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PARAMERERIZED TOPOLOGY — 
CIRCUITS 
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FREE VARIABLES AND CONDITIONAL 
OPERATORS IN COMPUTER 

PROGRAMS 
 

• One of the most important characteristics 
of computer programs is that they ordinarily 
contain inputs (free variables) and 
conditional operations.  
• Genetic algorithms and other techniques of 
genetic and evolutionary computation are 
typically used to search for an optimal (or 
near-optimal) solution to a particular single 
instance of a problem.  

• EXAMPLE: Find the numerical values for 
the real and imaginary parts of the two 
complex roots of a particular quadratic 
equation, such as 3x2 + 4x +5 , a separate 
run is required to solve each different 
instance of the problem (e.g., 10x2 + 2x 
+1).  
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FREE VARIABLES AND CONDITIONAL 
OPERATORS 

 
• Free variables enable a single program to 
produce different outputs based on the 
particular values of its free variables.  
 
• Conditional operations enable a single 
program to execute alternative sequences of 
steps based on the particular values of the 
free variables.  
 
• Conditional operations and free variables 
together potentially enable a single program 
to solve all instances of a problem (instead of 
just one instance of the problem). Thus, a 
computer program containing free variables 
and conditional operations has the ability to 
solve all quadratic equations  ax2 + bx +c 
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PARAMERERIZED TOPOLOGIES 
 

• You may really want the general solution to 
ax2 + bx +c 
• And, you may also want to automatically 
create both the topology of an entity (e.g., a 
circuit) along with the equations specifying 
the values of the components in the entity.  
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VARIABLE CUTOFF LOWPASS FILTER 
 

"GENERALIZED" PARAMETERIZED 
LOWPASS FILTER 

 
• You may want a “general solution” to the 
lowpass filter problem. That is, you may 
want a filter whose passband ends at 
frequencies such as f = 1,000, 1,780, 3,160, 
5,620, 10,000, 17,800, 31,600, 56,200, 100,000 
Hz  
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VARIABLE CUTOFF LOWPASS FILTER 
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VALUE-SETTING SUBTREES 
(ARITHMETIC-PERFORMING 

SUBTREES) 
 

• The numerical value for each capacitor or 
inductor is established by a value-setting 
subtree (arithmetic-performing subtrees) 
containing perturbable numerical values, 
arithmetic operations, and the free variable f 
representing the frequency of the end of the 
desired filter's passband.  
• The terminal set, Taps, for the value-setting 
subtrees is 
Taps = {ℜ, F},  
where ℜ denotes perturbable numerical 
values.  



Fall 2003 BMI 226 / CS 426  Notes   KKKKK-8 

VALUE-SETTING SUBTREE   
CONTINUED 

 
• In generation 0, each perturbable 
numerical value is set, individually and 
separately, to a random value in the range 
from 10-5 and 105.  
• In later generations, this perturbable 
numerical value is perturbed by a Gaussian 
probability distribution.  
• A constrained syntactic structure maintains 
a function and terminal set for the value-
setting subtrees (arithmetic-performing 
subtrees) and the (different) function and 
terminal set for all other parts of the 
program tree.  
• The function set, Faps, for the arithmetic-
performing subtrees is 
Faps = {ADD_NUMERIC, SUB_NUMERIC, 

MUL_NUMERIC, DIV_NUMERIC, REXP, 
RLOG} 
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VARIABLE CUTOFF LOWPASS FILTER 
 

BEHAVIOR IN THE FREQUENCY 
DOMAIN FROM GENERATION 78 FOR 
EACH OF NINE VALUES OF THE FREE 

VARIABLE F 
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VARIABLE CUTOFF LOWPASS FILTER 
  CONTINUED 

 
FOUR OUT-OF-SAMPLE VALUES OF 

FREQUENCY F 
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LOWPASS - HIGHPASS FILTER USING 
CONDITIONAL DEVELOPMENTAL 

OPERATOR 
 

• The numerical value for each capacitor or 
inductor is established by a value-setting 
subtree containing a conditional 
developmental operator, perturbable 
numerical values, arithmetic operations, and 
the free variables F1 representing the 1 of the 
passband and F2 representing the boundary 
of the stopband.  
• Function set, Faps, for arithmetic-
performing subtrees is 
Faps = {IFGTZ_DEVELOPMENTAL, +, -, *, %, 

REXP, RLOG}.  
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LOWPASS - HIGHPASS FILTER USING 
CONDITIONAL DEVELOPMENTAL 

OPERATOR — CONTINUED 
 

• If the first (numerical) argument of the 
three-argument IFGTZ_DEVELOPMENTAL 
operator evaluates its second (developmental) 
argument (but not its third argument) if its 
first (numerical argument) is greater than 
zero; otherwise, this operator evaluates its 
third (developmental) argument (but not its 
second argument).  
• Function set, Frpb, for rest of result-
producing branch 
Frpb = {L, C, SERIES, PARALLEL0, FLIP, 

NOP, PAIR_CONNECT_0, 
PAIR_CONNECT_1, THREE_GROUND_0, 
THREE_GROUND_1, ADF0, ADF1, ADF2, 
ADF3, ADF4} 
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LOWPASS - HIGHPASS FILTER USING 
CONDITIONAL DEVELOPMENTAL 

