
Fall 2003 BMI 226 / CS 426 Notes KKKKK-1

PARAMERERIZED TOPOLOGY —
CIRCUITS

Fall 2003 BMI 226 / CS 426 Notes KKKKK-2

FREE VARIABLES AND CONDITIONAL
OPERATORS IN COMPUTER

PROGRAMS

• One of the most important characteristics
of computer programs is that they ordinarily
contain inputs (free variables) and
conditional operations.
• Genetic algorithms and other techniques of
genetic and evolutionary computation are
typically used to search for an optimal (or
near-optimal) solution to a particular single
instance of a problem.

• EXAMPLE: Find the numerical values for
the real and imaginary parts of the two
complex roots of a particular quadratic
equation, such as 3x2 + 4x +5 , a separate
run is required to solve each different
instance of the problem (e.g., 10x2 + 2x
+1).

Fall 2003 BMI 226 / CS 426 Notes KKKKK-3

FREE VARIABLES AND CONDITIONAL
OPERATORS

• Free variables enable a single program to
produce different outputs based on the
particular values of its free variables.

• Conditional operations enable a single
program to execute alternative sequences of
steps based on the particular values of the
free variables.

• Conditional operations and free variables
together potentially enable a single program
to solve all instances of a problem (instead of
just one instance of the problem). Thus, a
computer program containing free variables
and conditional operations has the ability to
solve all quadratic equations  ax2 + bx +c

Fall 2003 BMI 226 / CS 426 Notes KKKKK-4

PARAMERERIZED TOPOLOGIES

• You may really want the general solution to
ax2 + bx +c
• And, you may also want to automatically
create both the topology of an entity (e.g., a
circuit) along with the equations specifying
the values of the components in the entity.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-5

VARIABLE CUTOFF LOWPASS FILTER

"GENERALIZED" PARAMETERIZED
LOWPASS FILTER

• You may want a “general solution” to the
lowpass filter problem. That is, you may
want a filter whose passband ends at
frequencies such as f = 1,000, 1,780, 3,160,
5,620, 10,000, 17,800, 31,600, 56,200, 100,000
Hz

f
L

7100198.81 ×=

()()
() f

f
f

ff
fffL ln104451.2ln

104636.3
103714.9103331.1107387.4103406.12

8

12

2516128

+×≈+
+×

+×+×+××=
−

f
f

L ln2100262.23
8

+×=

f
L

7107297.34 ×=

f
C

5106786.11 ×=
f

C
5106786.12 ×=

f
C

5103552.13 ×=

f
C

5104484.64 ×=

f
C

5101056.15 ×=

L2

Fall 2003 BMI 226 / CS 426 Notes KKKKK-6

VARIABLE CUTOFF LOWPASS FILTER

BBB2291

f
L

7100198.81 ×
=

()()
() f

f
f

ff
fffL ln104451.2ln

104636.3
103714.9103331.1107387.4103406.12

8

12

2516128
+

×
≈+

+×
+×+×+××

=
−

f
f

L ln2100262.23
8
+

×
=

f
L

7107297.34 ×
=

f
C

5106786.11 ×
=

f
C

5106786.12 ×
=

f
C

5103552.13 ×
=

f
C

5104484.64 ×
=

f
C

5101056.15 ×
=

Fall 2003 BMI 226 / CS 426 Notes KKKKK-7

VALUE-SETTING SUBTREES
(ARITHMETIC-PERFORMING

SUBTREES)

• The numerical value for each capacitor or
inductor is established by a value-setting
subtree (arithmetic-performing subtrees)
containing perturbable numerical values,
arithmetic operations, and the free variable f
representing the frequency of the end of the
desired filter's passband.
• The terminal set, Taps, for the value-setting
subtrees is
Taps = {ℜ, F},
where ℜ denotes perturbable numerical
values.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-8

VALUE-SETTING SUBTREE 
CONTINUED

• In generation 0, each perturbable
numerical value is set, individually and
separately, to a random value in the range
from 10-5 and 105.
• In later generations, this perturbable
numerical value is perturbed by a Gaussian
probability distribution.
• A constrained syntactic structure maintains
a function and terminal set for the value-
setting subtrees (arithmetic-performing
subtrees) and the (different) function and
terminal set for all other parts of the
program tree.
• The function set, Faps, for the arithmetic-
performing subtrees is
Faps = {ADD_NUMERIC, SUB_NUMERIC,

MUL_NUMERIC, DIV_NUMERIC, REXP,
RLOG}

Fall 2003 BMI 226 / CS 426 Notes KKKKK-9

VARIABLE CUTOFF LOWPASS FILTER

BEHAVIOR IN THE FREQUENCY
DOMAIN FROM GENERATION 78 FOR
EACH OF NINE VALUES OF THE FREE

VARIABLE F

Fall 2003 BMI 226 / CS 426 Notes KKKKK-10

VARIABLE CUTOFF LOWPASS FILTER
  CONTINUED

FOUR OUT-OF-SAMPLE VALUES OF

FREQUENCY F

Fall 2003 BMI 226 / CS 426 Notes KKKKK-11

LOWPASS - HIGHPASS FILTER USING
CONDITIONAL DEVELOPMENTAL

OPERATOR

• The numerical value for each capacitor or
inductor is established by a value-setting
subtree containing a conditional
developmental operator, perturbable
numerical values, arithmetic operations, and
the free variables F1 representing the 1 of the
passband and F2 representing the boundary
of the stopband.
• Function set, Faps, for arithmetic-
performing subtrees is
Faps = {IFGTZ_DEVELOPMENTAL, +, -, *, %,

