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EVOLVABLE HARDWARE 
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EVOLVABLE HARDWARE 
 

• Evolvable hardware for electrical circuits 
• Digital  
• Analog  

 
• Reconfigurable antenna 
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DIGITAL FIELD-PROGRAMMABLE 
GATE ARRAYS (FPGAs) 

 
• Massively parallel computational devices  
• Originally seen as commercial alternative 
to ASICs — especially for new designs (that 
may have bugs) 
• Commercially introduced by Xilinix in 
early 1980s 
• Some FPGAs are the anti-fuse type (i.e., are 
irreversibly programmed by the user in the 
field by the one-time application of a high 
voltage)  
• Other types can be reprogrammed, but 
only a few hundred times.  For example, 
some FPGAs must be physically removed 
from their operating environment and erased 
with ultraviolet light before they can be 
electrically reprogrammed.  
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RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS 

(FPGAs) 
 

• Typically there is a regular “sea” of some 
basic function unit 
• There are input and output units along the 
edge of the chip 
• There are interconnection resources — 
often a mixture of short, medium, and long 
lines connecting the basic function units to 
one another and to the input and output units 
• The basic function units are sometimes 
look-up tables (LUTs) and sometimes 
multiplexers (MUXs). 
• The basic function units often contain flip-
flop(s) and other devices 
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HIERARCHICAL VIEW OF XILINX 
XC6216 FPGA 
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• The Xilinix XC6216 has 64×64 cells 
• 4×4 arrangement of regions, with each 
region containing a total of 16×16 = 256 
individual cells.   
• At the next lower level of the hierarchy, 
there is a 4×4 arrangement of subregions, 
with each subregion containing 4×4 = 16 
individual cells. 
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5×5 CORNER OF XILINX XC6216 FPGA 
 

 
• Shows 
• One 4×4 group of function units 
• 10 of 256 input-output blocks (IOBs) 

along the periphery of the chip 
• Short line interconnections within the 4×4 

group of function units 
• Several intermediate and long lines for 

interconnections 
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EVOLVABLE HARDWARE 
 

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS 

(FPGAs) 
 

FUNCTION UNIT FOR ONE CELL OF 
THE XILINX XC6216 CHIP 
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EVOLVABLE HARDWARE 
 

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS 

(FPGAs) 
 

ONE CELL OF THE XILINX XC6216 CHIP 
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DESIGN PROCESS FOR FPGAs 
 

• First, the engineer conceives the design 
(which often incorporates subcircuits from a 
library).  
 
• Second, the engineer's design of the desired 
circuit is captured by the CAD tool in the 
form of a schematic diagram, a set of Boolean 
expressions, or a general-purpose high-level 
description language such as VHDL (an 
acronym for "VHSIC Hardware Description 
Language" in which VHSIC is, in turn, an 
acronym for "Very High Speed Integrated 
Circuits").   
 
• Third, a technology mapping converts the 
description of the circuit into logical function 
units of the particular type that are present 
on the particular FPGA chip that is to be 
used.  
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DESIGN PROCESS FOR FPGAs — 
CONTINUED 

 
• Fourth, a (usually) time-consuming 
placement step places the logical function 
units into particular locations on the FPGA.  
 
• Fifth, a routing between the logical function 
units on the chip is created using the FPGA's 
interconnection resources.  This routing 
process may be difficult because 
interconnection resources are extremely 
scarce for almost all commercially available 
FPGAs.  
• The placement and routing ends up 

determining the speed to which the chip’s 
programmable clock is set — typically 
about 1/l0 of the maximum).  
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DESIGN PROCESS FOR FPGAs — 
CONTINUED 

 
• Sixth, the hundreds of thousands of 
configuration bits are created.  The encoding 
scheme for the configuration bits of almost 
all commercially available FPGAs are kept 
confidential by the FPGA manufacturers for 
a variety of reasons (including deterrence of 
reverse engineering of the prototype products 
that account for much of the FPGA market).  
 
