
Fall 2003 BMI 226 / CS 426 Notes M- 1

EVOLVABLE HARDWARE

Fall 2003 BMI 226 / CS 426 Notes M- 2

EVOLVABLE HARDWARE

• Evolvable hardware for electrical circuits
• Digital
• Analog

• Reconfigurable antenna

Fall 2003 BMI 226 / CS 426 Notes M- 3

DIGITAL FIELD-PROGRAMMABLE
GATE ARRAYS (FPGAs)

• Massively parallel computational devices
• Originally seen as commercial alternative
to ASICs — especially for new designs (that
may have bugs)
• Commercially introduced by Xilinix in
early 1980s
• Some FPGAs are the anti-fuse type (i.e., are
irreversibly programmed by the user in the
field by the one-time application of a high
voltage)
• Other types can be reprogrammed, but
only a few hundred times. For example,
some FPGAs must be physically removed
from their operating environment and erased
with ultraviolet light before they can be
electrically reprogrammed.

Fall 2003 BMI 226 / CS 426 Notes M- 4

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS

(FPGAs)

• Typically there is a regular “sea” of some
basic function unit
• There are input and output units along the
edge of the chip
• There are interconnection resources —
often a mixture of short, medium, and long
lines connecting the basic function units to
one another and to the input and output units
• The basic function units are sometimes
look-up tables (LUTs) and sometimes
multiplexers (MUXs).
• The basic function units often contain flip-
flop(s) and other devices

Fall 2003 BMI 226 / CS 426 Notes M- 5

HIERARCHICAL VIEW OF XILINX
XC6216 FPGA

16x16 16x16 16x16

16x16 16x16 16x16

16x16 16x16 16x16

16x16 16x16 16x16

16x16

16x16

16x16

• The Xilinix XC6216 has 64×64 cells
• 4×4 arrangement of regions, with each
region containing a total of 16×16 = 256
individual cells.
• At the next lower level of the hierarchy,
there is a 4×4 arrangement of subregions,
with each subregion containing 4×4 = 16
individual cells.

Fall 2003 BMI 226 / CS 426 Notes M- 6

5×5 CORNER OF XILINX XC6216 FPGA

• Shows
• One 4×4 group of function units
• 10 of 256 input-output blocks (IOBs)

along the periphery of the chip
• Short line interconnections within the 4×4

group of function units
• Several intermediate and long lines for

interconnections

Fall 2003 BMI 226 / CS 426 Notes M- 7

EVOLVABLE HARDWARE

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS

(FPGAs)

FUNCTION UNIT FOR ONE CELL OF
THE XILINX XC6216 CHIP

Fall 2003 BMI 226 / CS 426 Notes M- 8

EVOLVABLE HARDWARE

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS

(FPGAs)

ONE CELL OF THE XILINX XC6216 CHIP

Fall 2003 BMI 226 / CS 426 Notes M- 9

DESIGN PROCESS FOR FPGAs

• First, the engineer conceives the design
(which often incorporates subcircuits from a
library).

• Second, the engineer's design of the desired
circuit is captured by the CAD tool in the
form of a schematic diagram, a set of Boolean
expressions, or a general-purpose high-level
description language such as VHDL (an
acronym for "VHSIC Hardware Description
Language" in which VHSIC is, in turn, an
acronym for "Very High Speed Integrated
Circuits").

• Third, a technology mapping converts the
description of the circuit into logical function
units of the particular type that are present
on the particular FPGA chip that is to be
used.

Fall 2003 BMI 226 / CS 426 Notes M- 10

DESIGN PROCESS FOR FPGAs —
CONTINUED

• Fourth, a (usually) time-consuming
placement step places the logical function
units into particular locations on the FPGA.

• Fifth, a routing between the logical function
units on the chip is created using the FPGA's
interconnection resources. This routing
process may be difficult because
interconnection resources are extremely
scarce for almost all commercially available
FPGAs.
• The placement and routing ends up

determining the speed to which the chip’s
programmable clock is set — typically
about 1/l0 of the maximum).

