathrm{~Hz}$ and $2,000 \mathrm{~Hz}$

Fall 2003 BMI 226 / CS 426 Notes KKK-76

GENERATIONS 0, 9, 16, 20, 31, AND 35

Fall 2003 BMI 226 / CS 426 Notes KKK-77

LOWPASS FILTER USING ADFs - RUN B

GENERATION 0 - ONE-RUNG LADDER

BEHAVIOR IN FREQUENCY DOMAIN

Fall 2003 BMI 226 / CS 426 Notes KKK-78

LOWPASS FILTER USING ADFs - RUN B

 GENERATION 9 - TWO-RUNG LADDER

TWICE-CALLED TWO-PORTED ADFO

BEHAVIOR IN FREQUENCY DOMAIN

Fall 2003 BMI 226 / CS 426 Notes KKK-79

LOWPASS FILTER USING ADFs - RUN B GEN 16 - THREE-RUNG LADDER

THRICE-CALLED TWO-PORTED ADFO

BEHAVIOR IN FREQUENCY DOMAIN

Fall 2003 BMI 226 / CS 426 Notes KKK-80

LOWPASS FILTER USING ADFs - RUN B

GEN 20 - FOUR-RUNG LADDER

QUADRUPLY-CALLED TWO-PORTED ADFO

BEHAVIOR IN FREQUENCY DOMAIN

Fall 2003 BMI 226 / CS 426 Notes KKK-81

LOWPASS FILTER USING ADFs - RUN B GENERATION 31 - TOPOLOGY OF CAUER (ELLIPTIC) FILTER

QUINTUPLY-CALLED THREE-PORTED
 ADF0

BEHAVIOR IN FREQUENCY DOMAIN

CAUER (ELLIPTIC) FILTERS

"Cauer first used his new theory in solving a filter problem for the German telephone industry. His new design achieved specifications with one less inductor than had ever been done before. The world first learned of the Cauer method not through scholarly publication but through a patent disclosure, which eventually reached the Bell Laboratories. Legend has it that the entire Mathematics Department of Bell Laboratories spent the next two weeks at the New York Public library studying elliptic functions. Cauer had studied mathematics under Hilbert at Goettingen, and so elliptic functions and their applications were familiar to him."

- from Van Valkenburg Analog Filter Design (1982, page 379)

Fall 2003 BMI 226 / CS 426 Notes KKK-83

ONE-INPUT, ONE-OUTPUT EMBRYO WITH ONE WRITING HEAD (ONE MODIFIABLE WIRE) FOR THREE-WAY ANALOG SOURCE IDENTIFICATION PROBLEM

ARCHITECTURE OF CIRCUITCONSTRUCTING PROGRAM TREE FOR THREE-WAY ANALOG SOURCE IDENTIFICATION PROBLEM

- The circuit-constructing program tree has one result-producing branch (RPBO).
- The circuit-constructing program tree has no automatically defined functions.

Fall 2003 BMI 226 / CS 426 Notes KKK-85

FUNCTION AND TERMINAL SETS OF RESULT PRODUCING BRANCH FOR THREE-WAY ANALOG SOURCE IDENTIFICATION PROBLEM

- For the result-producing branch, the function set, $\mathrm{F}_{\text {ccs-rpb }}$, for each constructioncontinuing subtree is
$F_{\text {ccs-rpb }}=\{R, L, C, S E R I E S$, PARALLEL0,
PARALLEL1, FLIP, NOP,
T_PAIR_CONNECT_0,
T_PAIR_CONNECT_1\}
- For the result-producing branch, the function set, $F_{\text {ccs-rpb }}$, for each constructioncontinuing subtree is
$\mathrm{T}_{\mathrm{ccs}-\mathrm{pb}}=\{\mathrm{END}\}$.

Fall 2003 BMI 226 / CS 426 Notes KKK-86
FUNCTION AND TERMINAL SETS FOR ARITHMETIC-PERFORMING SUBTREES (USED IN BOTH RBPs AND ADFs) FOR THREE-WAY ANALOG SOURCE IDENTIFICATION PROBLEM

- The function set, Faps, for each arithmeticperforming subtree is,
Faps $=\{+,-\}$.
- The terminal set, Taps, for each arithmeticperforming subtree consists of
Taps $=\{\mathfrak{R}\}$,
where \mathfrak{R} represents floating-point random constants from $\mathbf{- 1 . 0}$ to $\mathbf{+ 1 . 0}$.

