
Fall 2003 BMI 226 / CS 426 Notes OO-1

DEVELOPMENTAL GENETIC
PROGRAMMING

• Electrical circuits (introduction)
• Cellular encoding (neural networks)
• Auto-parallelization of serial computer programs

Fall 2003 BMI 226 / CS 426 Notes OO-2

AUTOMATIC SYNTHESIS OF BOTH THE
TOPOLOGY AND SIZING OF

ELECTRICAL CIRCUITS

Fall 2003 BMI 226 / CS 426 Notes OO-3

ONE-INPUT, ONE-OUTPUT INITIAL
CIRCUIT

• Initial circuit consists of embryo and test fixture
• Embryo has modifiable wires (e.g., Z0 AND Z1)
• Test fixture has input and output ports and usually has
source resistor and load resistor. There are no modifiable
wires (or modifiable components) in the test fixture.

Fall 2003 BMI 226 / CS 426 Notes OO-4

THE INITIAL CIRCUIT

• Circuit-constructing program tree contains
• Component-creating functions
• Topology-modifying functions
• Development-controlling functions

• Circuit-constructing program tree has one result-
producing branch for each modifiable wire in embryo of the
initial circuit
• There is a writing head linking each modifiable wire (or
modifiable component) with one point of the program tree

C FLIP

LIST1

2 3

-

Fall 2003 BMI 226 / CS 426 Notes OO-5

TWO PARTS OF AN INITIAL CIRCUIT

EMBRYO WITH TWO MODIFIABLE
WIRES, Z0 AND Z1 AND THREE PORTS
(EMBRYO_INPUT, EMBRYO_OUTPUT,

AND EMBRYO_GROUND)

Z0

Input OutputZ1

-

-

+

+
Embryo Embryo

Embryo Ground

Fall 2003 BMI 226 / CS 426 Notes OO-6

TWO PARTS OF AN INITIAL CIRCUIT

ONE-INPUT, ONE-OUTPUT TEST
FIXTURE WITH THREE PORTS TO THE

EMBRYO

Fall 2003 BMI 226 / CS 426 Notes OO-7

TWO PARTS OF AN INITIAL CIRCUIT

THE EMBRYO

• An embryo contains at least one modifiable wire. A
modifiable wire is a wire that is capable of being converted
into electrical components, other modifiable wires, and
nonmodifiable wires during the developmental process.
• The embryo is very simple - often as little as one (or a few)
modifiable wires
• An embryo has one or more ports that enable it to be
embedded into a test fixture.
• When the embryo is embedded in the test fixture, the
result is typically a useless and degenerate circuit

Fall 2003 BMI 226 / CS 426 Notes OO-8

TWO PARTS OF AN INITIAL CIRCUIT

THE EMBRYO - CONTINUED

• Occasionally, an embryo may also contain non-modifiable
wires, non-modifiable electrical components, or modifiable
electrical components.
• The developmental process operates on the embryo (not
the test fixture)
• The distinctive feature of the embryo is that it contains at
least one modifiable wire.

Fall 2003 BMI 226 / CS 426 Notes OO-9

TWO PARTS OF AN INITIAL CIRCUIT

THE TEST FIXTURE

• The test fixture is a fixed (hard-wired) substructure
composed of nonmodifiable wires and nonmodifiable
electrical components.
• Its purpose is to provide a means for testing another
electrical substructure, namely the embryo.
• A test fixture has one or more ports that enable an embryo
to be embedded into it.
• The test fixture provides access to the circuit's external
input(s) and outputs and permits probing of the circuit's
output.

Fall 2003 BMI 226 / CS 426 Notes OO-10

TWO PARTS OF AN INITIAL CIRCUIT

THE TEST FIXTURE - CONTINUED

• A test fixture typically incorporates certain fixed elements
that are required to test the type of circuit being designed.
For example, the test fixture often contains a source resistor
reflecting the reality that all sources have resistance and a
load resistor representing the load that must be driven by
the output.
• The distinctive feature of the test fixture is that it contains
no modifiable wires and no modifiable components.