Fall 2003 BMI 226 / CS 426 Notes M- 11

DESIGN PROCESS FOR FPGAs —
CONTINUED

• Sixth, the hundreds of thousands of
configuration bits are created. The encoding
scheme for the configuration bits of almost
all commercially available FPGAs are kept
confidential by the FPGA manufacturers for
a variety of reasons (including deterrence of
reverse engineering of the prototype products
that account for much of the FPGA market).

• Seventh, the configuration bits are
downloaded into the FPGA's memory.

Fall 2003 BMI 226 / CS 426 Notes M- 12

USING FPGAS FOR GENETIC
ALGORITHM WORK

Since the fitness measurement task residing
in the inner loop of a run of the genetic
algorithm or genetic programming
constitutes the main component of the
computational burden of a run, the question
arises as to whether the massive parallellism
of FPGAs can be exploited to accelerate this
time-consuming task.

Fall 2003 BMI 226 / CS 426 Notes M- 13

PRACTICAL OBSTACLES TO USING
FPGAS FOR GENETIC ALGORITHM

WORK

• First, the encoding schemes for the
configuration bits of almost all commercially
available FPGAs are complex and kept
confidential by the FPGA manufacturers.

Fall 2003 BMI 226 / CS 426 Notes M- 14

PRACTICAL OBSTACLES —
CONTINUED

• Second, the tasks of technology mapping,
placement, routing, and creation of the
configuration bits consume so much time as
to preclude practical use of a FPGA in the
inner loop of the genetic algorithm or genetic
programming.
• Even if these four tasks could be reduced
from the usual hours/minutes to as little as 10
seconds for each individual in the population,
these four tasks would consume 106 seconds
(278 hours) in a run involving a population as
minuscule as 1,000 for as few as 100
generations.
• A run involving a population of 1,000,000
individuals would multiply the above
unacceptably long time (278 hours) by 1,000
(to 278,000 hours).

Fall 2003 BMI 226 / CS 426 Notes M- 15

PRACTICAL OBSTACLES —
CONTINUED

• Third, the 500 milliseconds typically
required for the task of downloading the
configuration bits to a FPGA is
insignificantly small for an engineer who has
spent hours, days, or months on a single
prototype design.
• However, this downloading time would

consume 14 hours for even a minuscule
population of 1,000 that was run for as
few as 100 generations.

• A run involving a population of 1,000,000
individuals would multiply this already
unacceptably long time by 1,000.

• What's worse – both of these
unacceptably long times (278 hours and
14 hours) are merely preliminary to the
time required by the FPGA for the actual
problem-specific fitness measurement.

Fall 2003 BMI 226 / CS 426 Notes M- 16

PRACTICAL OBSTACLES —
CONTINUED

• Thus, there is a discrepancy of numerous

orders of magnitude between the time
required for the technology mapping,
placement, routing, bit creation, and
downloading tasks and the time available
for these preliminaries in the inner loop
of a practical run of the genetic algorithm
or genetic programming.

• Thus, reconfigurability is not enough for
practical work on FPGAs with genetic
algorithms and genetic programming.
Rapid reconfigurability is what is needed
– where "rapid" means times ranging
between microseconds to milliseconds for
all five preliminary tasks (technology
mapping, placement, routing, bit
creation, and downloading).

Fall 2003 BMI 226 / CS 426 Notes M- 17

PRACTICAL OBSTACLES —
CONTINUED

• Fourth, the genetic algorithm starts with an
initial population of randomly created
individuals and uses probabilistic operations
to breed new candidate individuals. These
randomly created individuals do not conform
to the design principles that are employed by
humans.
• Most commercially available FPGAs are

vulnerable to damage caused by
combinations of configuration bits that
connect contending digital signals to the
same line. The process of verifying the
acceptability of genetically created
combinations of configuration bits is
complex and would be prohibitively slow
in the inner loop of GA/GP.
Invulnerability to damage is needed in
order to make FPGAs practical for the
inner loop of the genetic algorithm or
genetic programming.