FITNESS MEASURE FOR THREE-WAY ANALOG SOURCE IDENTIFICATION PROBLEM

- Voltage VOUT is probed at node 5 and the circuit is simulated in the frequency domain.
- SPICE is requested to perform an AC small signal analysis and to report the circuit's behavior for each of 101 frequency values chosen over four decades of frequency (between 1 and $10,000 \mathrm{~Hz}$). Each decade is divided into 25 parts (using a logarithmic scale).
- Fitness is measured in terms of the sum, over these 101 fitness cases, of the absolute weighted deviation between the actual value of the output voltage at the probe point VOUT and the target value for voltage.

FITNESS MEASURE FOR THREE-WAY ANALOG SOURCE IDENTIFICATION PROBLEM - 3 POINTS NEAR 256 HZ

- The three points that are closest to the band located within $\mathbf{1 0 \%}$ of 256 Hz are 229.1 Hz , 251.2 Hz , and 275.4 Hz .
- If the voltage equals the ideal value of $1 / 2$ volts in this interval, the deviation is 0.0 .
- If the voltage is within 240 millivolts of $1 / 2$ volts, the absolute value of the deviation from $1 / 2$ volts is weighted by a factor of 20 .
- If the voltage is more than 240 millivolts from $1 / 2$ volts, the absolute value of the deviation from $1 / 2$ volts is weighted by a factor of 200 .
- This arrangement reflects the fact that the ideal output voltage for this range of frequencies is $\mathbf{1 / 2}$ volts, that a 240 millivolts discrepancy is acceptable, and that a larger discrepancy is not acceptable.

Fall 2003 BMI 226 / CS 426 Notes KKK-89

FITNESS MEASURE - 3 POINTS NEAR 2,560 HZ

- The three points that are closest to the band located within 10% of $2,560 \mathrm{~Hz}$ are $2,291 \mathrm{~Hz}$, $2,512 \mathrm{~Hz}$, and $2,754 \mathrm{~Hz}$.
- If the voltage equals the ideal value of 1 volt in this interval, the deviation is 0.0 .
- If the voltage is within 240 millivolts of 1 volt, the absolute value of the deviation from 1 volt is weighted by a factor of 20 .
- If the voltage is more than 240 millivolts from 1 volt, the absolute value of the deviation from 1 volt is weighted by a factor of 200 .

Fall 2003 BMI 226 / CS 426 Notes KKK-90

FITNESS MEASURE FOR THREE-WAY ANALOG SOURCE IDENTIFICATION PROBLEM - REMAINING 95 POINTS IN THE FREQUENCY DOMAIN

- The procedure for each of the remaining 95 points is as follows:
- If the voltage equals the ideal value of 0 volts, the deviation is 0.0 .
- If the voltage is within 240 millivolts of 0 volts, the absolute value of the deviation from 0 volts is weighted by a factor of 1.0 .
- If the voltage is more than 240 millivolts from 0 volts, the absolute value of the deviation from 0 volt is weighted by a factor of 10 .
- Greater weights (20 and 200) were used in the two passbands because they contain only 6 of the 101 points.

Fall 2003 BMI 226 / CS 426 Notes KKK-91

FITNESS MEASURE FOR THREE-WAY ANALOG SOURCE IDENTIFICATION PROBLEM - CONTINUED

- Many of the circuits that are created in the initial random population and many that are created by the crossover and mutation operations cannot be simulated by SPICE. Such circuits are assigned a high penalty value of fitness (108).
- The number of hits is defined as the number of fitness cases (0 to 101) for which the voltage is acceptable or ideal.

Fall 2003 BMI 226 / CS 426 Notes KKK-92

CONTROL PARAMETERS FOR THREEWAY ANALOG SOURCE IDENTIFICATION PROBLEM

- Population size, M, of $\mathbf{6 4 0 , 0 0 0}$
- Maximum number of generations, \boldsymbol{G}, is set to be meaninglessly large
- Maximum of $\boldsymbol{H}_{\mathrm{rpb}}=\mathbf{6 0 0}$ points (functions and terminals) for the result-producing branch
- For each generation
- 10% reproductions
- 1% mutations
- 89\% crossovers
- No architecture-altering operations
- Secondary parameters are default values in Koza 1994 (appendix D)