OPERATOR — CONTINUED 
 

• Terminal set, Taps, for arithmetic-
performing subtrees 
Taps = {ℜ, F1, F2},  
• A constrained syntactic structure maintains 
a function and terminal set for the 
arithmetic-performing subtrees and a 
different function and terminal set for rest of 
program tree.  
• Terminal set, Trpb, for rest of result-
producing branch  
Trpb = {END, SAFE_CUT}.  
• The terminal set, Tadf, for each 
automatically defined function (other than 
their arithmetic-performing subtrees) is 
Tadf = {END, SAFE_CUT} 
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LOWPASS - HIGHPASS FILTER USING 
CONDITIONAL DEVELOPMENTAL 

OPERATOR 
 
• The two free variables, F1 and F2, may 
assume the values (10,000, 20,000) or (20,000, 
10,000). For each of these two combinations, 
SPICE is instructed to perform an AC small 
signal analysis and report the circuit's 
behavior over five decades with each decade 
being divided into 20 parts.  
• Fitness is the sum, over all two 
combinations of values of the free variables 
and over all 101 fitness cases associated with 
each combination, of the absolute weighted 
deviations  
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ONE OF THE RESULT-PRODUCING 
BRANCHES OF A PACE-SETTING 

INDIVIDUAL FROM GENERATION 1 
 
(FLIP 
  (IFGTZ_DEVELOPMENTAL 
    (* F1 (- F1 F2)) 
    (IFGTZ_DEVELOPMENTAL 
      (* F2 F2)  
      (L F2 END) 
      (FLIP END)) 
    (C (DIVIDE_NUMERIC F2 F2) (PARALLEL0 
END END END END)))) 

 
• The first argument of the first 
IFGTZ_DEVELOPMENTAL operator in this 
branch computes F1 - F2 and multiplies 
this difference by a quantity (F1) that is 
always positive. If the result is positive (i.e., a 
highpass filter is desired), the second 
IFGTZ_DEVELOPMENTAL operator is 
executed.  
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ONE OF THE RESULT-PRODUCING 
BRANCHES OF A PACE-SETTING 

INDIVIDUAL FROM GENERATION 1 
 CONTINUED 

 
• Since the first argument of this second 
IFGTZ_DEVELOPMENTAL operator squares 
F2, the component-creating L function is 
unconditionally executed.  
• However, if F1 - F2 is non-positive, then 
the component-creating C function is 
unconditionally executed.  
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BEST-OF-RUN INDIVIDUAL FROM 
GENERATION 47 FOR CASE WHEN 

INPUTS CALL FOR LOWPASS FILTER  
I. E., THE TWO FREE VARIABLES, F1 

AND F2, ARE (10,000, 20,000) 

 
  

 
FREQUENCY DOMAIN BEHAVIOR OF 

BEST-OF-RUN INDIVIDUAL WHEN 
INPUTS CALL FOR LOWPASS FILTER 
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BEST-OF-RUN INDIVIDUAL FROM 
GENERATION 47 FOR CASE WHEN 

INPUTS CALL FOR HIGHPASS FILTER 
 I.E. THE TWO FREE VARIABLES, F1 

AND F2, ARE (20,000, 10,000) 

 
 

 
FREQUENCY DOMAIN BEHAVIOR OF 

BEST-OF-RUN INDIVIDUAL WHEN 
INPUTS CALL FOR HIGHPASS FILTER 
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VARIABLE-CUTOFF 
LOWPASS/HIGHPASS FILTER CIRCUIT 

USING BOTH FREE VARIABLES AND 
CONDITIONAL DEVELOPMENTAL 

OPERATORS 
 

• We are seeking a single parameterized 
outcome that yields two functionally and 
topologically different circuits (lowpass 
versus highpass filters) depending on the 
particular values of two free variables and 
the boundaries of the passband and the 
stopband may vary over the range between 
1,000 Hz and 100,000 Hz 
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VARIABLE-CUTOFF 
LOWPASS/HIGHPASS FILTER CIRCUIT 

USING BOTH FREE VARIABLES AND 
CONDITIONAL DEVELOPMENTAL 

OPERATORS  CONTINUED 
 

• Fitness is the sum, over all 18 combinations 
of values of the free variables, F1 and F2, 
and over all 101 fitness cases associated with 
each combination, of the absolute weighted 
deviation between the actual value of the 
voltage that is produced by the circuit at the 
probe point VOUT and the target value for 
voltage (0 or 1 volt). Specifically,  
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where fi is the frequency of fitness case i; d(x) 
is the absolute value of the difference 
between the target and observed values at 
frequency x; and W(y,x) is the weighting for 
difference y at frequency x. A smaller value 
of fitness is better. 
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VARIABLE-CUTOFF 
LOWPASS/HIGHPASS FILTER CIRCUIT 

USING BOTH FREE VARIABLES AND 
CONDITIONAL DEVELOPMENTAL 

OPERATORS  CONTINUED 
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VARIABLE-CUTOFF 
LOWPASS/HIGHPASS FILTER CIRCUIT 

USING BOTH FREE VARIABLES AND 
CONDITIONAL DEVELOPMENTAL 

OPERATORS  CONTINUED 
• Best-of-run circuit from generation 93 
when inputs call for a highpass filter (i.e., F1 
> F2). Genetic programming produced this 
circuit’s overall topology as well as the 12 
mathematical expressions (each containing 
the free variables F1 and F2) for specifying 
the component values for the circuit’s six 
inductors and six capacitors.  
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VARIABLE-CUTOFF 
LOWPASS/HIGHPASS FILTER CIRCUIT 