Fall 2003 BMI 226 / CS 426 Notes M- 18

XILINX XC6216 FEATURES THAT
ADDRESS THESE PROBLEMS

• Invulnerability to damage because of
multiplexer (MUX) architecture
• The encoding scheme for the configuration
bits is public. This openness enables us to
write software for configuring the FPGA.
• The encoding scheme for the configuration
bits is simple in comparison to most other
FPGAs — thereby potentially significantly
accelerating the technology mapping,
placement, routing, and bit creation tasks.
This simplicity is critical because these tasks
are so time-consuming as to preclude
practical use of conventional FPGAs in the
inner loop of a genetic algorithm.

Fall 2003 BMI 226 / CS 426 Notes M- 19

XILINX XC6216 FEATURES THAT
ADDRESS THESE PROBLEMS —

CONTINUED

• The XC6216 streamlines the task of
downloading the configuration bits.
• The fact that the configuration bits reside

in the address space of the host processor
accelerates the downloading.

• This fact also makes it possible to change
single configuration bits without
downloading any others.

• Moreover, the downloading of the
configuration bits is faster for the Xilinx
XC6000 series than almost all other
FPGAs because the downloading is done
via a memory bus that handles 32 bits
simultaneously and that operates at
speeds far in excess of those of current
serial interfaces.

• The Xilinx XC6000 series has a wild card
feature that facilitates downloading of
regular bit patterns.

Fall 2003 BMI 226 / CS 426 Notes M- 20

NEGATIVE FEATURES OF FPGAS

• First, the clock rate (established by a
programmable oscillator) at which a FPGA
actually operates is often much slower
(typically around ten-fold) than that of
contemporary microprocessor chips.

• Second, the operations that can be
performed by the logical function units of a
FPGA are extremely primitive in comparison
to the 32-bit arithmetic operations that can
be performed by contemporary
microprocessor chips.

Fall 2003 BMI 226 / CS 426 Notes M- 21

TYPES OF PROBLEMS WHERE FPGAS
MAY BE USEFUL FOR GA/GP WORK

• One indicator of the possible suitability of a
problem for FPGAs is the prominence of bit-
level operations (or operations that can be
conveniently and efficiently recast as bit-level
operations).
• For example, for problems of image

processing, pattern recognition, and
manipulation of sequential data, a single
multiplexer or flip-flop can often perform
the same computation that a conventional
microprocessor will perform with a 32-
bit operation.

Fall 2003 BMI 226 / CS 426 Notes M- 22

TYPES OF PROBLEMS WHERE FPGAS
MAY BE USEFUL FOR GA/GP WORK —

CONTINUED

• A second indicator is the prominence of
parallelizable computations. Problems
containing a large number of identical
parallelizable computations (e.g., cellular
automata problems) are especially suitable
for FPGAs because they can potentially
maximize the benefits of the device's fine-
grained parallelism.
• Problems containing numerous disparate

parallelizable computations that must be
performed serially in a conventional
microprocessor are also suitable for
FPGAs. For these problems, the
disparate parallelizable computations are
housed in different areas of the FPGA.

Fall 2003 BMI 226 / CS 426 Notes M- 23

TYPES OF PROBLEMS WHERE FPGAS
MAY BE USEFUL FOR GA/GP WORK —

CONTINUED

• A third indicator of the possible suitability
of a problem for FPGAs is the prominence of
computations that can be pipelined.
• The stages of the pipeline many

correspond to different fitness cases or
different steps of a simulation or
computation.

• The benefit of pipelining rises
proportionately with the number of
stages in the pipeline that the FPGA can
process simultaneously.