Fall 2003 BMI 226 / CS 426 Notes KKK-93

TERMINATION CRITERION AND
 RESULTS DESIGNATION FOR THREEWAY ANALOG SOURCE IDENTIFICATION PROBLEM

- Manual intervention in lieu of preestablished termination criterion
- Best-so-far individual is designated as the result of the run

Fall 2003 BMI 226 / CS 426 Notes KKK-94
RESULTS FOR THE THREE-WAY ANALOG SOURCE IDENTIFICATION PROBLEM - GENERATIONS 0, 20, 106

Fall 2003 BMI 226 / CS 426 Notes KKK-95

> RESULTS FOR THE THREE-WAY ANALOG SOURCE IDENTIFICATION PROBLEM - GENERATIONS 0, 20, 106

Fall 2003 BMI 226 / CS 426 Notes KKK-96

THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTURE-ALTERING OPERATIONS)

- The goal is to evolve the design for a circuit that changes its structure as the number of different sources increases.
- Initially the circuit classifies the incoming signals into three categories
- Later the circuit undergoes modification so that is can successfully classify them into four categories.

Fall 2003 BMI 226 / CS 426 Notes KKK-97

THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTURE-ALTERING OPERATIONS) - PHASE 1 (3-WAY)

- During phase 1, the requirements for the desired circuit are similar to those for the tristate frequency discriminator except that one of the desired outputs is $1 / 3$ volt (instead of $1 / 2$ volt).
- The desired circuit is to produce an output of $1 / 3$ volts (plus or minus 166 millivolts) if the frequency of the incoming signal is within 10% of 256 Hz
- produce an output of 1 volt (plus or minus 166 millivolts) if the frequency of the incoming signal is within 10% of $2,560 \mathrm{~Hz}$, and
- otherwise produce an output of 0 volts (plus or minus 166 millivolts).

Fall 2003 BMI 226 / CS 426 Notes KKK-98

THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTURE-ALTERING OPERATIONS) - PHASE 2 (4-WAY)

- After a circuit is evolved that performs the tri-state source identification task, the requirements of the problem are changed to include an additional frequency band.
- The run is continued with the existing population until a new circuit is evolved that performs the source identification task for all three frequency bands.
- During phase 2, the circuit is to produce an output of $2 / 3$ volts (plus or minus 166 millivolts) if the frequency of the incoming signal is within 10% of 750 Hz
- While still producing an output of $1 / 3,1$, and 0 volts (plus or minus 166 millivolts) for the original three signals.

Fall 2003 BMI 226 / CS 426 Notes KKK-99

PREPARATORY STEPS FOR THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTUREALTERING OPERATIONS)

ONE-INPUT, ONE-OUTPUT EMBRYO WITH ONE WRITING HEAD (ONE MODIFIABLE WIRE)

SAME AS BEFORE

ARCHITECTURE OF CIRCUITCONSTRUCTING PROGRAM TREE FOR THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTURE-ALTERING
OPERATIONS)

- Since the initial circuit has one modifiable wire (and hence one writing head), there is one result-producing branch in each circuitconstructing program tree.
- Each program in the initial population of programs has a uniform architecture with no automatically defined functions. The number of automatically defined functions, if any, will emerge as a consequence of the evolutionary process using the architecture-altering operations.

Fall 2003 BMI 226 / CS 426 Notes KKK-101

FUNCTION AND TERMINAL SETS OF RESULT PRODUCING BRANCH FOR THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTURE-ALTERING OPERATIONS)

- The initial function set, Fccs-initial, for each construction-continuing subtree is
$\mathrm{F}_{\text {ccs-rpb }}=\{\mathrm{R}, \mathrm{L}, \mathrm{C}, \mathrm{SERIES}$, PARALLEL0,
PARALLEL1, FLIP, NOP,
T_PAIR_CONNECT_0,
T_PAIR_CONNECT_1\}
- The initial terminal set, Tccs-initial, for each construction-continuing subtree is
Tccs-initial $=\{$ END, SAFE_CUT $\}$.
- The set of potential new functions, Fpotential, is
Fpotential $=\{A D F 0, A D F 1, A D F 2\}$.
- The set of potential new terminals, Tpotential, is
Tpotential $=\{$ ARG0 $\}$.