REXP, RLOG}.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-12

LOWPASS - HIGHPASS FILTER USING
CONDITIONAL DEVELOPMENTAL

OPERATOR — CONTINUED

• If the first (numerical) argument of the
three-argument IFGTZ_DEVELOPMENTAL
operator evaluates its second (developmental)
argument (but not its third argument) if its
first (numerical argument) is greater than
zero; otherwise, this operator evaluates its
third (developmental) argument (but not its
second argument).
• Function set, Frpb, for rest of result-
producing branch
Frpb = {L, C, SERIES, PARALLEL0, FLIP,

NOP, PAIR_CONNECT_0,
PAIR_CONNECT_1, THREE_GROUND_0,
THREE_GROUND_1, ADF0, ADF1, ADF2,
ADF3, ADF4}

Fall 2003 BMI 226 / CS 426 Notes KKKKK-13

LOWPASS - HIGHPASS FILTER USING
CONDITIONAL DEVELOPMENTAL

OPERATOR — CONTINUED

• Terminal set, Taps, for arithmetic-
performing subtrees
Taps = {ℜ, F1, F2},
• A constrained syntactic structure maintains
a function and terminal set for the
arithmetic-performing subtrees and a
different function and terminal set for rest of
program tree.
• Terminal set, Trpb, for rest of result-
producing branch
Trpb = {END, SAFE_CUT}.
• The terminal set, Tadf, for each
automatically defined function (other than
their arithmetic-performing subtrees) is
Tadf = {END, SAFE_CUT}

Fall 2003 BMI 226 / CS 426 Notes KKKKK-14

LOWPASS - HIGHPASS FILTER USING
CONDITIONAL DEVELOPMENTAL

OPERATOR

• The two free variables, F1 and F2, may
assume the values (10,000, 20,000) or (20,000,
10,000). For each of these two combinations,
SPICE is instructed to perform an AC small
signal analysis and report the circuit's
behavior over five decades with each decade
being divided into 20 parts.
• Fitness is the sum, over all two
combinations of values of the free variables
and over all 101 fitness cases associated with
each combination, of the absolute weighted
deviations

))()),
100

0
(((

2

1
)(ifdifi ifdW
k

tF ∑
=

∑
=

=

Fall 2003 BMI 226 / CS 426 Notes KKKKK-15

ONE OF THE RESULT-PRODUCING
BRANCHES OF A PACE-SETTING

INDIVIDUAL FROM GENERATION 1

(FLIP
 (IFGTZ_DEVELOPMENTAL
 (* F1 (- F1 F2))
 (IFGTZ_DEVELOPMENTAL
 (* F2 F2)
 (L F2 END)
 (FLIP END))
 (C (DIVIDE_NUMERIC F2 F2) (PARALLEL0
END END END END))))

• The first argument of the first
IFGTZ_DEVELOPMENTAL operator in this
branch computes F1 - F2 and multiplies
this difference by a quantity (F1) that is
always positive. If the result is positive (i.e., a
highpass filter is desired), the second
IFGTZ_DEVELOPMENTAL operator is
executed.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-16

ONE OF THE RESULT-PRODUCING
BRANCHES OF A PACE-SETTING

INDIVIDUAL FROM GENERATION 1
 CONTINUED

• Since the first argument of this second
IFGTZ_DEVELOPMENTAL operator squares
F2, the component-creating L function is
unconditionally executed.
• However, if F1 - F2 is non-positive, then
the component-creating C function is
unconditionally executed.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-17

BEST-OF-RUN INDIVIDUAL FROM
GENERATION 47 FOR CASE WHEN

INPUTS CALL FOR LOWPASS FILTER 
I. E., THE TWO FREE VARIABLES, F1

AND F2, ARE (10,000, 20,000)

FREQUENCY DOMAIN BEHAVIOR OF

BEST-OF-RUN INDIVIDUAL WHEN
INPUTS CALL FOR LOWPASS FILTER

Fall 2003 BMI 226 / CS 426 Notes KKKKK-18

BEST-OF-RUN INDIVIDUAL FROM
GENERATION 47 FOR CASE WHEN

INPUTS CALL FOR HIGHPASS FILTER
 I.E. THE TWO FREE VARIABLES, F1

AND F2, ARE (20,000, 10,000)

FREQUENCY DOMAIN BEHAVIOR OF

BEST-OF-RUN INDIVIDUAL WHEN
INPUTS CALL FOR HIGHPASS FILTER

Fall 2003 BMI 226 / CS 426 Notes KKKKK-19

VARIABLE-CUTOFF
LOWPASS/HIGHPASS FILTER CIRCUIT

USING BOTH FREE VARIABLES AND
CONDITIONAL DEVELOPMENTAL

OPERATORS

• We are seeking a single parameterized
outcome that yields two functionally and
topologically different circuits (lowpass
versus highpass filters) depending on the
particular values of two free variables and
the boundaries of the passband and the
stopband may vary over the range between
1,000 Hz and 100,000 Hz

Fall 2003 BMI 226 / CS 426 Notes KKKKK-20

VARIABLE-CUTOFF
LOWPASS/HIGHPASS FILTER CIRCUIT

USING BOTH FREE VARIABLES AND
CONDITIONAL DEVELOPMENTAL

OPERATORS  CONTINUED

• Fitness is the sum, over all 18 combinations
of values of the free variables, F1 and F2,
and over all 101 fitness cases associated with
each combination, of the absolute weighted
deviation between the actual value of the
voltage that is produced by the circuit at the
probe point VOUT and the target value for
voltage (0 or 1 volt). Specifically,

))()),
100

0
(((

9

1

2

1
)(ifdifi ifdW

jk
tF ∑

=
∑
=

∑
=

=
where fi is the frequency of fitness case i; d(x)
is the absolute value of the difference
between the target and observed values at
frequency x; and W(y,x) is the weighting for
difference y at frequency x. A smaller value
of fitness is better.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-21

VARIABLE-CUTOFF
LOWPASS/HIGHPASS FILTER CIRCUIT

USING BOTH FREE VARIABLES AND
CONDITIONAL DEVELOPMENTAL

OPERATORS  CONTINUED

Fall 2003 BMI 226 / CS 426 Notes KKKKK-22

VARIABLE-CUTOFF
LOWPASS/HIGHPASS FILTER CIRCUIT

USING BOTH FREE VARIABLES AND
CONDITIONAL DEVELOPMENTAL

OPERATORS  CONTINUED
• Best-of-run circuit from generation 93
when inputs call for a highpass filter (i.e., F1
> F2). Genetic programming produced this
circuit’s overall topology as well as the 12
mathematical expressions (each containing
the free variables F1 and F2) for specifying
the component values for the circuit’s six
inductors and six capacitors.