Fall 2003 BMI 226 / CS 426 Notes M- 24

EXAMPLE PROBLEM

SORTING NETWORKS

• They sort N items
• They are composed of COMPARE-SWAP
operations
• They consume fixed-time
• They operate in a way that is oblivious to
the N items

Fall 2003 BMI 226 / CS 426 Notes M- 25

SORTING NETWORK – 4 ITEMS

EXAMPLE OF OPTIMAL NETWORK

A1

A2

A3

A4

Fall 2003 BMI 226 / CS 426 Notes M- 26

2 EXAMPLES OF NON–OPTIMAL
NETWORKS

A1

A2

A3

A4

A1

A2

A3

A4

Fall 2003 BMI 226 / CS 426 Notes M- 27

A NON-OPTIMAL SORTING NETWORK
FOR 7 ITEMS

Fall 2003 BMI 226 / CS 426 Notes M- 28

SORTING NETWORK – 7 ITEMS

Fall 2003 BMI 226 / CS 426 Notes M- 29

CO-EVOLUTION OF FITNESS CASES
(HILLIS)

NUMBER OF COMPARISON-SWAPS IN

VARIOUS SORTING NETWORKS FOR 16
ITEMS

Bose and Nelson (1962) 65
Hillis Simulated Evolution -
WITHOUT parsites (1990, 1992)

65

Batcher and Knuth (1964) 63
Shapiro (1969) 62
Hillis Simulated Evolution -
WITH parsites (1990, 1992)

61

Green 60

Fall 2003 BMI 226 / CS 426 Notes M- 30

THE COMPARE–EXCHANGE FUNCTION
FOR SORTING NETWORK PROBLEM

Two
Arguments

Two Results

Ai Aj Ri Rj
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Fall 2003 BMI 226 / CS 426 Notes M- 31

PROGRAM TREE FOR MINIMAL 4-
SORTER

PROG3

COMP-EXCH PROG2 COMP-EXCH

COMP-EXCHD0 D1

D2 D3

D1 D2PROG2

COMP-EXCH COMP-EXCH

D0 D2 D1 D3

Fall 2003 BMI 226 / CS 426 Notes M- 32

TABLEAU FOR MINIMAL SORTING
NETWORK PROBLEM FOR 7 ITEMS

USING FPGA
Objective: Synthesize the design of a minimal

sorting network for sorting seven items
using a field-programmable gate array
for the fitness evaluation task.

Program
architecture:

One result-producing branch.

Initial function
set for the
result-
producing
branches:

Frpb-initial = {COMPARE–EXCHANGE,
NOP, PROG2, PROG3, PROG4}.

Initial terminal
set for the
result-
producing
branches:

Trpb-initial = {D1, ..., D7} for sorting
seven items.

Fitness cases: The 7 ∞ 128 = 896 bits appearing in all
possible vectors of seven bits.

Raw fitness: Raw fitness is 1 plus the number of bits
(0 to 7 × 27 = 128) for which the sorted
bits are incorrectly plus 0.01 times the
number of COMPARE–EXCHANGE
functions that are actually executed.
that are actually executed.

Standardized
fitness:

Same as raw fitness.

Fall 2003 BMI 226 / CS 426 Notes M- 33

Hits: The number of COMPARE–EXCHANGE
functions that are actually executed.

Wrapper: Exchanges where i = j and exchanges
that are identical to the previous
exchange are ignored. Only the first
Cmax COMPARE–EXCHANGE functions
in a program are executed.

Parameters: M = 1,000 (for sorting seven items). G =
501. Srpb = 300. Nrpb = 1.

Result
designation:

Best-so-far pace-setting individual.

Success
predicate:

Fitness appears to have reaches 1.16.