Fall 2003 BMI 226 / CS 426 Notes OO-11

DEVELOPMENTAL PROCESS

• In the initial circuit, the test fixture encases only the
embryo.
• The developmental process operates on the embryo (not
the test fixture)
• The developmental process applies functions in the circuit-
constructing program tree to certain designated elements of
the embryo (and its successors).
• The functions in the program tree side-effect the embryo
(and its successors during the developmental process).
• The developmental process ends when the program tree is
fully executed.
• After the embryo is fully developed, the test fixture encases
the nontrivial substructure that is developed from the
embryo.

Fall 2003 BMI 226 / CS 426 Notes OO-12

WRITING HEADS

ONE-INPUT, ONE-OUTPUT INITIAL
CIRCUIT WITH TWO WRITING HEADS

ASSOCIATED WITH THE TWO
MODIFIABLE WIRES (Z0 AND Z1) OF

THE EMBRYO

1

2 3C FLIP

LIST

Fall 2003 BMI 226 / CS 426 Notes OO-13

COMPONENT-CREATING FUNCTIONS

TWO-LEADED
• Resistor R function
• Capacitor C function
• Inductor L function
• Diode D function
• TWO_LEAD_OPAMP function
• Digital NOT function (inverter)

THREE-LEADED
• Transistor QT function
• THREE_LEAD_OPAMP function
• Digital AND, OR, NAND, NOR functions

FOUR-LEADED
• Transformer TRANFORMER function

FIVE-LEADED
• FIVE_LEAD_OPAMP function

Fall 2003 BMI 226 / CS 426 Notes OO-14

A PORTION OF A CIRCUIT
CONTAINING A MODIFIABLE WIRE Z0

RESULT AFTER R FUNCTION

Fall 2003 BMI 226 / CS 426 Notes OO-15

RESULT AFTER C FUNCTION

RESULT AFTER L FUNCTION

Fall 2003 BMI 226 / CS 426 Notes OO-16

NETLIST BEFORE EXECUTION OF R
FUNCTION

C2 1 10

C3 1 11

Z0 2 1

C4 2 12

C5 2 13

Note: By convention, the first-listed node is the node
connected to the positive lead of a two-leaded component

NETLIST AFTER EXECUTION OF R
FUNCTION CREATING A 5-Ω RESISTOR
C2 1 10

C3 1 11

R1 2 1 5ohms

C4 2 12

C5 2 13

Fall 2003 BMI 226 / CS 426 Notes OO-17

RESULT AFTER QT0 FUNCTION

RESULT AFTER AND0 DIGITAL GATE

Fall 2003 BMI 226 / CS 426 Notes OO-18

RESULT AFTER TRANFORMER0
FUNCTION

Fall 2003 BMI 226 / CS 426 Notes OO-19

RESULT AFTER TWO_LEAD_OPAMP1

RESULT AFTER THREE_LEAD_OPAMP1

FUNCTION

Fall 2003 BMI 226 / CS 426 Notes OO-20

RESULT AFTER TRANFORMER0
FUNCTION

Fall 2003 BMI 226 / CS 426 Notes OO-21

A PORTION OF A CIRCUIT
CONTAINING A RESISTOR R1

RESULT AFTER FIVE_LEAD_OPAMP3

Fall 2003 BMI 226 / CS 426 Notes OO-22

TOPOLOGY-MODIFYING FUNCTIONS
• SERIES division function
• PARALLEL0 and PARALLEL1 parallel division functions
• STAR division function
• TRIANGLE division function
• VIA function
• FLIP function