1
100

=1 F
Fµ

C 1
2.57

=2 F
Fµ

C 1
9.49

=3 F
Fµ

C 1
2.57

=4 F
Fµ

C
1

9.49
=5 F

Fµ
C 1

9.49
=6 F

Fµ
C

1
3.56

=1 F
H

L 1
113

=6 F
H

L
1
3.56

=2 F
H

L 1
3.56

=3 F
H

L 1
3.56

=4 F
H

L 1
3.56

=5 F
H

L

Fall 2003 BMI 226 / CS 426 Notes KKKKK-23

VARIABLE-CUTOFF
LOWPASS/HIGHPASS FILTER CIRCUIT

USING BOTH FREE VARIABLES AND
CONDITIONAL DEVELOPMENTAL

OPERATORS  CONTINUED

FREQUENCY DOMAIN BEHAVIOR OF
BEST-OF-RUN CIRCUIT WHEN INPUTS

CALL FOR A HIGHPASS FILTER

0

0.2

0.4

0.6

0.8

1

1.2

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06

Frequency

Vo
lt

ag
e

VALUES FOR HIGHPASS FILTER
Start of
transition band

C1 C2 and
C4

C3,
C5, and
C6

L1, L2,
L3, L4,
and L5

L6

1,000 100.0 57.2 49.9 56,300 100,00
0

1,778 56.2 32.1 28.1 31,700 63,300
3,162 31.6 18.1 15.8 17,800 35,600
5,623 17.8 10.2 8.88 10,000 20,000
10,000 10.0 5.72 4.99 5,630 11,300
17,782 5.62 3.21 2.81 3,170 6,330
31,622 3.16 1.81 1.58 1,780 3,560
56,234 1.78 1.02 0.888 1,000 2,000
100,000 1.0 0.572 0.499 563 1,130

Fall 2003 BMI 226 / CS 426 Notes KKKKK-24

VARIABLE-CUTOFF
LOWPASS/HIGHPASS FILTER CIRCUIT

USING BOTH FREE VARIABLES AND
CONDITIONAL DEVELOPMENTAL

OPERATORS  CONTINUED
• Best-of-run circuit from generation 93
when inputs call for a lowpass filter. Genetic
programming produced this circuit’s overall
topology as well as the nine mathematical
expressions (each containing the free
variables F1 and F2) for specifying the
component values for the circuit’s five
inductors and four capacitors.

1
113

=1 F
H

L
1

218
=2 F

H
L 1

218
=3 F

H
L 1

218
=4 F

H
L

1
9.58

=5 F
H

L

1
183

=1 F
Fµ

C
1

219
=2 F

Fµ
C 1

219
=3 F

Fµ
C

1
7.91

=4 F
Fµ

C

Fall 2003 BMI 226 / CS 426 Notes KKKKK-25

VARIABLE-CUTOFF
LOWPASS/HIGHPASS FILTER CIRCUIT

USING BOTH FREE VARIABLES AND
CONDITIONAL DEVELOPMENTAL

OPERATORS  CONTINUED

FREQUENCY DOMAIN BEHAVIOR OF
BEST-OF-RUN CIRCUIT WHEN INPUTS

CALL FOR A LOWPASS FILTER.

0

0.2

0.4

0.6

0.8

1

1.2

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06

Frequency

Vo
lt

ag
e

VALUES FOR A LOWPASS FILTER

Start of
transition band

L1 L2, L3,
and L4

L5 C1 C2 and
C3

C4

1,000 100,00
0

200,00
0

58,900 183 219 91.7

1,778 63,400 123,00
0

33,100 103 123 51.6

3,162 35,600 69,000 18,600 58 69.2 29.0
5,623 20,000 38,800 10,500 32.6 38.9 16.3
10,000 11,300 21,800 5,890 18.3 21.9 9.17
17,782 6,340 12,300 3,310 10.3 12.3 5.16
31,622 3,560 6,900 1,860 5.8 6.92 2.90
56,234 2,000 3,880 1,050 3.26 3.89 1.63
100,000 1,130 2,180 589 1.83 2.19 0.917

Fall 2003 BMI 226 / CS 426 Notes KKKKK-26

VARIABLE-CUTOFF
LOWPASS/HIGHPASS FILTER CIRCUIT

USING BOTH FREE VARIABLES AND
CONDITIONAL DEVELOPMENTAL

OPERATORS  CONTINUED

COMPARISON OF COMPONENT
VALUES FOR HIGHPASS FILTER

0.1

1

10

100

1000

10000

100000

1000 10000 100000

C1
C2
C3
L1
L6

1
100

1
000,1001

F
F

F
nFC µ

==

1
2.57

1
200,574,2

F
F

F
nFCC µ

==

1
9.49

1
900,496,5,3

F
F

F
nFCCC µ

==

1
3.56

1
000,300,565,4,3,2,1

F
H

F
HLLLLL ==

µ

1
113

1
000,000,1136

F
H

F
HL ==

µ

Fall 2003 BMI 226 / CS 426 Notes KKKKK-27

VARIABLE-CUTOFF
LOWPASS/HIGHPASS FILTER CIRCUIT

USING BOTH FREE VARIABLES AND
CONDITIONAL DEVELOPMENTAL

OPERATORS  CONTINUED

Six similar plots for the parameterized
lowpass filter reveal that the component
values for the six distinct components for all
nine frequencies also lie along straight lines.
The following formulae (all of which have the
frequency F1 in the denominator) represent
the relationships between the component
values and frequencies in the parameterized
lowpass filter.