USING BOTH FREE VARIABLES AND 
CONDITIONAL DEVELOPMENTAL 

OPERATORS  CONTINUED 
 

FREQUENCY DOMAIN BEHAVIOR OF 
BEST-OF-RUN CIRCUIT WHEN INPUTS 

CALL FOR A HIGHPASS FILTER 
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VALUES FOR HIGHPASS FILTER 
Start of 
transition band 

C1 C2 and 
C4 

C3, 
C5, and 
C6 

L1, L2, 
L3, L4, 
and L5 

L6 

1,000 100.0 57.2 49.9 56,300 100,00
0 

1,778 56.2 32.1 28.1 31,700 63,300 
3,162 31.6 18.1 15.8 17,800 35,600 
5,623 17.8 10.2 8.88 10,000 20,000 
10,000 10.0 5.72 4.99 5,630 11,300 
17,782 5.62 3.21 2.81 3,170 6,330 
31,622 3.16 1.81 1.58 1,780 3,560 
56,234 1.78 1.02 0.888 1,000 2,000 
100,000 1.0 0.572 0.499 563 1,130 



Fall 2003 BMI 226 / CS 426  Notes   KKKKK-24 

VARIABLE-CUTOFF 
LOWPASS/HIGHPASS FILTER CIRCUIT 

USING BOTH FREE VARIABLES AND 
CONDITIONAL DEVELOPMENTAL 

OPERATORS  CONTINUED 
• Best-of-run circuit from generation 93 
when inputs call for a lowpass filter. Genetic 
programming produced this circuit’s overall 
topology as well as the nine mathematical 
expressions (each containing the free 
variables F1 and F2) for specifying the 
component values for the circuit’s five 
inductors and four capacitors. 
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VARIABLE-CUTOFF 
LOWPASS/HIGHPASS FILTER CIRCUIT 

USING BOTH FREE VARIABLES AND 
CONDITIONAL DEVELOPMENTAL 

OPERATORS  CONTINUED 
 

FREQUENCY DOMAIN BEHAVIOR OF 
BEST-OF-RUN CIRCUIT WHEN INPUTS 

CALL FOR A LOWPASS FILTER. 
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VALUES FOR A LOWPASS FILTER 

Start of 
transition band 

L1 L2, L3, 
and L4 

L5 C1 C2 and 
C3 

C4 

1,000 100,00
0 

200,00
0 

58,900 183 219 91.7 

1,778 63,400 123,00
0 

33,100 103 123 51.6 

3,162 35,600 69,000 18,600 58 69.2 29.0 
5,623 20,000 38,800 10,500 32.6 38.9 16.3 
10,000 11,300 21,800 5,890 18.3 21.9 9.17 
17,782 6,340 12,300 3,310 10.3 12.3 5.16 
31,622 3,560 6,900 1,860 5.8 6.92 2.90 
56,234 2,000 3,880 1,050 3.26 3.89 1.63 
100,000 1,130 2,180 589 1.83 2.19 0.917 
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VARIABLE-CUTOFF 
LOWPASS/HIGHPASS FILTER CIRCUIT 

USING BOTH FREE VARIABLES AND 
CONDITIONAL DEVELOPMENTAL 

OPERATORS  CONTINUED 
 

COMPARISON OF COMPONENT 
VALUES FOR HIGHPASS FILTER 
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VARIABLE-CUTOFF 
LOWPASS/HIGHPASS FILTER CIRCUIT 

USING BOTH FREE VARIABLES AND 
CONDITIONAL DEVELOPMENTAL 

OPERATORS  CONTINUED 
 

Six similar plots for the parameterized 
lowpass filter reveal that the component 
values for the six distinct components for all 
nine frequencies also lie along straight lines. 
The following formulae (all of which have the 
frequency F1 in the denominator) represent 
the relationships between the component 
values and frequencies in the parameterized 
lowpass filter.  
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VARIABLE-CUTOFF 
LOWPASS/HIGHPASS FILTER CIRCUIT 

USING BOTH FREE VARIABLES AND 
CONDITIONAL DEVELOPMENTAL 

OPERATORS  CONTINUED 
 

FREQUENCY DOMAIN BEHAVIOR OF 
BEST-OF-RUN CIRCUIT FOR FOUR 

OUT-OF-SAMPLE VALUES OF 
FREQUENCY WHEN INPUTS CALL FOR 

A HIGHPASS FILTER 
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• Similar results for lowpass filter  
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FIVE NEW TECHNIQUES FOR 5 NEW 
TECHNQIUES FOR AUTOMATIC 

CIRCUIT SYNTHESIS THAT WE USE ON 
THE NEXT 2 PROBLEMS INVOLVING 
PARAMETERIZED TOPOLOGIES FOR 

CIRCUITS 
 

• New NODE Function for Connecting Distant 
Points 
• Symmetry-Breaking Procedure using 
Geometric Coordinates 
• Depth-First Evaluation 
• New TWO_LEAD Function for Inserting 
Two-Leaded Components 
• New Q Transistor-Creating Function  
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NEW NODE FUNCTION FOR 
CONNECTING DISTANT POINTS 

 
• Most practical circuits require connections 
that cannot be achieved in a totally planar 
arrangement.  
• Previous work concerning the automatic 
synthesis of electrical circuits employed the 
VIA and PAIR_CONNECT functions to 
connect distant points in a developing circuit. 
• Although runs of genetic programming 
using these earlier functions were successful 
in automatically creating circuits, we have 
long believed that these functions were 
inefficient.  
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NEW NODE FUNCTION FOR 
CONNECTING DISTANT POINTS — 

CONTINUED 
 

• The premise behind the crossover operation 
is that individuals with relatively high fitness 
are likely to contain some substructures 
which, when recombined, may create 
offspring with even higher fitness.  
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NEW NODE FUNCTION FOR 
CONNECTING DISTANT POINTS — 

CONTINUED 
 

• In the genetic algorithm operating on fixed-
length strings, the conventional crossover 
operation recombines a contiguous sub-string 
of characters from one parent’s chromosome 
with a contiguous sub-string of characters 
from the second parent’s chromosome.  