• Seventh, the configuration bits are 
downloaded into the FPGA's memory.  
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USING FPGAS FOR GENETIC 
ALGORITHM WORK 

 
Since the fitness measurement task residing 
in the inner loop of a run of the genetic 
algorithm or genetic programming 
constitutes the main component of the 
computational burden of a run, the question 
arises as to whether the massive parallellism 
of FPGAs can be exploited to accelerate this 
time-consuming task. 
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PRACTICAL OBSTACLES TO USING 
FPGAS FOR GENETIC ALGORITHM 

WORK 
 

• First, the encoding schemes for the 
configuration bits of almost all commercially 
available FPGAs are complex and kept 
confidential by the FPGA manufacturers.   
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PRACTICAL OBSTACLES — 
CONTINUED 

 
• Second, the tasks of technology mapping, 
placement, routing, and creation of the 
configuration bits consume so much time as 
to preclude practical use of a FPGA in the 
inner loop of the genetic algorithm or genetic 
programming.   
• Even if these four tasks could be reduced 
from the usual hours/minutes to as little as 10 
seconds for each individual in the population, 
these four tasks would consume 106 seconds 
(278 hours) in a run involving a population as 
minuscule as 1,000 for as few as 100 
generations.   
• A run involving a population of 1,000,000 
individuals would multiply the above 
unacceptably long time (278 hours) by 1,000 
(to 278,000 hours).  
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PRACTICAL OBSTACLES — 
CONTINUED 

 
• Third, the 500 milliseconds typically 
required for the task of downloading the 
configuration bits to a FPGA is 
insignificantly small for an engineer who has 
spent hours, days, or months on a single 
prototype design.   
• However, this downloading time would 

consume 14 hours for even a minuscule 
population of 1,000 that was run for as 
few as 100 generations.   

• A run involving a population of 1,000,000 
individuals would multiply this already 
unacceptably long time by 1,000.   

• What's worse – both of these 
unacceptably long times (278 hours and 
14 hours) are merely preliminary to the 
time required by the FPGA for the actual 
problem-specific fitness measurement.  
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PRACTICAL OBSTACLES — 
CONTINUED 

 
• Thus, there is a discrepancy of numerous 

orders of magnitude between the time 
required for the technology mapping, 
placement, routing, bit creation, and 
downloading tasks and the time available 
for these preliminaries in the inner loop 
of a practical run of the genetic algorithm 
or genetic programming.  

• Thus, reconfigurability is not enough for 
practical work on FPGAs with genetic 
algorithms and genetic programming.  
Rapid reconfigurability is what is needed 
– where "rapid" means times ranging 
between microseconds to milliseconds for 
all five preliminary tasks (technology 
mapping, placement, routing, bit 
creation, and downloading).   
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PRACTICAL OBSTACLES — 
CONTINUED 

 
• Fourth, the genetic algorithm starts with an 
initial population of randomly created 
individuals and uses probabilistic operations 
to breed new candidate individuals. These 
randomly created individuals do not conform 
to the design principles that are employed by 
humans.  
• Most commercially available FPGAs are 

vulnerable to damage caused by 
combinations of configuration bits that 
connect contending digital signals to the 
same line.  The process of verifying the 
acceptability of genetically created 
combinations of configuration bits is 
complex and would be prohibitively slow 
in the inner loop of GA/GP.  
Invulnerability to damage is needed in 
order to make FPGAs practical for the 
inner loop of the genetic algorithm or 
genetic programming.  
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XILINX XC6216 FEATURES THAT 
ADDRESS THESE PROBLEMS 

 
• Invulnerability to damage because of 
multiplexer (MUX) architecture 
• The encoding scheme for the configuration 
bits is public.  This openness enables us to 
write software for configuring the FPGA.   
• The encoding scheme for the configuration 
bits is simple in comparison to most other 
FPGAs — thereby potentially significantly 
accelerating the technology mapping, 
placement, routing, and bit creation tasks.  
This simplicity is critical because these tasks 
are so time-consuming as to preclude 
practical use of conventional FPGAs in the 
inner loop of a genetic algorithm. 
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XILINX XC6216 FEATURES THAT 
ADDRESS THESE PROBLEMS — 

CONTINUED 
 

• The XC6216 streamlines the task of 
downloading the configuration bits.   
• The fact that the configuration bits reside 

in the address space of the host processor 
accelerates the downloading.   

• This fact also makes it possible to change 
single configuration bits without 
downloading any others.   

• Moreover, the downloading of the 
configuration bits is faster for the Xilinx 
XC6000 series than almost all other 
FPGAs because the downloading is done 
via a memory bus that handles 32 bits 
simultaneously and that operates at 
speeds far in excess of those of current 
serial interfaces.   

• The Xilinx XC6000 series has a wild card 
feature that facilitates downloading of 
regular bit patterns.   
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NEGATIVE FEATURES OF FPGAS 
 

• First, the clock rate (established by a 
programmable oscillator) at which a FPGA 
actually operates is often much slower 
(typically around ten-fold) than that of 
contemporary microprocessor chips.  
 