1
113

1
000,000,1131

F
H

F
HL ==

µ

1
218

1
000,000,2184,3,2

F
H

F
HLLL ==

µ

1
9.58

1
000,900,585

F
H

F
HL ==

µ

1
183

1
000,1831

F
F

F
nFC µ

==

1
219

1
000,2193,2

F
F

F
nFCC µ

==

1
7.91

1
700,914

F
F

F
nFC µ

==

Fall 2003 BMI 226 / CS 426 Notes KKKKK-28

VARIABLE-CUTOFF
LOWPASS/HIGHPASS FILTER CIRCUIT

USING BOTH FREE VARIABLES AND
CONDITIONAL DEVELOPMENTAL

OPERATORS  CONTINUED

FREQUENCY DOMAIN BEHAVIOR OF
BEST-OF-RUN CIRCUIT FOR FOUR

OUT-OF-SAMPLE VALUES OF
FREQUENCY WHEN INPUTS CALL FOR

A HIGHPASS FILTER

0

0.2

0.4

0.6

0.8

1

1.2

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09

Frequency

Vo
lta

ge

900Hz
4640Hz
21540Hz
110000Hz

Fall 2003 BMI 226 / CS 426 Notes KKKKK-29

• Similar results for lowpass filter

Fall 2003 BMI 226 / CS 426 Notes KKKKK-30

FIVE NEW TECHNIQUES FOR 5 NEW
TECHNQIUES FOR AUTOMATIC

CIRCUIT SYNTHESIS THAT WE USE ON
THE NEXT 2 PROBLEMS INVOLVING
PARAMETERIZED TOPOLOGIES FOR

CIRCUITS

• New NODE Function for Connecting Distant
Points
• Symmetry-Breaking Procedure using
Geometric Coordinates
• Depth-First Evaluation
• New TWO_LEAD Function for Inserting
Two-Leaded Components
• New Q Transistor-Creating Function

Fall 2003 BMI 226 / CS 426 Notes KKKKK-31

NEW NODE FUNCTION FOR
CONNECTING DISTANT POINTS

• Most practical circuits require connections
that cannot be achieved in a totally planar
arrangement.
• Previous work concerning the automatic
synthesis of electrical circuits employed the
VIA and PAIR_CONNECT functions to
connect distant points in a developing circuit.
• Although runs of genetic programming
using these earlier functions were successful
in automatically creating circuits, we have
long believed that these functions were
inefficient.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-32

NEW NODE FUNCTION FOR
CONNECTING DISTANT POINTS —

CONTINUED

• The premise behind the crossover operation
is that individuals with relatively high fitness
are likely to contain some substructures
which, when recombined, may create
offspring with even higher fitness.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-33

NEW NODE FUNCTION FOR
CONNECTING DISTANT POINTS —

CONTINUED

• In the genetic algorithm operating on fixed-
length strings, the conventional crossover
operation recombines a contiguous sub-string
of characters from one parent’s chromosome
with a contiguous sub-string of characters
from the second parent’s chromosome.

• Over many generations, combinations of
characters that are located close to each
other on the chromosome string tend to
be differentially preserved in the face of
the inherently disruptive crossover
operation.

• Thus, shorter contiguous substrings are
preserved to a greater degree than longer
ones. That is, local substructures are
preserved in the face of the (often)
disruptive nature of the crossover
operation.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-34

NEW NODE FUNCTION FOR
CONNECTING DISTANT POINTS —

CONTINUED

• In genetic programming, the conventional
crossover operation recombines a subtree
from one parent’s program tree with the
second parent’s program tree.

• Over many generations, functions and
terminals that are nearby in the tree tend
to be differentially preserved.

• In particular, smaller subtrees are
preserved to a greater degree than larger
ones.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-35

NEW NODE FUNCTION FOR
CONNECTING DISTANT POINTS —

CONTINUED

• The VIA and PAIR_CONNECT functions
have the disadvantage that when a subtree of
one circuit-constructing program tree is
swapped with a subtree of another circuit-
constructing program tree, the connectivity
of points within both the crossover fragment
and the remainder is, almost always,
dramatically altered in an extremely
disruptive way.

• That is, crossover usually significantly
disrupts the nature of the preexisting
connections formed by the VIA and
PAIR_CONNECT functions within a
local area of the developing circuit.

• These local structures may have
contributed to the individual’s
comparatively high fitness and to the

Fall 2003 BMI 226 / CS 426 Notes KKKKK-36

individual’s being selected to participate
in the genetic operation in the first place.

• To the extent that crossover dramatically
alters the characteristics of the swapped
genetic material, it acquires the
characteristics of the mutation operation
and its effectiveness in solving the
problem is consequently reduced to the
lesser level delivered by the random
mutation operation. • It would be
desirable that local substructures be
preserved during the evolutionary
process.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-37

NEW NODE FUNCTION FOR
CONNECTING DISTANT POINTS —

CONTINUED

• This perceived problem concerning the VIA
and PAIR_CONNECT functions is addressed
by introducing a new two-argument function
(called “NODE”).
• The two-argument NODE function provides
a way to connect distant points in a
developing circuit to each other.
• The NODE function replaces one modifiable
wire (or modifiable component) with a series
composition consisting of one modifiable
wire, a temporary port that can potentially
be connected to other point(s) in the circuit,
and a second modifiable wire.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-38