• Over many generations, combinations of 
characters that are located close to each 
other on the chromosome string tend to 
be differentially preserved in the face of 
the inherently disruptive crossover 
operation.  

• Thus, shorter contiguous substrings are 
preserved to a greater degree than longer 
ones. That is, local substructures are 
preserved in the face of the (often) 
disruptive nature of the crossover 
operation.  
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NEW NODE FUNCTION FOR 
CONNECTING DISTANT POINTS — 

CONTINUED 
 

• In genetic programming, the conventional 
crossover operation recombines a subtree 
from one parent’s program tree with the 
second parent’s program tree.  

• Over many generations, functions and 
terminals that are nearby in the tree tend 
to be differentially preserved.  

• In particular, smaller subtrees are 
preserved to a greater degree than larger 
ones.  



Fall 2003 BMI 226 / CS 426  Notes   KKKKK-35 

NEW NODE FUNCTION FOR 
CONNECTING DISTANT POINTS — 

CONTINUED 
 

• The VIA and PAIR_CONNECT functions 
have the disadvantage that when a subtree of 
one circuit-constructing program tree is 
swapped with a subtree of another circuit-
constructing program tree, the connectivity 
of points within both the crossover fragment 
and the remainder is, almost always, 
dramatically altered in an extremely 
disruptive way.  

• That is, crossover usually significantly 
disrupts the nature of the preexisting 
connections formed by the VIA and 
PAIR_CONNECT functions within a 
local area of the developing circuit.  

• These local structures may have 
contributed to the individual’s 
comparatively high fitness and to the 
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individual’s being selected to participate 
in the genetic operation in the first place.  

• To the extent that crossover dramatically 
alters the characteristics of the swapped 
genetic material, it acquires the 
characteristics of the mutation operation 
and its effectiveness in solving the 
problem is consequently reduced to the 
lesser level delivered by the random 
mutation operation. • It would be 
desirable that local substructures be 
preserved during the evolutionary 
process.  
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NEW NODE FUNCTION FOR 
CONNECTING DISTANT POINTS — 

CONTINUED 
 

• This perceived problem concerning the VIA 
and PAIR_CONNECT functions is addressed 
by introducing a new two-argument function 
(called “NODE”).  
• The two-argument NODE function provides 
a way to connect distant points in a 
developing circuit to each other.  
• The NODE function replaces one modifiable 
wire (or modifiable component) with a series 
composition consisting of one modifiable 
wire, a temporary port that can potentially 
be connected to other point(s) in the circuit, 
and a second modifiable wire.  
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NEW NODE FUNCTION FOR 
CONNECTING DISTANT POINTS — 

CONTINUED 
 

• Prior to the execution of the developmental 
process, the circuit-constructing program 
tree is examined to identify the set of NODE 
functions that are not ancestors of any NODE 
function higher in the program tree.  
• The NODE functions in this set are called 
“top-most NODE functions.”  
• For each top-most NODE function, all the 
temporary ports (if any) associated with the 
NODE functions that are ancestors of a 
particular top-most NODE function are 
connected to the port of the top-most NODE 
function (subsequent to the execution of the 
developmental process).  
• Any temporary ports that do not become 
connected by this process are removed.  
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• The NODE function takes two arguments, 
one for each of the construction-continuing 
subtrees associated with the two modifiable 
wires. 



Fall 2003 BMI 226 / CS 426  Notes   KKKKK-40 

NEW NODE FUNCTION FOR 
CONNECTING DISTANT POINTS — 

CONTINUED 
 

• When the crossover operation moves any 
subtree within the subtree rooted by a 
particular top-most NODE function into 
another circuit-constructing program tree, 
the connectivity of the ports contained in the 
moved subtree remains intact.  
• Moreover, the connectivity of the ports in 
the unmoved remainder of the original 
program tree also remains intact.  
• We believe that this new approach 
encourages the preservation of building 
blocks and thereby increases the efficiency of 
the overall search.  
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SYMMETRY-BREAKING PROCEDURE 
USING GEOMETRIC COORDINATES 

 
• In previous work, a unique consecutive part 
number (internally assigned during the 
developmental process when a component is 
first inserted into the developing circuit) is 
used to break symmetries involving the 
behavior of certain circuit-constructing 
functions (such as the transistor-creating 
functions and parallel division functions)  

• When a transistor is inserted into a 
developing circuit, the correspondence 
between the three leads of the transistor 
(its base, collector, and emitter) and the 
three points in the developing circuit to 
which these leads are connected is 
defined by referring to the unique 
consecutive part numbers of neighboring 
components.  
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SYMMETRY-BREAKING PROCEDURE 
USING GEOMETRIC COORDINATES — 

CONTINUED 
 
• The overall circuit-constructing program 
tree changes throughout the run.  

• Thus, when neighboring parts change, the 
behavior of the transistor-creating and 
parallel division functions is 
dramatically altered in a rather abrupt 
way.  

• These abrupt changes in behavior may 
disrupt the local structures that 
contribute to the individual’s relatively 
high fitness and to the individual’s 
selection to participate in genetic 
operations in the first place.  