Fall 2003 BMI 226 / CS 426 Notes KKK-102

FUNCTION AND TERMINAL SETS OF RESULT PRODUCING BRANCH FOR THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTURE-ALTERING OPERATIONS) - CONTINUED

- The architecture-altering operations change the function set, Fccs for each construction-continuing subtree of both the result-producing branches and the functiondefining branches, so
Fccs $=$ Fccs-initial \approx Fpotential.
- The architecture-altering operations change the terminal set, Taps-adf, for each arithmetic-performing subtree, so
Taps-adf $=$ Taps-initial \approx Tpotential.

Fall 2003 BMI 226 / CS 426 Notes KKK-103

FUNCTION AND TERMINAL SETS FOR ARITHMETIC-PERFORMING SUBTREES (USED IN BOTH RBP AND ADFs)

SAME AS BEFORE

- The function set, Faps, for each arithmeticperforming subtree is,
Faps $=\{+,-\}$.
- The terminal set, Taps, for each arithmeticperforming subtree consists of
Taps $=\{\mathfrak{R}\}$,
where \mathfrak{R} represents floating-point random constants from -1.0 to $\mathbf{+ 1 . 0}$.

Fall 2003 BMI 226 / CS 426 Notes KKK-104

> FITNESS MEASURE FOR THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTUREALTERING OPERATIONS) - PHASE 1 (3WAY)

- During the first phase, there are only two frequencies of interest (256 Hz and $2,560 \mathrm{~Hz}$); however, in the second phase, there are three frequencies of interest $(750 \mathrm{~Hz}$ in addition the two just mentioned).

FITNESS MEASURE FOR THE
CHANGING ENVIRONMENT PROBLEM
(WITH ADFs AND ARCHITECTUREALTERING OPERATIONS) - PHASE 1 (3WAY) - POINTS NEAR 256 HZ

- The three points that are closest to the band located within 10% of 256 Hz are 229.1 Hz , 251.2 Hz , and 275.4 Hz .
- If the voltage equals the ideal value of $1 / 3$ volts in this interval, the deviation is 0.0 .
- If the voltage is more than 166 millivolts from $1 / 3$ volts, the absolute value of the deviation from $1 / 3$ volts is weighted by a factor of 20 .
- If the voltage is more than 166 millivolts of $1 / 3$ volts, the absolute value of the deviation from $1 / 3$ volts is weighted by a factor of 200 . - This arrangement reflects the fact that the ideal output voltage for this range of frequencies is $1 / 3$ volts, that a 166 millivolts discrepancy is acceptable, and that a larger discrepancy is not acceptable.

FITNESS MEASURE - PHASE 1 (3-WAY) POINTS NEAR 2,560 HZ

- The three points that are closest to the band located within $\mathbf{1 0 \%}$ of $\mathbf{2 , 5 6 0 ~ H z}$ are $\mathbf{2 , 2 9 1} \mathrm{Hz}$, $2,512 \mathrm{~Hz}$, and $2,754 \mathrm{~Hz}$.
- If the voltage equals the ideal value of 1 volt in this interval, the deviation is 0.0 .
- If the voltage is within 166 millivolts of 1 volt, the absolute value of the deviation from 1 volt is weighted by a factor of 20 .
- If the voltage is more than 166 millivolts from 1 volt, the absolute value of the deviation from 1 volt is weighted by a factor of 200 .

Fall 2003 BMI 226 / CS 426 Notes KKK-107

FITNESS MEASURE - PHASE 1 (3-WAY) REMAINING 95 POINTS

- The procedure for each of the remaining 95 points is as follows:
- If the voltage equals the ideal value of 0 volts, the deviation is 0.0 .
- If the voltage is within 166 millivolts of 0 volts, the absolute value of the deviation from 0 volts is weighted by a factor of 1.0 .
- If the voltage is more than 166 millivolts from 0 volts, the absolute value of the deviation from 0 volt is weighted by a factor of 10 .
- Greater weights (20 and 200) were used in the two passbands because they contain only 6 of the 101 points.

Fall 2003 BMI 226 / CS 426 Notes KKK-108

FITNESS MEASURE FOR THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTUREALTERING OPERATIONS) - PHASE 2 (4WAY) - POINTS NEAR 750 HZ

- In phase 2, frequencies around 750 Hz come into play.
- The three points that are closest to the band located within 10% of 750 Hz are 791.8 Hz , 758.6 Hz , and 831.8 Hz .
- If the voltage equals the ideal value of $2 / 3$ volts in this interval, the deviation is 0.0 .
- If the voltage is more than 166 millivolts from $2 / 3$ volts, the absolute value of the deviation from $2 / 3$ volts is weighted by a factor of 15 .
- If the voltage is more than 166 mV of $2 / 3$ volts, the absolute value of the deviation from $2 / 3$ volts is weighted by 150 .
 HZ
- In phase 2, the procedure for the six points nearest 256 Hz and $2,560 \mathrm{~Hz}$ are the same as before, except that
- the weight is 15 and 150 (instead of 20 and 200), respectively for the complaint and noncomplaint points.
- Lesser weights (15 and 150) were used in the three passbands because 9 of the 101 points lie in the passbands.