NEW NODE FUNCTION FOR
CONNECTING DISTANT POINTS —

CONTINUED

• Prior to the execution of the developmental
process, the circuit-constructing program
tree is examined to identify the set of NODE
functions that are not ancestors of any NODE
function higher in the program tree.
• The NODE functions in this set are called
“top-most NODE functions.”
• For each top-most NODE function, all the
temporary ports (if any) associated with the
NODE functions that are ancestors of a
particular top-most NODE function are
connected to the port of the top-most NODE
function (subsequent to the execution of the
developmental process).
• Any temporary ports that do not become
connected by this process are removed.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-39

• The NODE function takes two arguments,
one for each of the construction-continuing
subtrees associated with the two modifiable
wires.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-40

NEW NODE FUNCTION FOR
CONNECTING DISTANT POINTS —

CONTINUED

• When the crossover operation moves any
subtree within the subtree rooted by a
particular top-most NODE function into
another circuit-constructing program tree,
the connectivity of the ports contained in the
moved subtree remains intact.
• Moreover, the connectivity of the ports in
the unmoved remainder of the original
program tree also remains intact.
• We believe that this new approach
encourages the preservation of building
blocks and thereby increases the efficiency of
the overall search.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-41

SYMMETRY-BREAKING PROCEDURE
USING GEOMETRIC COORDINATES

• In previous work, a unique consecutive part
number (internally assigned during the
developmental process when a component is
first inserted into the developing circuit) is
used to break symmetries involving the
behavior of certain circuit-constructing
functions (such as the transistor-creating
functions and parallel division functions)

• When a transistor is inserted into a
developing circuit, the correspondence
between the three leads of the transistor
(its base, collector, and emitter) and the
three points in the developing circuit to
which these leads are connected is
defined by referring to the unique
consecutive part numbers of neighboring
components.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-42

SYMMETRY-BREAKING PROCEDURE
USING GEOMETRIC COORDINATES —

CONTINUED

• The overall circuit-constructing program
tree changes throughout the run.

• Thus, when neighboring parts change, the
behavior of the transistor-creating and
parallel division functions is
dramatically altered in a rather abrupt
way.

• These abrupt changes in behavior may
disrupt the local structures that
contribute to the individual’s relatively
high fitness and to the individual’s
selection to participate in genetic
operations in the first place.

• To the extent that the genetic operations
do not preserve locality, they lose some
of their effectiveness (and, in the
extreme case, come to resemble blind
random search).

Fall 2003 BMI 226 / CS 426 Notes KKKKK-43

SYMMETRY-BREAKING PROCEDURE
USING GEOMETRIC COORDINATES —

CONTINUED

• This perceived problem is addressed by
breaking symmetry using geometric
coordinates that are assigned to each node in
the developing circuit (instead of using the
unique consecutive parts number).
• We start by assigning geometric
coordinates to the nodes to which each
modifiable wire in the embryo is connected.

• For example, if there is one modifiable
wire in the embryo, the positive end is
defined to be at coordinate location (0,
0), and its negative end is defined to be
at coordinate location (1, 0).

Fall 2003 BMI 226 / CS 426 Notes KKKKK-44

SYMMETRY-BREAKING PROCEDURE
USING GEOMETRIC COORDINATES —

CONTINUED

• The coordinate locations of new nodes that
are created by functions that entail
symmetry breaking (and those created
by all other functions) are defined in
terms of the coordinate locations of the
existing nodes.

• This is accomplished by recursively
dividing the preexisting modifiable wires
into smaller and smaller new wires.

• As an example, a series division
performed on the one modifiable wire
just described would create three new
modifiable wires and would create two
new nodes: one at (1/3, 0) and the other
at (2/3, 0).

Fall 2003 BMI 226 / CS 426 Notes KKKKK-45

SYMMETRY-BREAKING PROCEDURE
USING GEOMETRIC COORDINATES —

CONTINUED

• In this way, the behavior of the functions
that in our previous approach relied on
the unique consecutive (circuit-wide)
part number is now defined in terms of
information that is local to the region of
the circuit where the symmetry-breaking
is performed.

• We believe that this new approach
encourages the preservation of building
blocks and thereby increases the
efficiency of the crossover operation.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-46

SYMMETRY-BREAKING PROCEDURE
USING GEOMETRIC COORDINATES —

CONTINUED

• We use a new parallel division function in
conjunction with this new approach. The first
argument of the five-argument
PARALLEL_NEW function specifies the
direction in which the parallel division is to
be performed.

• This first argument is one of the following
two terminals: UP_OR_LEFT or
DOWN_OR_RIGHT.

• The terminal UP_OR_LEFT means that
the parallel division will be performed
upwards if the current modifiable wire or
component is horizontal, but left if it is
vertical.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-47

SYMMETRY-BREAKING PROCEDURE
USING GEOMETRIC COORDINATES —

CONTINUED

• The terminal DOWN_OR_RIGHT means
that the parallel division will be
performed downwards if the current
modifiable wire or component is
horizontal, but right if it is vertical.

• Note that if all the modifiable wires in the
embryo are either horizontal or vertical,
all subsequent wires and components
will be either horizontal or vertical.

• The remaining four arguments of the
PARALLEL_NEW function are the
construction-continuing subtrees that
correspond to the four modifiable wires
created by this function.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-48

DEPTH-FIRST EVALUATION

• Previous work used a breath-first order of
evaluation during the developmental process.
• However, we have come to believe that this
choice is not as efficient as the alternative
(i.e., depth-first evaluation).
•When a subtree is evaluated using a depth-
first order of evaluation in the developmental
process, all the component-creating and
topology-modifying functions in the subtree
are evaluated before any other part of the
overall program tree is evaluated. That is, the
entire subtree is fully evaluated before the
developmental process moves on to another
subtree.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-49

DEPTH-FIRST EVALUATION —
CONTINUED

• Conversely, when a subtree is evaluated
using a breath-first order of evaluation in the
developmental process, the evaluation of each
function in the subtree is followed (in
general) by the evaluation of functions
(usually many) that are not part of the
subtree.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-50

DEPTH-FIRST EVALUATION —
CONTINUED

• The genetic algorithm and genetic
programming work on the principle that
there is something about the structure of a
relatively fit individual that contributes to the
individual’s fitness.