• Second, the operations that can be 
performed by the logical function units of a 
FPGA are extremely primitive in comparison 
to the 32-bit arithmetic operations that can 
be performed by contemporary 
microprocessor chips. 
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TYPES OF PROBLEMS WHERE FPGAS 
MAY BE USEFUL FOR GA/GP WORK 

 
• One indicator of the possible suitability of a 
problem for FPGAs is the prominence of bit-
level operations (or operations that can be 
conveniently and efficiently recast as bit-level 
operations).   
• For example, for problems of image 

processing, pattern recognition, and 
manipulation of sequential data, a single 
multiplexer or flip-flop can often perform 
the same computation that a conventional 
microprocessor will perform with a 32-
bit operation.   
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TYPES OF PROBLEMS WHERE FPGAS 
MAY BE USEFUL FOR GA/GP WORK — 

CONTINUED 
 

• A second indicator is the prominence of 
parallelizable computations.  Problems 
containing a large number of identical 
parallelizable computations (e.g., cellular 
automata problems) are especially suitable 
for FPGAs because they can potentially 
maximize the benefits of the device's fine-
grained parallelism.   
• Problems containing numerous disparate 

parallelizable computations that must be 
performed serially in a conventional 
microprocessor are also suitable for 
FPGAs.  For these problems, the 
disparate parallelizable computations are 
housed in different areas of the FPGA.   
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TYPES OF PROBLEMS WHERE FPGAS 
MAY BE USEFUL FOR GA/GP WORK — 

CONTINUED 
 

• A third indicator of the possible suitability 
of a problem for FPGAs is the prominence of 
computations that can be pipelined.   
• The stages of the pipeline many 

correspond to different fitness cases or 
different steps of a simulation or 
computation.   

• The benefit of pipelining rises 
proportionately with the number of 
stages in the pipeline that the FPGA can 
process simultaneously. 
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EXAMPLE PROBLEM 
 

SORTING NETWORKS 
 

• They sort N items 
• They are composed of COMPARE-SWAP 
operations 
• They consume fixed-time 
• They operate in a way that is oblivious to 
the N items 
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SORTING NETWORK – 4 ITEMS 
 

EXAMPLE OF OPTIMAL NETWORK 
 

A1

A2

A3

A4
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2 EXAMPLES OF NON–OPTIMAL 
NETWORKS 

 
A1

A2

A3

A4
 

 

A1

A2

A3

A4  
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A NON-OPTIMAL SORTING NETWORK 
FOR 7 ITEMS 
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SORTING NETWORK – 7 ITEMS 
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CO-EVOLUTION OF FITNESS CASES 
(HILLIS) 

 
NUMBER OF COMPARISON-SWAPS IN 

VARIOUS SORTING NETWORKS FOR 16 
ITEMS 

 
Bose and Nelson (1962) 65 
Hillis Simulated Evolution -
WITHOUT parsites (1990, 1992) 

65 

Batcher and Knuth (1964) 63 
Shapiro (1969) 62 
Hillis Simulated Evolution -
WITH parsites (1990, 1992) 

61 

Green 60 
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THE COMPARE–EXCHANGE FUNCTION 
FOR SORTING NETWORK PROBLEM 

 
Two 
Arguments 

Two Results

Ai Aj Ri  Rj  
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 1 
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PROGRAM TREE FOR MINIMAL 4-
SORTER 

 
  

PROG3

COMP-EXCH PROG2 COMP-EXCH

COMP-EXCHD0 D1

D2 D3

D1 D2PROG2

COMP-EXCH COMP-EXCH

D0 D2 D1 D3  
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TABLEAU FOR MINIMAL SORTING 
NETWORK PROBLEM FOR 7 ITEMS 

USING FPGA 
Objective: Synthesize the design of a minimal 

sorting network for sorting seven items 
using a field-programmable gate array 
for the fitness evaluation task.   

Program 
architecture: 

One result-producing branch.  

Initial function 
set for the 
result-
producing 
branches: 

Frpb-initial = {COMPARE–EXCHANGE, 
NOP, PROG2, PROG3, PROG4}.  

Initial terminal 
set for the 
result-
producing 
branches: 

Trpb-initial = {D1, ..., D7} for sorting 
seven items.   

Fitness cases: The 7 ∞ 128 = 896 bits appearing in all 
possible vectors of seven bits.  

Raw fitness: Raw fitness is 1 plus the number of bits 
(0 to 7 × 27 = 128) for which the sorted 
bits are incorrectly plus 0.01 times the 
number of COMPARE–EXCHANGE
functions that are actually executed. 
that are actually executed.   