• To the extent that the genetic operations 
do not preserve locality, they lose some 
of their effectiveness (and, in the 
extreme case, come to resemble blind 
random search).  



Fall 2003 BMI 226 / CS 426  Notes   KKKKK-43 

SYMMETRY-BREAKING PROCEDURE 
USING GEOMETRIC COORDINATES — 

CONTINUED 
 
• This perceived problem is addressed by 
breaking symmetry using geometric 
coordinates that are assigned to each node in 
the developing circuit (instead of using the 
unique consecutive parts number). 
• We start by assigning geometric 
coordinates to the nodes to which each 
modifiable wire in the embryo is connected.  

• For example, if there is one modifiable 
wire in the embryo, the positive end is 
defined to be at coordinate location (0, 
0), and its negative end is defined to be 
at coordinate location (1, 0).  
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SYMMETRY-BREAKING PROCEDURE 
USING GEOMETRIC COORDINATES — 

CONTINUED 
 

• The coordinate locations of new nodes that 
are created by functions that entail 
symmetry breaking (and those created 
by all other functions) are defined in 
terms of the coordinate locations of the 
existing nodes.  

• This is accomplished by recursively 
dividing the preexisting modifiable wires 
into smaller and smaller new wires.  

• As an example, a series division 
performed on the one modifiable wire 
just described would create three new 
modifiable wires and would create two 
new nodes: one at (1/3, 0) and the other 
at (2/3, 0).  
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SYMMETRY-BREAKING PROCEDURE 
USING GEOMETRIC COORDINATES — 

CONTINUED 
 

• In this way, the behavior of the functions 
that in our previous approach relied on 
the unique consecutive (circuit-wide) 
part number is now defined in terms of 
information that is local to the region of 
the circuit where the symmetry-breaking 
is performed.  

• We believe that this new approach 
encourages the preservation of building 
blocks and thereby increases the 
efficiency of the crossover operation.  
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SYMMETRY-BREAKING PROCEDURE 
USING GEOMETRIC COORDINATES — 

CONTINUED 
 
• We use a new parallel division function in 
conjunction with this new approach. The first 
argument of the five-argument 
PARALLEL_NEW function specifies the 
direction in which the parallel division is to 
be performed.  

• This first argument is one of the following 
two terminals: UP_OR_LEFT or 
DOWN_OR_RIGHT.  

• The terminal UP_OR_LEFT means that 
the parallel division will be performed 
upwards if the current modifiable wire or 
component is horizontal, but left if it is 
vertical.  
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SYMMETRY-BREAKING PROCEDURE 
USING GEOMETRIC COORDINATES — 

CONTINUED 
 

• The terminal DOWN_OR_RIGHT means 
that the parallel division will be 
performed downwards if the current 
modifiable wire or component is 
horizontal, but right if it is vertical.  

• Note that if all the modifiable wires in the 
embryo are either horizontal or vertical, 
all subsequent wires and components 
will be either horizontal or vertical.  

• The remaining four arguments of the 
PARALLEL_NEW function are the 
construction-continuing subtrees that 
correspond to the four modifiable wires 
created by this function. 
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DEPTH-FIRST EVALUATION 
 
• Previous work used a breath-first order of 
evaluation during the developmental process.  
• However, we have come to believe that this 
choice is not as efficient as the alternative 
(i.e., depth-first evaluation).  
•When a subtree is evaluated using a depth-
first order of evaluation in the developmental 
process, all the component-creating and 
topology-modifying functions in the subtree 
are evaluated before any other part of the 
overall program tree is evaluated. That is, the 
entire subtree is fully evaluated before the 
developmental process moves on to another 
subtree.  
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DEPTH-FIRST EVALUATION — 
CONTINUED 

 
• Conversely, when a subtree is evaluated 
using a breath-first order of evaluation in the 
developmental process, the evaluation of each 
function in the subtree is followed (in 
general) by the evaluation of functions 
(usually many) that are not part of the 
subtree.  
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DEPTH-FIRST EVALUATION — 
CONTINUED 

 
• The genetic algorithm and genetic 
programming work on the principle that 
there is something about the structure of a 
relatively fit individual that contributes to the 
individual’s fitness.  

• In genetic programming, the crossover 
operation creates new individuals by 
recombining subtrees of relatively fit 
individuals.  

• Thus, it seems reasonable that the 
crossover operation would be more 
efficient if the parts of a program that are 
moved by the crossover operation (i.e., 
subtrees) more closely corresponded to 
the sequence of component-creating and 
topology-modifying functions.  
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NEW TWO_LEAD FUNCTION FOR 
INSERTING TWO-LEADED 

COMPONENTS 
 
• In previous work, two-leaded components, 
(such as resistors, capacitors, and inductors) 
were inserted into the developing circuit by 
means of separate component-creating 
functions (e.g., the R, C, and L functions).  

• Each of these functions has a construction-
continuing subtree as one of its 
arguments.  

• Thus, with these functions, any crossover 
or mutation that changes one of these 
functions necessarily changes the 
construction-continuing subtree.  

• It may be advantageous for the 
evolutionary process to be able to 
change one two-leaded component into 
another without changing the 
construction-continuing subtree.  
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NEW TWO_LEAD FUNCTION FOR 
INSERTING TWO-LEADED 

COMPONENTS — CONTINUED 
 
• The new three-argument TWO_LEAD 
function replaces one modifiable wire (or 
component) with a series composition 
consisting of one modifiable wire, a two-
leaded component, and a second modifiable 
wire.  
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NEW TWO_LEAD FUNCTION FOR 
INSERTING TWO-LEADED 

COMPONENTS — CONTINUED 
 
• The first argument of the TWO_LEAD 
function specifies the identity and numerical 
value (sizing) of the component.  