• In genetic programming, the crossover
operation creates new individuals by
recombining subtrees of relatively fit
individuals.

• Thus, it seems reasonable that the
crossover operation would be more
efficient if the parts of a program that are
moved by the crossover operation (i.e.,
subtrees) more closely corresponded to
the sequence of component-creating and
topology-modifying functions.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-51

NEW TWO_LEAD FUNCTION FOR
INSERTING TWO-LEADED

COMPONENTS

• In previous work, two-leaded components,
(such as resistors, capacitors, and inductors)
were inserted into the developing circuit by
means of separate component-creating
functions (e.g., the R, C, and L functions).

• Each of these functions has a construction-
continuing subtree as one of its
arguments.

• Thus, with these functions, any crossover
or mutation that changes one of these
functions necessarily changes the
construction-continuing subtree.

• It may be advantageous for the
evolutionary process to be able to
change one two-leaded component into
another without changing the
construction-continuing subtree.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-52

NEW TWO_LEAD FUNCTION FOR
INSERTING TWO-LEADED

COMPONENTS — CONTINUED

• The new three-argument TWO_LEAD
function replaces one modifiable wire (or
component) with a series composition
consisting of one modifiable wire, a two-
leaded component, and a second modifiable
wire.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-53

NEW TWO_LEAD FUNCTION FOR
INSERTING TWO-LEADED

COMPONENTS — CONTINUED

• The first argument of the TWO_LEAD
function specifies the identity and numerical
value (sizing) of the component.

• The first argument of the TWO_LEAD
function is a subtree whose root is
always one of the following new one-
argument component-creating functions:
R_NEW, C_NEW, or L_NEW.

• Each of these three new functions takes a
value-setting subtree as its argument.

• The value-setting subtree may be either a
single perturbable numerical value or an
arithmetic-performing subtree (in
particular, an arithmetic-performing
subtree containing free variables).

Fall 2003 BMI 226 / CS 426 Notes KKKKK-54

NEW TWO_LEAD FUNCTION FOR
INSERTING TWO-LEADED

COMPONENTS — CONTINUED

• The second and third arguments of the
TWO_LEAD function are the construction-
continuing subtrees that correspond to the
two modifiable wires created by this function.

• The important point is that the first
argument of the TWO_LEAD function does not
possess a construction-continuing subtree.

• As a result, the identify of the two-leaded
component may be changed (by
crossover or mutation) without changing
either construction-continuing subtree.

• That is, a two-leaded component can be
changed in a localized way.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-55

NEW Q TRANSISTOR-CREATING
FUNCTION

• Similarly, it may be advantageous for the
evolutionary process to be able to change the
orientation of a transistor or the transistor
model without changing the construction-
continuing subtrees associated with the
insertion of the transistor into the developing
circuit.

• The new six-argument Q function inserts a
transistor into a developing circuit, with both
the model and orientation of the transistor
specified as parameters.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-56

NEW Q TRANSISTOR-CREATING
FUNCTION — CONTINUED

• The first argument of the Q function
specifies the transistor model that is to be
used. The set of available transistor models is
specific to the problem at hand.

• The second argument establishes which end
(polarity) of the preexisting modifiable wire
will be bifurcated (if necessary) in inserting
the transistor.

• It can take on the values
BIFURCATE_POSITIVE or
BIFURCATE_NEGATIVE.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-57

NEW Q TRANSISTOR-CREATING
FUNCTION — CONTINUED

• The third argument of the Q function
specifies which of six possible permutations
of the transistor’s three leads is to be used.

• It can take on the values B_C_E, B_E_C,
C_B_E, C_E_B, E_B_C, and E_C_B.
For example, C_B_E causes the first
point to be connected to the transistor’s
collector; the second point to be
connected to the transistor’s base; and
the third point to be connected to the
transistor’s emitter.

• As previously mentioned, the geometric
coordinates define an underlying order
of the three points to which the
transistor’s base, collector, and emitter
may be connected.

• Considering the second and third argument
together, there are 12 possible ways of
inserting a transistor.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-58

NEW Q TRANSISTOR-CREATING
FUNCTION — CONTINUED

• The remaining three arguments of the Q
function are the construction-continuing
subtrees that correspond to the three
modifiable wires created by this function.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-59

ZOBEL NETWORK WITH TWO FREE
VARIABLES

• An audio power amplifier driving a
loudspeaker may be modeled, at first
approximation, as an inductor L1 and
resistor R1 situated in series between the
incoming signal and ground.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-60

ZOBEL NETWORK — CONTINUED

• When the loudspeaker is prone to
instability, it may be desirable to make the
reactive load appear to be a purely resistive
load to the driving source.
• This may be accomplished by adding
additional circuitry to the LR circuit.
• Thus, the problem is to find the topology of
the unspecified additional circuitry as well as
the sizing of each component of this
additional circuitry such that the original LR
circuit plus the additional circuitry together
appear to the driving source to be a purely
resistive load.
• The desired solution to this problem must
be parameterized (i.e., general) because the
sizing of at least some of the additional
components will necessarily depend on the
particular value, L1, of the original inductor
L1 and the particular value, R1, of the
original resistor R1.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-61

ZOBEL NETWORK — CONTINUED

• Boutin (2002) describes a mathematical
solution to this problem in the form of what
is called a Zobel network.
• BEcause the original LR circuit plus the
added circuitry must together have the
behavior of a resistor with resistance Roverall,
then the current flowing through the circuit
must (according to Ohm’s law) be Vin/Roverall,
where Vin is the voltage of the incoming
signal.
• If, for example, the driving source is a step
function rising from 0 to Vmax at time t=trise,
then the current of the original LR circuit
plus the added circuitry must be a step
function rising from 0 to Vmax/Roverall at time
t=trise.
• The behavior of the original LR circuit
starts at 0 and rises exponentially (with time
constant L1/R1) toward its final value.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-62

PREPARATORY STEPS FOR THE ZOBEL
NETWORK PROBLEM WITH TWO FREE

VARIABLES

INITIAL CIRCUIT

• Initial circuit consists of an embryo and a
test fixture
• The floating embryo consists of a single
modifiable wire Z0 that is not initially
connected to the circuit’s input(s) or
output(s)..