FITNESS MEASURE FOR THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTUREALTERING OPERATIONS) - PHASE 2 (4WAY) - REMAINING 92 POINTS

- In phase 1, the procedure for each of the remaining 92 points is as follows:
- If the voltage equals the ideal value of 0 volts, the deviation is 0.0 .
- If the voltage is within 166 millivolts of 0 volts, the absolute value of the deviation from 0 volts is weighted by a factor of 1.0 .
- If the voltage is more than 166 mV from 0 volts, the absolute value of the deviation from 0 is weighted by a factor of 10 .
- As before, for each phase, the number of hits is defined as the number of fitness cases for which the voltage is acceptable or ideal.

CONTROL PARAMETERS FOR THE CHANGING ENVIRONMENT PROBLEM

 - The percentage of operations on each generation after generation 5 was- 86.5% one-offspring crossovers;
- 10\% reproductions;
- 1% mutations;
- 1% branch duplications;
- 0.5\% branch deletions;
- 1% branch creations; and
- 0% argument creations.
- The percentage of operations on each generation before generation 6 was
- 78.0\% one-offspring crossovers;
- 10\% reproductions;
- 1% mutations;
- 5.0\% branch duplications;
- 1% branch deletions;
- 5.0% branch creations; and
- 0% argument creations.

Fall 2003 BMI 226 / CS 426 Notes KKK-112

CONTROL PARAMETERS FOR THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTUREALTERING OPERATIONS) CONTINUED

- The maximum size, $H_{r p b}$, for the resultproducing branch is $\mathbf{6 0 0}$ points.
- The maximum number of automatically defined functions is 2.
- The number of arguments for each automatically defined function is 1 .
- The maximum size, $H_{\text {adf }}$, for each of the automatically defined functions, if any, is 300 points.

Fall 2003 BMI 226 / CS 426 Notes KKK-113

RESULTS FOR THE CHANGING ENVIRONMENT PROBLEM

BEST CIRCUIT FROM GENERATION 41 BEFORE EXPANSION OF THE THREE OCCURRENCES OF ADFO

RESULT OF DEVELOPING ADFO-1 AND ADFO-1 FOR BEST CIRCUIT FROM GENERATION 41

RESULT OF DEVELOPING ADFO FOR BEST CIRCUIT FROM GENERATION 41

Fall 2003 BMI 226 / CS 426 Notes KKK-114

RESULTS FOR THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTURE-ALTERING OPERATIONS)

BEST CIRCUIT FROM GENERATION 41 AFTER EXPANSION OF THE THREE OCCURRENCES OF ADFO

Fall 2003 BMI 226 / CS 426 Notes KKK-115

RESULTS FOR THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTURE-ALTERING OPERATIONS)

BEST CIRCUIT FROM GENERATION 85 AFTER EXPANSION OF ITS AUTOMATICALLY DEFINED FUNCTIONS

Fall 2003 BMI 226 / CS 426 Notes KKK-116

RESULTS FOR THE CHANGING ENVIRONMENT PROBLEM (WITH ADFs AND ARCHITECTURE-ALTERING OPERATIONS)

FREQUENCY DOMAIN BEHAVIOR OF THE BEST CIRCUIT OF GENERATION 0 , 41, AND 85

Fall 2003 BMI 226 / CS 426 Notes KKK-117

EVOLVED 100 NANO-SECOND NAND GATE

TEXTBOOK NAND GATE

FIRST FITNESS MEASURE

- Sum, over the 92 fitness cases, of the weighted absolute value of the difference between the actual output voltage and the desired output voltage (0 to 7 volts).
- If the voltage exactly equals the desired voltage of VSOURCEO plus two times VSOURCE1 plus four times VSOURCE2, the deviation is 0 .
- If the voltage is within 0.25 volts of the desired voltage, the absolute value of the deviation from the desired output voltage is weighted by a factor of 1.0 .
- If the voltage is outside this range, the absolute value of the deviation is weighted by a factor of 10.0.