Fall 2003 BMI 226 / CS 426 Notes M- 34

MINIMAL SORTING NETWORK
PROBLEM USING FPGA

32×64 PORTION OF THE XILINIX XC6216

CHIP FOR SORTING NETWORKS

H G F E
D

CBA

• There are 2 such portions in the full 64×64
• This figure does not show the ring of input-
output blocks on the periphery of the chip
that surround the 64×64 area of cells

Fall 2003 BMI 226 / CS 426 Notes M- 35

MINIMAL SORTING NETWORK
PROBLEM — CONTINUED

•The problem of synthesizing the design of
sorting networks was run on a host PC
Pentium type computer with a Virtual
Computer Corporation "HOT Works" PCI
board containing a Xilinx XC6216 field-
programmable gate array.
• This combination permits the field-

programmable gate array to be
advantageously used for the
computationally burdensome fitness
evaluation task while permitting the
general-purpose host computer to
perform all the other tasks.

Fall 2003 BMI 226 / CS 426 Notes M- 36

MINIMAL SORTING NETWORK
PROBLEM — CONTINUED

• The host PC begins the run by creating the
initial random population (with the XC6216
waiting).
• Then, for generation 0 (and each
succeeding generation), the PC creates the
necessary configuration bits to enable the
XC6216 to measure the fitness of the first
individual program in the population (with
the XC6216 waiting).
• Thereafter, the XC6216 measures the
fitness of one individual.
• Note that the PC can simultaneously

prepare the configuration bits for the
next individual in the population and poll
to see if the XC6216 is finished.

Fall 2003 BMI 226 / CS 426 Notes M- 37

MINIMAL SORTING NETWORK
PROBLEM — CONTINUED

• After the fitness of each individual in the
current generation of the population is
measured, the genetic operations
(reproduction, crossover, and mutation) are
performed (with the XC6216 waiting).
• Since the tasks of creating the initial

random population and of executing the
genetic operations can be performed very
rapidly in comparison with the fitness
evaluation task, it is acceptable to leave
the XC6216 waiting while these tasks are
being performed.

Fall 2003 BMI 226 / CS 426 Notes M- 38

MINIMAL SORTING NETWORK
PROBLEM — CONTINUED

• The clock rate at which a field-
programmable gate array can be run on a
problem is considerably slower than that of a
contemporary serial microprocessor that
might run a software version of the same
problem.
• Thus, in order to advantageously use the
Xilinx XC6216 field-programmable gate
array, it is necessary to find a mapping of the
fitness evaluation task onto the XC6216 that
exploits at least some of the massive
parallelism of the 4,096 cells of the XC6216.

Fall 2003 BMI 226 / CS 426 Notes M- 39

MAPPING THE MINIMAL SORTING
NETWORK PROBLEM TO AN FPGA

H G F E
D

CBA

• Broadly, fitness cases are created in area B,
sorted in areas C, D, and E, and evaluated in
F and G.

Fall 2003 BMI 226 / CS 426 Notes M- 40

MAPPING — CONTINUED

H G F E
D

CBA

• For a k-sorter (k ≤ 16), a 16-bit counter B
counts down from 2k-2 to 0 under control of
control logic A.
• The vector of k bits resident in counter B
on a given time step represents one fitness
case of the sorting network problem.
• The vector of bits from counter B is fed into
the first (leftmost) 16×1 vertical column of
cells of the large 16×40 area C.

Fall 2003 BMI 226 / CS 426 Notes M- 41

MAPPING — CONTINUED

H G F E
D

CBA

• Each 16×1 vertical column of cells in C (and
each cell in similar area E) corresponds to
one COMPARE–EXCHANGE operation of an
individual candidate sorting network.
• The two large areas, C and E, together
represent the individual candidate sorting
network.
• The vector of 16 bits produced by the 40th
(rightmost) sorting step of area C then
proceeds to area D.

Fall 2003 BMI 226 / CS 426 Notes M- 42

IMPLEMENTATION OF (COMPARE–
EXCHANGE 2 5)

Two
Arguments

Two Results

Ai Aj Ri Rj
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Fall 2003 BMI 226 / CS 426 Notes M- 43

MAPPING — CONTINUED

• For area C, each cell in a 16×1 vertical
column is configured in one of three main
ways.
• First, the logical function unit of exactly one
of the 16 cells is configured as a two-
argument Boolean AND function
(corresponding to result Ri).
• Second, the logical function unit of exactly
one other cell is configured as a two-
argument Boolean OR function
(corresponding to result Rj).
• Bits i and j become sorted into the correct

order by virtue of the fact that the single
AND cell in each 16×1 vertical column
always appears above the single OR cell.