Fall 2003 BMI 226 / CS 426 Notes OO-23

A CIRCUIT CONTAINING A RESISTOR
R1

AFTER THE SERIES FUNCTION

Fall 2003 BMI 226 / CS 426 Notes OO-24

NETLIST WITH R1
C2 1 10

C3 1 11

R1 2 1 5ohms

C4 2 12

C5 2 13

NETLIST AFTER SERIES FUNCTION
C2 1 10

C3 1 11

R1 2 4 5ohms

Z6 4 3

R7 3 1 5ohms

C4 2 12

C5 2 13

Fall 2003 BMI 226 / CS 426 Notes OO-25

AFTER PARALLEL0 PARALLEL
DIVISION

AFTER PARALLEL1 PARALLEL

DIVISION

Fall 2003 BMI 226 / CS 426 Notes OO-26

AFTER STAR1 FUNCTION

AFTER TRIANGLE1 FUNCTION

Fall 2003 BMI 226 / CS 426 Notes OO-27

A CIRCUIT CONTAINING A RESISTOR
R1

AFTER VIA0 FUNCTION

Fall 2003 BMI 226 / CS 426 Notes OO-28

A CIRCUIT CONTAINING A DIODE D1

AFTER THE FLIP FUNCTION

Fall 2003 BMI 226 / CS 426 Notes OO-29

DEVELOPMENT-CONTROLLING
FUNCTIONS

• END function
• NOP (No Operation) function

Fall 2003 BMI 226 / CS 426 Notes OO-30

A CIRCUIT FROM A CIRCUIT-
CONSTRUCTING PROGRAM TREE

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8

7

9 1 0 1 1 1 2

1 3 1 4 1 5 1 7 1 81 6 1 9 2 0 2 1

2 2

2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

HIGHLIGHTED ARITHMETIC-
PERFORMING SUBTREES

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end))))

 (flip (nop (L -0.657
end))))

Fall 2003 BMI 226 / CS 426 Notes OO-31

FUNCTIONS AND TERMINALS FOR
ARITHMETIC-PERFORMING SUBTREES
Name Short Description Arity
ℜ Random constants 0
+ Addition 2
– Subtraction 2
ADF0, ADF1,... Automatically defined

function 0, etc.
Vario
us

ARG0, ARG1,... Dummy argument 0 (formal
parameter 0), etc.

0

Fall 2003 BMI 226 / CS 426 Notes OO-32

LOGARITHMIC INTERPRETATION OF
ARITHMETIC-PERFORMING SUBTREES

• The arithmetic-performing subtree produces floating-point
number X.
• X is used to produce an intermediate value U in the range
of –5 to +5.

X

U

5−5

5

100

−100

−5
• If the return value X is between –5.0 and +5.0, an
intermediate value U is set to the value X returned by the
subtree.
• If the return value X is less than –100 or greater than
+100, U is set to a saturating value of zero.
• If the return value X is between –100 and –5.0, U is
found from the straight line connecting the points (–100,
0) and (–5, -5).
• If the return value X is between +5.0 and +100, U is
found from the straight line connecting (5, 5) and (100, 0).

Fall 2003 BMI 226 / CS 426 Notes OO-33

POTENTIAL FUNCTIONS AND
TERMINALS FOR AUTOMATICALLY

DEFINED FUNCTIONS
Name Short Description Range of

Arity
ADF-i Automatically defined

function i
0 to
MAXadf

ARG-i Dummy variable i (formal
parameter) of automatically
defined function(s)

0 to
MAXarg

Fall 2003 BMI 226 / CS 426 Notes OO-34

DEVELOPMENT OF A CIRCUIT FROM A
CIRCUIT-CONSTRUCTING PROGRAM

TREE AND THE INITIAL CIRCUIT
(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8

7

9 1 0 1 1 1 2

1 3 1 4 1 5 1 7 1 81 6 1 9 2 0 2 1

2 2

2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

Fall 2003 BMI 226 / CS 426 Notes OO-35

INITIAL CIRCUIT WITH TWO WRITING
HEADS

C FLIP

LIST1

2 3

-

Fall 2003 BMI 226 / CS 426 Notes OO-36

RESULT OF THE C (2) FUNCTION

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

NOTE: Interpretation of arithmetic value

Fall 2003 BMI 226 / CS 426 Notes OO-37

RESULT OF THE FLIP (3) – IN 2nd
RESULT-PRODUCING BRANCH

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes OO-38

RESULT OF SERIES (5) FUNCTION

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes OO-39

RESULT OF THE FLIP (9) FUNCTION

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes OO-40

RESULT OF SERIES (10) FUNCTION

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes OO-41

RESULT OF L (11) FUNCTION

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes OO-42

RESULT OF L (12) FUNCTION

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes OO-43

RESULT OF L (17) FUNCTION

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes OO-44

RESULT OF L (20) (OVERWRITING)

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

Fall 2003 BMI 226 / CS 426 Notes OO-45

THE FULLY DEVELOPED EXAMPLE
CIRCUIT (BOG 0 - LPF)