Standardized 
fitness: 

Same as raw fitness.   
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Hits: The number of COMPARE–EXCHANGE
functions that are actually executed.   

Wrapper: Exchanges where i = j and exchanges 
that are identical to the previous 
exchange are ignored.  Only the first 
Cmax COMPARE–EXCHANGE functions 
in a program are executed.   

Parameters: M = 1,000 (for sorting seven items).  G = 
501.  Srpb = 300.  Nrpb = 1.  

Result 
designation: 

Best-so-far pace-setting individual.   

Success 
predicate: 

Fitness appears to have reaches 1.16.  
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MINIMAL SORTING NETWORK 
PROBLEM USING FPGA 

 
32×64 PORTION OF THE XILINIX XC6216 

CHIP FOR SORTING NETWORKS 
 

H G F E
D

CBA

 
• There are 2 such portions in the full 64×64 
• This figure does not show the ring of input-
output blocks on the periphery of the chip 
that surround the 64×64 area of cells 
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MINIMAL SORTING NETWORK 
PROBLEM — CONTINUED 

 
•The problem of synthesizing the design of 
sorting networks was run on a host PC 
Pentium type computer with a Virtual 
Computer Corporation "HOT Works" PCI 
board containing a Xilinx XC6216 field-
programmable gate array.   
• This combination permits the field-

programmable gate array to be 
advantageously used for the 
computationally burdensome fitness 
evaluation task while permitting the 
general-purpose host computer to 
perform all the other tasks.   
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MINIMAL SORTING NETWORK 
PROBLEM — CONTINUED 

 
• The host PC begins the run by creating the 
initial random population (with the XC6216 
waiting).   
• Then, for generation 0 (and each 
succeeding generation), the PC creates the 
necessary configuration bits to enable the 
XC6216 to measure the fitness of the first 
individual program in the population (with 
the XC6216 waiting).   
• Thereafter, the XC6216 measures the 
fitness of one individual.   
• Note that the PC can simultaneously 

prepare the configuration bits for the 
next individual in the population and poll 
to see if the XC6216 is finished.   
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MINIMAL SORTING NETWORK 
PROBLEM — CONTINUED 

 
• After the fitness of each individual in the 
current generation of the population is 
measured, the genetic operations 
(reproduction, crossover, and mutation) are 
performed (with the XC6216 waiting).   
• Since the tasks of creating the initial 

random population and of executing the 
genetic operations can be performed very 
rapidly in comparison with the fitness 
evaluation task, it is acceptable to leave 
the XC6216 waiting while these tasks are 
being performed.   
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MINIMAL SORTING NETWORK 
PROBLEM — CONTINUED 

 
• The clock rate at which a field-
programmable gate array can be run on a 
problem is considerably slower than that of a 
contemporary serial microprocessor that 
might run a software version of the same 
problem.   
• Thus, in order to advantageously use the 
Xilinx XC6216 field-programmable gate 
array, it is necessary to find a mapping of the 
fitness evaluation task onto the XC6216 that 
exploits at least some of the massive 
parallelism of the 4,096 cells of the XC6216. 
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MAPPING THE MINIMAL SORTING 
NETWORK PROBLEM TO AN FPGA 

H G F E
D

CBA

 
• Broadly, fitness cases are created in area B, 
sorted in areas C, D, and E, and evaluated in 
F and G.   
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MAPPING — CONTINUED 

H G F E
D

CBA

 
• For a k-sorter (k ≤ 16), a 16-bit counter B 
counts down from 2k-2 to 0 under control of 
control logic A.   
• The vector of k bits resident in counter B 
on a given time step represents one fitness 
case of the sorting network problem.   
• The vector of bits from counter B is fed into 
the first (leftmost) 16×1 vertical column of 
cells of the large 16×40 area C.   
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MAPPING — CONTINUED 

H G F E
D

CBA

 
• Each 16×1 vertical column of cells in C (and 
each cell in similar area E) corresponds to 
one COMPARE–EXCHANGE operation of an 
individual candidate sorting network.   
• The two large areas, C and E, together 
represent the individual candidate sorting 
network.   
• The vector of 16 bits produced by the 40th 
(rightmost) sorting step of area C then 
proceeds to area D.   
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IMPLEMENTATION OF (COMPARE–
EXCHANGE 2 5) 

 
  
Two 
Arguments 

Two Results

Ai Aj Ri  Rj  
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 1 
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MAPPING — CONTINUED 
 

• For area C, each cell in a 16×1 vertical 
column is configured in one of three main 
ways.   
• First, the logical function unit of exactly one 
of the 16 cells is configured as a two-
argument Boolean AND function 
(corresponding to result Ri).   
• Second, the logical function unit of exactly 
one other cell is configured as a two-
argument Boolean OR function 
(corresponding to result Rj).   
• Bits i and j become sorted into the correct 

order by virtue of the fact that the single  
AND cell in each 16×1 vertical column 
always appears above the single OR cell.   