• Third, the logical function units of 14 of the
16 cells are configured as "pass through"
cells that horizontally pass their input from
one vertical column to the next.

Fall 2003 BMI 226 / CS 426 Notes M- 44

MAPPING — CONTINUED

• Every cell in the Xilinix XC6216 has the
additional capacity of being able to convey
one signal in each direction as a "fly over"
signal that plays no role in the cell's own
computation.
• Thus, the two "intervening" "pass
through" cells (3 and 4) that lie between the
AND and OR cells (1 and 5) is configured so
that it conveys one signal vertically upwards
and one signal vertically downwards as "fly
over" signals.
• These "fly overs" of the two intervening
cells (3 and 4) enable cell 2's input to be
shared with cell 5 and cell 5's input to be
shared with cell 2. Specifically, the input
coming into cell 2 horizontally from the
previous vertical column (i.e., from the left in
the figure) is bifurcated so that it feeds both
the two-argument AND in cell 2 and the two-
argument OR in cell 5 (and similarly for the
input coming into cell 5).

Fall 2003 BMI 226 / CS 426 Notes M- 45

MAPPING — CONTINUED

• There are additional subtypes each of AND
and OR cells and "pass through" cells
because all the cells in area E differ in
chirality (handedness) from those in area C
in that they receive their input from their
right and deliver output to their left.
• Within each cell of areas C and E, the one-
bit output of the cell's logical function unit is
stored in a flip-flop.
• The contents of the 16 flip-flops in one
vertical column become the inputs to the next
vertical column on the next time step.
• The overall arrangement operates as an 87-
stage pipeline (the 80 stages of areas C and E,
the three stages of answer logic F, and four
stages of padding at both ends of C and E).

Fall 2003 BMI 226 / CS 426 Notes M- 46

MAPPING — CONTINUED

H G F E
D

CBA

• Area D is a U-turn area that channels the
vector of 16 bits from the rightmost column
of area C into the first (rightmost) column of
the large 16×40 area E.

Fall 2003 BMI 226 / CS 426 Notes M- 47

MAPPING — CONTINUED

• The final output from area E is checked by
answer logic F for whether the individual
candidate sorting network has correctly
rearranged the original incoming vector of
bits so that all the 0's are above all the 1's.
• Answer logic F determines whether the 16
bits coming from the 80th column of the
pipeline are properly sorted – that is, the bits
are of the form 0j116-j.
• The 16-bit accumulator G is incremented
by one if the bits are correctly sorted.
• Note that the 16 bits of accumulator G are

sufficient for tallying the number of
correctly sorted fitness cases because the
host computer starts counter B at 2k-2,
thereby skipping the uninteresting fitness
case consisting of all 1's (which cannot be
incorrectly sorted by any network).

• The final value of raw fitness is reported in
16-bit register H after all the 2k - 2 fitness
cases have been processed.

Fall 2003 BMI 226 / CS 426 Notes M- 48

MAPPING — CONTINUED

• A "past zero" flip-flop is set when counter
B counts down to 0.
• As B continues counting, it rolls over to 216
– 1 = 65,535 (for a 16-sorter) and continues
counting down. When counter B reaches 216
– 87 (with the "past zero" flip-flop being set),
control logic A stops further incrementation
of accumulator G.
• The raw fitness from G appears in
reporting register H and the "done bit" flip-
flop is set to 1.
• The host computer polls this "done bit" to
determine that the XC6216 has completed its
fitness evaluation task for the current
individual.