Fall 2003 BMI 226 / CS 426 Notes OO-46

FITNESS MEASUREMENT PROCESS

Program Tree

+ IN OUT z0

Embryonic Circuit

Fully Designed Circuit (NetGraph)

Circuit Netlist (ascii)

Circuit Simulator (SPICE)

Circuit Behavior (Output)

Fitness

Fall 2003 BMI 226 / CS 426 Notes OO-47

SPICE CIRCUIT SIMULATOR
• Developed at Univ. of California - Berkeley
• 217,000 lines of C code
• Hundreds of thousands of users
• Available in many forms from various sources (e.g.,
PSPICE, HSPICE)
• Input required by SPICE
• Netlist
• SPICE Commands
• Models

• Types of analysis produced by SPICE
• Fourier
• AC Sweep
• DC Sweep
• Transient
• Operating point
• Sensitivity
• Distortion
• Noise
• Pole-Zero
• Transfer function

Fall 2003 BMI 226 / CS 426 Notes OO-48

SPICE NETLIST

Circuit Must Have a Title
V0 2 0 DC 0V
QD2 3 3 4 Q2P3906
R6 1 0 1.00e+00K
R7 2 1 1.00e+00K
QNC9 5 1 1 Q2P3906
QGE12 1 6 0 Q2N3904
QD13 1 1 4 Q2P3906
QNC15 5 3 7 Q2P3906
Q17 7 6 0 Q2N3904
VNEGQ999 5 0 DC -15V
.MODEL Q2P3906PNP Bf=180.7 Br=4.977
.MODEL Q2N3904NPN Bf=416.4 Br=0.7371
.DC V0 -0.25 0.251 0.025
.PLOT DC V(1)
.OPTIONS NOPAGE NOMOD
.END

Fall 2003 BMI 226 / CS 426 Notes OO-49

FITNESS EVALUATION OF A CIRCUIT

Fall 2003 BMI 226 / CS 426 Notes OO-50

CELLULAR ENCODING –
DEVELOPMENTAL GP (GRUAU 1992)

• GAs have been previously applied to chromosomes that
directly represent the identifiable parts of an already-
designed neural network.
• Cellular encoding applies GP to trees that specify how the
neural net is to be constructed.
• Used to evolve, simultaneously, the architecture of the
neural network AND all numerical weights, thresholds, and
biases.
• In cellular encoding, each individual (constructing tree) in
the population is a composition of network-constructing,
neuron-creating, and neuron-adjusting functions and
terminals.
• Each of these constructing trees in the population is one
step removed from the actual neural network. The
constructing tree is the genotype and the neural network
constructed in accordance with the constructing tree's
instructions is the phenotype.

Fall 2003 BMI 226 / CS 426 Notes OO-51

CELLULAR ENCODING – CONTINUED

• The fitness of an individual constructing tree in the
population is measured in terms of how well the neural
network that is constructed in accordance with the
instructions contained in the constructing tree performs the
desired task.
• GP breeds a population of program trees in the usual
manner using reproduction and crossover applied to the
constructing trees.
• Given a constructing tree, the construction process for a
neural network starts from an embryonic neural network
consisting of a single neuron. This embryonic neuron has a
threshold of 0; its input is connected to all of the network's
input nodes with connections with weights of +1; its output is
connected to all of the network's output nodes.

Fall 2003 BMI 226 / CS 426 Notes OO-52

CELLULAR ENCODING – CONTINUED

• The network-constructing functions in the constructing
tree then specify how to grow the embryonic neuron into the
full neural network. Certain network-constructing functions
permit a particular neuron to be subdivided in a parallel or
sequential manner. Other neuron-adjusting functions can
change the threshold of a neuron, the weight of a connection,
or the bias on a neuron.
• Reusable neural sub-networks can be implemented (like
ADFs).
• Recursions can be implemented to create neural networks
for high-order symmetry and high-order parity functions.
• Applied by Gruau and Whitley (1995) to 2-pole-balancing
problem
• Applied by Gruau to six-legged walking creature
• Applied by Brave (1995, 1996) to Finite Automata