Fall 2003 BMI 226 / CS 426 Notes KKKKK-63

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

PROGRAM ARCHITECTURE

• Because there must be one result-producing
branch in the program tree for each
modifiable wire in the embryo and there is
one modifiable wire in the embryo, the
architecture of each circuit-constructing
program tree has one result-producing
branch.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-64

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

FUNCTION SET

• A constrained syntactic structure enforces
the use of one function set for the arithmetic-
performing subtrees, another for the first
argument of the TWO_LEAD function, and yet
another for all other parts of the program
tree.
• The function set, Faps, for the arithmetic-
performing subtrees is
Faps = {+, -, *, %, RLOG, EXP}.
• Because resistors, inductors, and capacitors
may be used in this problem, the function set,
Ftwo-lead, for the first argument of the
TWO_LEAD function is
Ftwo-lead = {R_NEW, L_NEW, C_NEW}.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-65

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

FUNCTION SET — CONTINUED

• The function set, Fccs, for each construction-
continuing subtree is
Fccs = {TWO_LEAD, SERIES,

PARALLEL_NEW, NODE, TWO_GROUND,
THREE_GROUND, INPUT_0}.

• Note that because the input source is a
voltage source and the probe point measures
current at the same point, there is no need for
a separate output probe point in this
particular test fixture (and hence no need for
the OUTPUT_0 function in the function set).

Fall 2003 BMI 226 / CS 426 Notes KKKKK-66

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

TERMINAL SET

• A constrained syntactic structure enforces
the use of one terminal set for the value-
setting subtrees, another for the first
argument of the PARALLEL_NEW function,
and yet another for all other parts of the
program tree.
• In this problem, there are two free
variables. They represent the inductance L1
(called “L1” below) of the original inductor
L1 and the resistance R1 (called “R1”) of the
original resistor R1.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-67

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

TERMINAL SET — CONTINUED

• The component value for each component
possessing a parameter is established by an
arithmetic-performing subtree that may
contain perturbable numerical values,
arithmetic operations, and the two free
variables (L1 and R1).
• The terminal set, Taps, for the arithmetic-
performing subtree for component-creating
functions is
Taps = {ℜp, L1, R1},
where ℜp denotes a perturbable numerical
value.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-68

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

TERMINAL SET — CONTINUED

• A constrained syntactic structure specifies
the terminals that may appear as the first
argument of the PARALLEL_NEW function.
The terminal set, Tparallel, for the first
argument of the PARALLEL_NEW function is
Tparallel = {UP_OR_LEFT, DOWN_OR_RIGHT}.
• The terminal set, Tccs, for each
construction-continuing subtree is
Tccs = {END, SAFE_CUT}.
• In problems involving parameterized
topologies, the nonlinear mapping can
potentially impede the evolutionary process
and complicate the post-run analysis of
mathematical expressions containing free
variables. Thus it is not used for this
problem.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-69

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

FITNESS MEASURE

• When there are free variables in a problem,
it is necessary to ascertain the behavior and
characteristics of each candidate individual
for a representative sample of values of each
of the free variables.
• Multiple combinations of values of the free
variables force generalization of the to-be-
evolved circuit.
• The free variable for the inductance, L1, of
inductor L1 is L1). L1 ranges over six values,
namely 1.0, 2.5, 6.3, 15.8, 39.8, and 100.0
microhenrys.
• The free variable for the resistance, R1, of
resistor R1 is R1. R1 ranges over six values,
namely 10, 25, 63, 158, 398, and 1,000 Ohms.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-70

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

FITNESS MEASURE — CONTINUED

• Thus, there are a total of 36 fitness cases,
each representing a combination of values of
the two free variables (L1 and R1).
• The input signal (driving source) for a
particular one of the 36 fitness cases is

-
1-

t
τe ,

where the time constant, τ, is L1/R1. This
curve has an initial amplitude of 0 Volts, rises
with a time constant τ, and has a potential
maximum amplitude of 1 Volt.
• SPICE is instructed to perform a transient
(time-domain) analysis for 10L/R seconds.
There are 100 time steps. The current at the
current probe, IOUT0, is reported for 101
times.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-71

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

FITNESS MEASURE — CONTINUED

• The contribution to fitness of each of the 36
fitness cases is equalized by weighting each
fitness case by Roverall. In this connection,
recall that a maximum input voltage of 1 Volt
corresponds to a maximum desired current
of 1/Roverall.
• The number of hits is defined as the
number of fitness cases for which the
absolute error is less than or equal to 5% of
the reciprocal of the value of Roverall for that
fitness case.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-72

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

FITNESS MEASURE — CONTINUED

• The fitness measure is designed to
encourage two types of parsimony.
• The first type of parsimony is based on the
familiar idea of counting the circuit’s
components.
• The second type of parsimony, called
equational parsimony, is the total number of
mathematical functions in the arithmetic-
performing subtrees. This type of parsimony
is often appropriate when parameterized
topologies are being used.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-73