Fall 2003 BMI 226 / CS 426 Notes KKK-119

100 NANO-SECOND DIGITAL-TOANALOG CONVERTED (DAC)

GLITCH-RIDDEN BEHAVIOR OF BEST-OF-RUN EVOLVED DAC USING THE FIRST FITNESS MEASURE

Fall 2003 BMI 226 / CS 426 Notes KKK-120

100 NANO-SECOND DIGITAL-TOANALOG CONVERTED (DAC)

SECOND FITNESS MEASURE

- Our second fitness measure was the sum, for each of SPICE's internally created "turns," of the areas of the trapezoids between the curve representing the desired output voltage and the curve representing the actual output voltage.
- The magnitude of the glitches in the best-ofrun circuit that was evolved using this second fitness measure were as large as 1 volt - far larger that the magnitude of the glitches that we were trying to eliminate.
- The second fitness measure tolerated these larger glitches because they were very narrow (and hence occupied very little total area).

Fall 2003 BMI 226 / CS 426 Notes KKK-121

100 NANO-SECOND DIGITAL-TOANALOG CONVERTED (DAC) THIRD FITNESS MEASURE

- "Crossover" of Our First Two Fitness Measures combined some of the features of the first and second fitness measures.
- The third fitness measure was the sum, over SPICE's turn-defining points, of the weighted absolute value of the difference between the actual output voltage and the desired output voltage.
- If the voltage exactly equals the desired voltage of VSOURCEO plus two times VSOURCE1 plus four times VSOURCE2, the deviation is 0 .
- If the voltage is within 0.25 volts of the desired voltage, the absolute value of the deviation from the desired output voltage is weighted by a factor of 1.0 .
- If the voltage is outside this range, the absolute value of the deviation is weighted by a factor of 10.0.

Fall 2003 BMI 226 / CS 426 Notes KKK-122

100 NANO-SECOND DIGITAL-TOANALOG CONVERTED (DAC)

BEST-OF-RUN EVOLVED CIRCUIT USING THE THIRD FITNESS MEASURE (GENERATION 139)

Fall 2003 BMI 226 / CS 426 Notes KKK-123

100 NANO-SECOND DIGITAL-TOANALOG CONVERTED (DAC)

BEHAVIOR OF BEST-OF-RUN EVOLVED DAC USING THE THIRD FITNESS MEASURE (GENERATION 139)

Fall 2003 BMI 226 / CS 426 Notes KKK-124

TWO-INSTRUCTION ALU CIRCUIT

64 10- μ S DIGITAL SIGNALS - EACH SAMPLED EVERY 2μ S FOR A TOTAL OF 321 FITNESS CASES

Fall 2003 BMI 226 / CS 426 Notes KKK-125
TIME-OPTIMAL FLY-TO PROBLEM USING GP TO EVOLVE AN EXPRESSION COMPOSED OF ARITHMETIC AND CONDITIONAL OPERATIONS

Terminal set for the one result-producing branch, T of a program in the population for the problem is
$T=\{X, Y\}$
The function set, F is

$$
\mathrm{F}=\{+,-, *, \%, \operatorname{IFLTE}, \mathfrak{R}\}
$$

Fall 2003 BMI 226 / CS 426 Notes KKK-126
TIME-OPTIMAL FLY-TO PROBLEM CASES 1 AND 2

CASE 3

Fall 2003 BMI 226 / CS 426 Notes KKK-127

TIME-OPTIMAL FLY-TO PROBLEM CASE 4

Fall 2003 BMI 226 / CS 426 Notes KKK-128

TIME-OPTIMAL FLY-TO PROBLEM USING GP TO EVOLVE AN ELECTRICAL CIRCUIT

FUNCTION AND TERMINAL SETS

Fccs $=\{R$, SERIES, PARALLEL0,
PARALLEL1, FLIP, NOP, NEW_T_GND_0, NEW_T_GND_1, NEW_T_POS_0,
NEW_T_POS_1, NEW_T_NEG_0,
NEW_T_NEG_1, PAIR_CONNECT_0,
PAIR_CONNECT_1, Q_D_NPN,
Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11,
Q_3_PNP 0, ..., Q_3_PNP11,
Q_POS_COLL_NPN, Q_GND_EMIT_NPN,
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP,
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP\}