Fall 2003 BMI 226 / CS 426 Notes M- 49

MAPPING — CONTINUED

• The flip-flop toggle rate of the XC6216 chip
is 220 MHz (i.e., about the same as a
contemporary Pentium or PowerPC
microprocessor device at the time of this
work).
• The flip-flop toggle rate of the chip is an
upper bound on the speed at which a field-
programmable gate array can be run.
• In practice, the speed at which a FPGA is
actually run is governed by the longest
routing delay.
• It is common to see a 10-to-1 reduction in
clock rate in FPGAs because of routing
delays. Indeed, the current (unoptimized)
version of the FPGA design for the sorting
network problem is run at 20 MHz.

Fall 2003 BMI 226 / CS 426 Notes M- 50

6 WAYS THAT THIS DESIGN EXPLOITS
PARALLELISM

• First, the tasks performed by areas A, B, C,
D, E, F, G, and H are examples of performing
disparate tasks in parallel in physically
different areas of the FPGA.

• Second, the two separate 32×64 areas
operating in parallel on the chip are an
example (at a higher level) of performing
identical tasks in parallel in physically
different areas of the FPGA.
• Third, the XC6216 evaluates the 2k fitness
cases independently of the activity of the host
PC Pentium type computer (which
simultaneously can prepare the next
individual(s) for the XC6216). This is an
example (at the highest level) of performing
disparate tasks in parallel.

Fall 2003 BMI 226 / CS 426 Notes M- 51

6 WAYS THAT THIS DESIGN EXPLOITS
PARALLELISM — CONTINUED

• Fourth, the Boolean AND functions and OR
functions of each COMPARE–EXCHANGE
operation are performed in parallel (in each
of the vertical columns of areas C and E).
• This is an example of recasting a key

operation (i.e., the COMPARE–EXCHANGE
operation) as a bit-level operation so that
the FPGA can be advantageously used.

• It is also an example of performing two
disparate operations (AND and OR) in
parallel in physically different areas of
the FPGA (i.e., different locations in the
vertical columns of areas C and E).

Fall 2003 BMI 226 / CS 426 Notes M- 52

6 WAYS THAT THIS DESIGN EXPLOITS
PARALLELISM — CONTINUED

• Fifth, numerous operations are performed
in parallel inside control logic A, counter B,
answer logic F, accumulator G, and reporting
register H.
• The parallelization inside answer logic F

is especially advantageous because
numerous sequential steps are required
on a conventional serial microprocessor
to determine whether k bits are properly
sorted.

• Answer logic F is an example of a multi-
step task that is both successfully
parallelized and pipelined on the FPGA.

• Sixth, most importantly, the 87-step
pipeline (80 steps for areas C and E and 7
steps for answer logic F and accumulator G)
enables 87 fitness cases to be processed in
parallel in the pipeline.

Fall 2003 BMI 226 / CS 426 Notes M- 53

RESULTS — MINIMAL SORTING
NETWORK PROBLEM

• A 16-step 7-sorter was evolved that has two
fewer steps than the sorting network
described in O'Connor and Nelsons' patent
(1962) and that has the same number of steps
as the 7-sorter that was devised by Floyd and
Knuth subsequent to the patent and
described in Knuth 1973.

GENETICALLY EVOLVED 7-SORTER

Fall 2003 BMI 226 / CS 426 Notes M- 54

DEFAULT HIERARCHIES VERSUS
EVOLUTIONARY INCREMENTALISM

PERCENTAGE OF CORRECTLY

SORTED FITNESS CASES AFTER EACH
STEP FOR EVOLVED MINIMAL 9-

SORTER

1 3 5 7 9 11 13 15 17 19 21 23 25
0

20

40

60

80

100

Step Number

Pe
rc

en
ta

ge
 C

or
re

ct

HUMAN-DESIGNED 9-SORTER

1 3 5 7 9 11 13 15 17 19 21 23 25
0

20

40

60

80

100

Step Number

Pe
rc

en
ta

ge
 C

or
re

ct