• The first argument of the TWO_LEAD 
function is a subtree whose root is 
always one of the following new one-
argument component-creating functions: 
R_NEW, C_NEW, or L_NEW.  

• Each of these three new functions takes a 
value-setting subtree as its argument.  

• The value-setting subtree may be either a 
single perturbable numerical value or an 
arithmetic-performing subtree (in 
particular, an arithmetic-performing 
subtree containing free variables).  
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NEW TWO_LEAD FUNCTION FOR 
INSERTING TWO-LEADED 

COMPONENTS — CONTINUED 
 
• The second and third arguments of the 
TWO_LEAD function are the construction-
continuing subtrees that correspond to the 
two modifiable wires created by this function.  
 
• The important point is that the first 
argument of the TWO_LEAD function does not 
possess a construction-continuing subtree.  

• As a result, the identify of the two-leaded 
component may be changed (by 
crossover or mutation) without changing 
either construction-continuing subtree.  

• That is, a two-leaded component can be 
changed in a localized way.  
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NEW Q TRANSISTOR-CREATING 
FUNCTION 

 
• Similarly, it may be advantageous for the 
evolutionary process to be able to change the 
orientation of a transistor or the transistor 
model without changing the construction-
continuing subtrees associated with the 
insertion of the transistor into the developing 
circuit.  
 
• The new six-argument Q function inserts a 
transistor into a developing circuit, with both 
the model and orientation of the transistor 
specified as parameters.  
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NEW Q TRANSISTOR-CREATING 
FUNCTION — CONTINUED 

 
• The first argument of the Q function 
specifies the transistor model that is to be 
used. The set of available transistor models is 
specific to the problem at hand.  
 
• The second argument establishes which end 
(polarity) of the preexisting modifiable wire 
will be bifurcated (if necessary) in inserting 
the transistor.  

• It can take on the values 
BIFURCATE_POSITIVE or 
BIFURCATE_NEGATIVE.  
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NEW Q TRANSISTOR-CREATING 
FUNCTION — CONTINUED 

 
• The third argument of the Q function 
specifies which of six possible permutations 
of the transistor’s three leads is to be used.  

• It can take on the values B_C_E, B_E_C, 
C_B_E, C_E_B, E_B_C, and E_C_B. 
For example, C_B_E causes the first 
point to be connected to the transistor’s 
collector; the second point to be 
connected to the transistor’s base; and 
the third point to be connected to the 
transistor’s emitter.  

• As previously mentioned, the geometric 
coordinates define an underlying order 
of the three points to which the 
transistor’s base, collector, and emitter 
may be connected.  

• Considering the second and third argument 
together, there are 12 possible ways of 
inserting a transistor.  
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NEW Q TRANSISTOR-CREATING 
FUNCTION — CONTINUED 

 
• The remaining three arguments of the Q 
function are the construction-continuing 
subtrees that correspond to the three 
modifiable wires created by this function.  
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ZOBEL NETWORK WITH TWO FREE 
VARIABLES 

 
• An audio power amplifier driving a 
loudspeaker may be modeled, at first 
approximation, as an inductor L1 and 
resistor R1 situated in series between the 
incoming signal and ground.  
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ZOBEL NETWORK — CONTINUED 
 
• When the loudspeaker is prone to 
instability, it may be desirable to make the 
reactive load appear to be a purely resistive 
load to the driving source.  
• This may be accomplished by adding 
additional circuitry to the LR circuit.  
• Thus, the problem is to find the topology of 
the unspecified additional circuitry as well as 
the sizing of each component of this 
additional circuitry such that the original LR 
circuit plus the additional circuitry together 
appear to the driving source to be a purely 
resistive load.  
• The desired solution to this problem must 
be parameterized (i.e., general) because the 
sizing of at least some of the additional 
components will necessarily depend on the 
particular value, L1, of the original inductor 
L1 and the particular value, R1, of the 
original resistor R1.  
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ZOBEL NETWORK — CONTINUED 
 
• Boutin (2002) describes a mathematical 
solution to this problem in the form of what 
is called a Zobel network.  
• BEcause the original LR circuit plus the 
added circuitry must together have the 
behavior of a resistor with resistance Roverall, 
then the current flowing through the circuit 
must (according to Ohm’s law) be Vin/Roverall, 
where Vin is the voltage of the incoming 
signal.  
• If, for example, the driving source is a step 
function rising from 0 to Vmax at time t=trise, 
then the current of the original LR circuit 
plus the added circuitry must be a step 
function rising from 0 to Vmax/Roverall at time 
t=trise.  
• The behavior of the original LR circuit 
starts at 0 and rises exponentially (with time 
constant L1/R1) toward its final value.  
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PREPARATORY STEPS FOR THE ZOBEL 
NETWORK PROBLEM WITH TWO FREE 

VARIABLES 
 

INITIAL CIRCUIT 
 

 
  

• Initial circuit consists of an embryo and a 
test fixture 
• The floating embryo consists of a single 
modifiable wire Z0 that is not initially 
connected to the circuit’s input(s) or 
output(s).. 
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PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
PROGRAM ARCHITECTURE 

 
• Because there must be one result-producing 
branch in the program tree for each 
modifiable wire in the embryo and there is 
one modifiable wire in the embryo, the 
architecture of each circuit-constructing 
program tree has one result-producing 
branch. 
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PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
FUNCTION SET 