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

FITNESS MEASURE — CONTINUED

• For individuals scoring less than 36 hits,
fitness is the sum, for each of the 101 time
steps associated with each of the 36 fitness
cases, of the product of Roverall (the equalizing
factor for the fitness case) and the weighted
absolute value of the difference between the
current at the current probe point, IOUT0,
and the current value of Vin/Roverall for the
fitness case involved. The absolute value of
the difference is weighted by 1.0 if the
absolute error is less than or equal to 5% of
the reciprocal of the value of Roverall for that
fitness case, but 10. 0 otherwise.
• For individuals scoring 36 hits, fitness is
one trillionth of the sum of the total number
of components (including the fixed
components in the test fixture) and one tenth

Fall 2003 BMI 226 / CS 426 Notes KKKKK-74

of the total number of mathematical
functions in the arithmetic-performing
subtrees.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-75

PREPARATORY STEPS FOR THE ZOBEL
NETWORK — CONTINUED

CONTROL PARAMETERS

• The population size is 500,000

Fall 2003 BMI 226 / CS 426 Notes KKKKK-76

RESULTS — ZOBEL NETWORK

BEST-OF-RUN PARAMETERIZED
TOPOLOGY (GEN 15)

2=
L1
R1

= R1

• Genetic programming produced this
circuit’s overall topology as well as the two
mathematical expressions (containing the
free variables L1 and R1) for specifying the
parameter values for new capacitor C2 and
new resistor R2.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-77

RESULTS — ZOBEL NETWORK —
CONTINUED

• The circuitry added by genetic
programming consists a new capacitor C2
with component value

L1/R1
2

and a new resistor R2 with component value
R1.

• These values for the new components in the
genetically evolved circuit are exactly those
that Boutin (2000) derived by mathematical
analysis.
• The addition of the second shunt consisting
of an appropriately valued new capacitor and
an appropriately valued new resistor makes
the overall load appear to be purely resistive
to the driving source.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-78

RESULTS — ZOBEL NETWORK —
CONTINUED

• Genetic programming automatically
created all the following in the single run that
produced the additional circuitry:

• the topology of the additional circuitry,
including
• the total number of added components (two),
• the type of each added component (i.e., one new

capacitor and one new resistor),
• all the connections between the circuit’s added

components, preexisting components, and
accessible points of the test fixture,

• the sizing of the additional circuitry,
including
• one mathematical expression containing both of the

problem’s free variables (L1 and R1) for
establishing the sizing of the added capacitor C2,
and

• another mathematical expression containing one of
the problem’s free variables (R1) for establishing
the sizing of the added resistor R2.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-79

ACTIVE LOWPASS FILTER WITH A
FREE VARIABLE FOR THE PASSBAND

BOUNDARY

• The problem in this section is to evolve a
one-input parameterized lowpass filter
composed of transistors, capacitors, and
resistors whose passband boundary is
specified by a free variable.

Fall 2003 BMI 226 / CS 426 Notes KKKKK-80

RESULTS — ACTIVE LOWPASS FILTER
WITH A FREE VARIABLE FOR THE

PASSBAND BOUNDARY

BEST-OF-RUN INDIVIDUAL —
GENERATION 100

Fall 2003 BMI 226 / CS 426 Notes KKKKK-81

RESULTS — ACTIVE LOWPASS FILTER
WITH A FREE VARIABLE FOR THE

PASSBAND BOUNDARY

BEST-OF-RUN INDIVIDUAL —
GENERATION 100

• Has six capacitors and two resistors whose
values are specified by the expressions below
involving the free variable, f.
R1 = f
R2 = (2 log)NLM f
C1 = 2((log) + log)NLM f f
C2 = 2((log) + log)NLM f f
C3 = 2(log - (log) + 9.6707)NLM f f
C4 = (2 log)NLM f
C5 = 2(5(log) -14.509)NLM f
C6 = 2(3.6900 + (log) - log)NLM f f

Fall 2003 BMI 226 / CS 426 Notes KKKKK-82

RESULTS — ACTIVE LOWPASS FILTER
WITH A FREE VARIABLE FOR THE

PASSBAND BOUNDARY

• Genetic programming automatically
created all the following in the single run that
produced the parameterized circuit of figure
10.14:

• the circuit’s topology, including
• the total number of components (18) in addition to

those of the test fixture,
• the type of each component (i.e., 10 transistors, six

capacitors, and two resistors),
• all the connections between the circuit’s

components, accessible points of the test fixture,
and the power source, and

• the circuit’s sizing as expressed by eight
mathematical expressions containing the
problem’s free variable (f) for
establishing the sizing of the circuit’s
components (R1, R2, C1, C2, C3, C4,
C5, and C6).

Fall 2003 BMI 226 / CS 426 Notes KKKKK-83

RESULTS — ACTIVE LOWPASS FILTER
WITH A FREE VARIABLE FOR THE

PASSBAND BOUNDARY

FREQUENCY RESPONSE OF THE BEST-
OF-RUN CIRCUIT FROM GENERATION
100 FOR THE 9 IN-SAMPLE VALUES OF

FREQUENCY (0.316 DB AVERAGE
ABSOLUTE ERROR)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

1 10 100 1000 10000 100000

Frequency

V
o
lt
a
g
e
(d
B
)

441 Hz

588 Hz

784 Hz

1046 Hz

1395 Hz

1861 Hz

2482 Hz

3310 Hz

4414 Hz

Fall 2003 BMI 226 / CS 426 Notes KKKKK-84

RESULTS — ACTIVE LOWPASS FILTER
WITH A FREE VARIABLE FOR THE

PASSBAND BOUNDARY

FREQUENCY RESPONSE FOR THE
BEST-OF-RUN CIRCUIT FROM

GENERATION 100 FOR THE 8 OUT-OF-
SAMPLE FREQUENCIES (0.42 DB
AVERAGE ABSOLUTE ERROR)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

1 10 100 1000 10000 100000

Frequency

Vo
lta

ge
 (d

B
)

509 Hz
679 Hz
906 Hz
1208 Hz
1611 Hz
2149 Hz
2866 Hz
3822 Hz