Tccs $=\{$ END, SAFE_CUT $\}$
Faps $=\{+,-\}$
Taps $=\{\mathfrak{R}\}$

Fall 2003 BMI 226 / CS 426 Notes KKK-129

TIME-OPTIMAL "FLY-TO" PROBLEM USING GP TO EVOLVE AN
ELECTRICAL CIRCUIT

TWO-INPUT, ONE-OUTPUT EMBRYO

- 72 random destinations $\left(x_{i}, y_{i}\right)$ in the plane - Fitness is the sum, over the 72 destinations, of the TIME for the aircraft (robot) to reach the destination

Fall 2003 BMI 226 / CS 426 Notes KKK-130

TIME-OPTIMAL FLY-TO PROBLEM GENERATIONS 31 (WITH NEAROPTIMAL FITNESS SCORING 72 HITS OF 1.541 HOURS ON GENERATION 31)

- The circuit is automatically created using TIME as the fitness measure.

Fall 2003 BMI 226 / CS 426 Notes KKK-131

ZERO-INPUT TEMPERATURE-SENSING CIRCUIT - GENERATION 25

Fall 2003 BMI 226 / CS 426 Notes KKK-132
VOLTAGE REFERENCE CIRCUIT GENERATION 80

Fall 2003 BMI 226 / CS 426 Notes KKK-133

VOLTAGE REFERENCE CIRCUIT GENERATION 80

CLOSE-UP (NEAR 2 VOLTS)

Fall 2003 BMI 226 / CS 426 Notes KKK-134

GENETICALLY EVOLVED 10 DB AMPLIFIER FROM GENERATION 45

SHOWING THE VOLTAGE GAIN STAGE AND DARLINGTON EMITTER FOLLOWER SECTION

Fall 2003 BMI 226 / CS 426 Notes KKK-135

POST-2000 PATENTED INVENTIONS

HIGH CURRENT LOAD CIRCUIT BEST-OF-RUN FROM GENERATION 114

Fall 2003 BMI 226 / CS 426 Notes KKK-136

POST-2000 PATENTED INVENTIONS

REGISTER-CONTROLLED CAPACITOR CIRCUIT

SMALLEST COMPLIANT FROM GENERATION 98

Fall 2003 BMI 226 / CS 426 Notes KKK-137

POST-2000 PATENTED INVENTIONS

LOW-VOLTAGE CUBIC SIGNAL GENERATION CIRCUIT

 BEST-OF-RUN FROM GENERATION 182

Fall 2003 BMI 226 / CS 426 Notes KKK-138

POST-2000 PATENTED INVENTIONS

LOW-VOLTAGE BALUN CIRCUIT BEST EVOLVED FROM GENERATION 84

Fall 2003 BMI 226 / CS 426 Notes KKK-139

POST-2000 PATENTED INVENTIONS

VOLTAGE-CURRENT-CONVERSION CIRCUIT

 BEST-OF-RUN FROM GENERATION 109

Fall 2003 BMI 226 / CS 426 Notes KKK-140

POST-2000 PATENTED INVENTIONS

TUNABLE INTEGRATED ACTIVE FILTER - GENERATION 50

Fall 2003 BMI 226 / CS 426 Notes KKK-141

INCORPORATING TOPOLOGICAL CONSTRAINTS INTO DEVELOPMENTAL GP

2 SPECIAL EMBRYOS FOR A 2-STAGE CIRCUIT

Fall 2003 BMI 226 / CS 426 Notes KKK-142

SUBCIRCUIT CONSTRAINTS

EMBRYO WITH TWO HARD-WIRED TRANSISTORS

Fall 2003 BMI 226 / CS 426 Notes KKK-143

MINIMAL EMBRYO

- An embryo with two modifiable wires (ZO and Z1) and three ports in a one-input, oneoutput test fixture, but no direct access to input or output

$\mathrm{T}_{\text {ccs-rpb-initial }}=\{\mathrm{CUT}, \mathrm{END}, \mathrm{NOP}\}$
$\mathrm{F}_{\text {ccs-rpb-initial }}=\{\mathrm{C}, \mathrm{L}, \mathrm{PARALLEL0}, \mathrm{PARALLEL1}$, ZERO_GROUND, INPUT, OUTPUT\}

Fall 2003 BMI 226 / CS 426 Notes KKK-144

THE INPUT FUNCTION

Fall 2003 BMI 226 / CS 426 Notes KKK-145

100\%-COMPLIANT BEST-OF-RUN CIRCUIT FROM GENERATION 92