 
• A constrained syntactic structure enforces 
the use of one function set for the arithmetic-
performing subtrees, another for the first 
argument of the TWO_LEAD function, and yet 
another for all other parts of the program 
tree.  
• The function set, Faps, for the arithmetic-
performing subtrees is  
Faps = {+, -, *, %, RLOG, EXP}.  
• Because resistors, inductors, and capacitors 
may be used in this problem, the function set, 
Ftwo-lead, for the first argument of the 
TWO_LEAD function is  
Ftwo-lead = {R_NEW, L_NEW, C_NEW}.  
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PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
FUNCTION SET — CONTINUED 

 
• The function set, Fccs, for each construction-
continuing subtree is  
Fccs = {TWO_LEAD, SERIES, 

PARALLEL_NEW, NODE, TWO_GROUND, 
THREE_GROUND, INPUT_0}.  

 
• Note that because the input source is a 
voltage source and the probe point measures 
current at the same point, there is no need for 
a separate output probe point in this 
particular test fixture (and hence no need for 
the OUTPUT_0 function in the function set). 
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PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
TERMINAL SET 

 
• A constrained syntactic structure enforces 
the use of one terminal set for the value-
setting subtrees, another for the first 
argument of the PARALLEL_NEW function, 
and yet another for all other parts of the 
program tree.  
• In this problem, there are two free 
variables. They represent the inductance L1 
(called “L1” below) of the original inductor 
L1 and the resistance R1 (called “R1”) of the 
original resistor R1.  
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PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
TERMINAL SET — CONTINUED 

 
• The component value for each component 
possessing a parameter is established by an 
arithmetic-performing subtree that may 
contain perturbable numerical values, 
arithmetic operations, and the two free 
variables (L1 and R1).  
• The terminal set, Taps, for the arithmetic-
performing subtree for component-creating 
functions is 
Taps = {ℜp, L1, R1},  
where ℜp denotes a perturbable numerical 
value.  



Fall 2003 BMI 226 / CS 426  Notes   KKKKK-68 

PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
TERMINAL SET — CONTINUED 

 
• A constrained syntactic structure specifies 
the terminals that may appear as the first 
argument of the PARALLEL_NEW function. 
The terminal set, Tparallel, for the first 
argument of the PARALLEL_NEW function is  
Tparallel = {UP_OR_LEFT, DOWN_OR_RIGHT}.  
• The terminal set, Tccs, for each 
construction-continuing subtree is 
Tccs = {END, SAFE_CUT}.  
• In problems involving parameterized 
topologies, the nonlinear mapping can 
potentially impede the evolutionary process 
and complicate the post-run analysis of 
mathematical expressions containing free 
variables. Thus it is not used for this 
problem.  
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PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
FITNESS MEASURE 

 
• When there are free variables in a problem, 
it is necessary to ascertain the behavior and 
characteristics of each candidate individual 
for a representative sample of values of each 
of the free variables.  
• Multiple combinations of values of the free 
variables force generalization of the to-be-
evolved circuit.  
• The free variable for the inductance, L1, of 
inductor L1 is L1). L1 ranges over six values, 
namely 1.0, 2.5, 6.3, 15.8, 39.8, and 100.0 
microhenrys.  
• The free variable for the resistance, R1, of 
resistor R1 is R1. R1 ranges over six values, 
namely 10, 25, 63, 158, 398, and 1,000 Ohms.  
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PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
FITNESS MEASURE — CONTINUED 

 
• Thus, there are a total of 36 fitness cases, 
each representing a combination of values of 
the two free variables (L1 and R1).  
• The input signal (driving source) for a 
particular one of the 36 fitness cases is  

-
1-

t
τe , 

where the time constant, τ, is L1/R1. This 
curve has an initial amplitude of 0 Volts, rises 
with a time constant τ, and has a potential 
maximum amplitude of 1 Volt.  
• SPICE is instructed to perform a transient 
(time-domain) analysis for 10L/R seconds. 
There are 100 time steps. The current at the 
current probe, IOUT0, is reported for 101 
times.  



Fall 2003 BMI 226 / CS 426  Notes   KKKKK-71 

PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
FITNESS MEASURE — CONTINUED 

 
• The contribution to fitness of each of the 36 
fitness cases is equalized by weighting each 
fitness case by Roverall. In this connection, 
recall that a maximum input voltage of 1 Volt 
corresponds to a maximum desired current 
of 1/Roverall. 
• The number of hits is defined as the 
number of fitness cases for which the 
absolute error is less than or equal to 5% of 
the reciprocal of the value of Roverall for that 
fitness case.  
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PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
FITNESS MEASURE — CONTINUED 

 
• The fitness measure is designed to 
encourage two types of parsimony.  
• The first type of parsimony is based on the 
familiar idea of counting the circuit’s 
components.  
• The second type of parsimony, called 
equational parsimony, is the total number of 
mathematical functions in the arithmetic-
performing subtrees. This type of parsimony 
is often appropriate when parameterized 
topologies are being used.  
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PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
FITNESS MEASURE — CONTINUED 