Fall 2003 BMI 226 / CS 426 Notes OO-53

CELLULAR ENCODING – CONTINUED

Program Tree

+
IN

OUT
Embryonic Network

Fully Designed Network

Apply Neural Net to Fitness Cases

Fitness

Fall 2003 BMI 226 / CS 426 Notes OO-54

CELLULAR ENCODING
(DEVELOPMENTAL GENETIC

PROGRAMMING)

• Gruau, Frederic. 1992b. Cellular Encoding of Genetic
Neural Networks. Technical report 92-21. Laboratoire de
l'Informatique du Parallélisme. Ecole Normale Supérieure
de Lyon. May 1992.
• Also: Gruau 1992a 1992b 1993 1994a 1994b; Gruau and
Whitley 1993; Esparcia-Alcazar and Sharman 1997)
• GAs have been previously applied to chromosomes that
directly represent the identifiable parts of an already-
designed neural network.
• Cellular encoding applies GP to trees that specify how the
neural net is to be constructed.
• Used to evolve, simultaneously, the architecture of the
neural network AND all numerical weights, thresholds, and
biases.

Fall 2003 BMI 226 / CS 426 Notes OO-55

CELLULAR ENCODING
(DEVELOPMENTAL GENETIC

PROGRAMMING) – CONTINUED

• In cellular encoding, each individual (constructing tree) in
the population is a composition of network-constructing,
neuron-creating, and neuron-adjusting functions and
terminals.
• Each of these constructing trees in the population is one
step removed from the actual neural network. The
constructing tree is the genotype and the neural network
constructed in accordance with the constructing tree's
instructions is the phenotype.
• The fitness of an individual constructing tree in the
population is measured in terms of how well the neural
network that is constructed in accordance with the
instructions contained in the constructing tree performs the
desired task.

Fall 2003 BMI 226 / CS 426 Notes OO-56

CELLULAR ENCODING
(DEVELOPMENTAL GENETIC

PROGRAMMING) – CONTINUED

• GP breeds a population of program trees in the usual
manner using reproduction and crossover applied to the
constructing trees.
• Given a constructing tree, the construction process for a
neural network starts from an embryonic neural network
consisting of a single neuron. This embryonic neuron has a
threshold of 0; its input is connected to all of the network's
input nodes with connections with weights of +1; its output is
connected to all of the network's output nodes.

Fall 2003 BMI 226 / CS 426 Notes OO-57

CELLULAR ENCODING
(DEVELOPMENTAL GENETIC

PROGRAMMING) – CONTINUED

• The network-constructing functions in the constructing
tree then specify how to grow the embryonic neuron into the
full neural network. Certain network-constructing functions
permit a particular neuron to be subdivided in a parallel or
sequential manner. Other neuron-adjusting functions can
change the threshold of a neuron, the weight of a connection,
or the bias on a neuron.
• Reusable neural sub-networks can be implemented (like
ADFs).
• Recursions can be implemented to create neural networks.
Demonstrated by Gruau for high-order symmetry and high-
order parity functions.
• Applied by Gruau and Whitley (1995) to 2-pole-balancing
problem

Fall 2003 BMI 226 / CS 426 Notes OO-58

CELLULAR ENCODING
(DEVELOPMENTAL GENETIC

PROGRAMMING) – CONTINUED

• Applied by Gruau to six-legged walking creature
• Applied by Brave (1995, 1996) to Finite Automata

Fall 2003 BMI 226 / CS 426 Notes OO-59

CELLULAR ENCODING
(DEVELOPMENTAL GENETIC

PROGRAMMING) – CONTINUED

Program Tree

+
IN

OUT
Embryonic Network

Fully Designed Network

Apply Neural Net to Fitness Cases

Fitness

Fall 2003 BMI 226 / CS 426 Notes OO-60

AUTOMATIC PARALLELIZATION OF
SERIAL PROGRAMS USING GP

• Ryan, Conor. 1999. Automatic Re-engineering of Software
Using Genetic Programming. Amsterdam: Kluwer Academic
Publishers.
• Start with working serial computer program (embryo)
• GP program tree contains validity-preserving functions
that modify the current program. That is, the functions in
the program tree side-effect the current program.
• Execution of the complete GP program tree progressively
modifies the current program
• Fitness is based on execution time on the parallel computer
system