 
• For individuals scoring less than 36 hits, 
fitness is the sum, for each of the 101 time 
steps associated with each of the 36 fitness 
cases, of the product of Roverall (the equalizing 
factor for the fitness case) and the weighted 
absolute value of the difference between the 
current at the current probe point, IOUT0, 
and the current value of Vin/Roverall for the 
fitness case involved. The absolute value of 
the difference is weighted by 1.0 if the 
absolute error is less than or equal to 5% of 
the reciprocal of the value of Roverall for that 
fitness case, but 10. 0 otherwise.  
• For individuals scoring 36 hits, fitness is 
one trillionth of the sum of the total number 
of components (including the fixed 
components in the test fixture) and one tenth 
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of the total number of mathematical 
functions in the arithmetic-performing 
subtrees.  
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PREPARATORY STEPS FOR THE ZOBEL 
NETWORK — CONTINUED 

 
CONTROL PARAMETERS 

 
• The population size is 500,000 
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RESULTS — ZOBEL NETWORK 
 

BEST-OF-RUN PARAMETERIZED 
TOPOLOGY (GEN 15) 

 

2=
L1
R1

 

 

= R1  

  
• Genetic programming produced this 
circuit’s overall topology as well as the two 
mathematical expressions (containing the 
free variables L1 and R1) for specifying the 
parameter values for new capacitor C2 and 
new resistor R2.  
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RESULTS — ZOBEL NETWORK — 
CONTINUED 

 
• The circuitry added by genetic 
programming consists a new capacitor C2 
with component value 

L1/R1
2 

and a new resistor R2 with component value 
R1. 

• These values for the new components in the 
genetically evolved circuit are exactly those 
that Boutin (2000) derived by mathematical 
analysis.  
• The addition of the second shunt consisting 
of an appropriately valued new capacitor and 
an appropriately valued new resistor makes 
the overall load appear to be purely resistive 
to the driving source.  



Fall 2003 BMI 226 / CS 426  Notes   KKKKK-78 

RESULTS — ZOBEL NETWORK — 
CONTINUED 

 
• Genetic programming automatically 
created all the following in the single run that 
produced the additional circuitry: 

• the topology of the additional circuitry, 
including 
• the total number of added components (two), 
• the type of each added component (i.e., one new 

capacitor and one new resistor),  
• all the connections between the circuit’s added 

components, preexisting components, and 
accessible points of the test fixture,  

• the sizing of the additional circuitry, 
including  
• one mathematical expression containing both of the 

problem’s free variables (L1 and R1) for 
establishing the sizing of the added capacitor C2, 
and 

• another mathematical expression containing one of 
the problem’s free variables (R1) for establishing 
the sizing of the added resistor R2. 
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ACTIVE LOWPASS FILTER WITH A 
FREE VARIABLE FOR THE PASSBAND 

BOUNDARY 
 
• The problem in this section is to evolve a 
one-input parameterized lowpass filter 
composed of transistors, capacitors, and 
resistors whose passband boundary is 
specified by a free variable.  
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RESULTS — ACTIVE LOWPASS FILTER 
WITH A FREE VARIABLE FOR THE 

PASSBAND BOUNDARY 
 

BEST-OF-RUN INDIVIDUAL — 
GENERATION 100 
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RESULTS — ACTIVE LOWPASS FILTER 
WITH A FREE VARIABLE FOR THE 

PASSBAND BOUNDARY 
 

BEST-OF-RUN INDIVIDUAL — 
GENERATION 100 

• Has six capacitors and two resistors whose 
values are specified by the expressions below 
involving the free variable, f.  
R1 = f  
R2 = (2 log )NLM f  
C1 = 2((log ) + log )NLM f f  
C2 = 2((log ) + log )NLM f f  
C3 = 2(log - (log ) + 9.6707)NLM f f  
C4 = (2 log )NLM f  
C5 = 2(5(log ) -14.509)NLM f  
C6 = 2(3.6900 + (log ) - log )NLM f f  
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RESULTS — ACTIVE LOWPASS FILTER 
WITH A FREE VARIABLE FOR THE 

PASSBAND BOUNDARY 
 
• Genetic programming automatically 
created all the following in the single run that 
produced the parameterized circuit of figure 
10.14:  

• the circuit’s topology, including  
• the total number of components (18) in addition to 

those of the test fixture,  
• the type of each component (i.e., 10 transistors, six 

capacitors, and two resistors),  
• all the connections between the circuit’s 

components, accessible points of the test fixture, 
and the power source, and  

• the circuit’s sizing as expressed by eight 
mathematical expressions containing the 
problem’s free variable (f) for 
establishing the sizing of the circuit’s 
components (R1, R2, C1, C2, C3, C4, 
C5, and C6).  
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RESULTS — ACTIVE LOWPASS FILTER 
WITH A FREE VARIABLE FOR THE 

PASSBAND BOUNDARY 
 
FREQUENCY RESPONSE OF THE BEST-
OF-RUN CIRCUIT FROM GENERATION 
100 FOR THE 9 IN-SAMPLE VALUES OF 

FREQUENCY (0.316 DB AVERAGE 
ABSOLUTE ERROR) 

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

1 10 100 1000 10000 100000

Frequency

V
o
lt
a
g
e
(d
B
)

441 Hz

588 Hz

784 Hz

1046 Hz

1395 Hz

1861 Hz

2482 Hz

3310 Hz

4414 Hz

 
  



Fall 2003 BMI 226 / CS 426  Notes   KKKKK-84 

RESULTS — ACTIVE LOWPASS FILTER 
WITH A FREE VARIABLE FOR THE 

PASSBAND BOUNDARY 
 

FREQUENCY RESPONSE FOR THE 
BEST-OF-RUN CIRCUIT FROM 

GENERATION 100 FOR THE 8 OUT-OF-
SAMPLE FREQUENCIES (0.42 DB 
AVERAGE ABSOLUTE ERROR) 
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