• Third, the logical function units of 14 of the 
16 cells are configured as "pass through" 
cells that horizontally pass their input from 
one vertical column to the next.   
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MAPPING — CONTINUED 
 

• Every cell in the Xilinix XC6216 has the 
additional capacity of being able to convey 
one signal in each direction as a "fly over" 
signal that plays no role in the cell's own 
computation.   
• Thus, the two "intervening" "pass 
through" cells (3 and 4) that lie between the 
AND and OR cells (1 and 5) is configured so 
that it conveys one signal vertically upwards 
and one signal vertically downwards as "fly 
over" signals.   
• These "fly overs" of the two intervening 
cells (3 and 4) enable cell 2's input to be 
shared with cell 5 and cell 5's input to be 
shared with cell 2.  Specifically, the input 
coming into cell 2 horizontally from the 
previous vertical column (i.e., from the left in 
the figure) is bifurcated so that it feeds both 
the two-argument AND in cell 2 and the two-
argument OR in cell 5 (and similarly for the 
input coming into cell 5). 
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MAPPING — CONTINUED 
 

• There are additional subtypes each of AND 
and OR cells and "pass through" cells 
because all the cells in area E differ in 
chirality (handedness) from those in area C 
in that they receive their input from their 
right and deliver output to their left.   
• Within each cell of areas C and E, the one-
bit output of the cell's logical function unit is 
stored in a flip-flop.   
• The contents of the 16 flip-flops in one 
vertical column become the inputs to the next 
vertical column on the next time step.   
• The overall arrangement operates as an 87-
stage pipeline (the 80 stages of areas C and E, 
the three stages of answer logic F, and four 
stages of padding at both ends of C and E).   
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MAPPING — CONTINUED 

H G F E
D

CBA

 
• Area D is a U-turn area that channels the 
vector of 16 bits from the rightmost column 
of area C into the first (rightmost) column of 
the large 16×40 area E.   
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MAPPING — CONTINUED 
 

• The final output from area E is checked by 
answer logic F for whether the individual 
candidate sorting network has correctly 
rearranged the original incoming vector of 
bits so that all the 0's are above all the 1's.   
• Answer logic F determines whether the 16 
bits coming from the 80th column of the 
pipeline are properly sorted – that is, the bits 
are of the form 0j116-j. 
• The 16-bit accumulator G is incremented 
by one if the bits are correctly sorted.   
• Note that the 16 bits of accumulator G are 

sufficient for tallying the number of 
correctly sorted fitness cases because the 
host computer starts counter B at 2k-2, 
thereby skipping the uninteresting fitness 
case consisting of all 1's (which cannot be 
incorrectly sorted by any network).  

• The final value of raw fitness is reported in 
16-bit register H after all the 2k  - 2 fitness 
cases have been processed.   
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MAPPING — CONTINUED 
 

• A "past zero" flip-flop is set when counter 
B counts down to 0. 
• As B continues counting, it rolls over to 216 
– 1 = 65,535 (for a 16-sorter) and continues 
counting down.  When counter B reaches 216 
– 87 (with the "past zero" flip-flop being set), 
control logic A stops further incrementation 
of accumulator G.   
• The raw fitness from G appears in 
reporting register H and the "done bit" flip-
flop is set to 1.   
• The host computer polls this "done bit" to 
determine that the XC6216 has completed its 
fitness evaluation task for the current 
individual.  
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MAPPING — CONTINUED 
 

• The flip-flop toggle rate of the XC6216 chip 
is 220 MHz (i.e., about the same as a 
contemporary Pentium or PowerPC 
microprocessor device at the time of this 
work).   
• The flip-flop toggle rate of the chip is an 
upper bound on the speed at which a field-
programmable gate array can be run.   
• In practice, the speed at which a FPGA is 
actually run is governed by the longest 
routing delay.   
• It is common to see a 10-to-1 reduction in 
clock rate in FPGAs because of routing 
delays.  Indeed, the current (unoptimized) 
version of the FPGA design for the sorting 
network problem is run at 20 MHz.   
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6 WAYS THAT THIS DESIGN EXPLOITS 
PARALLELISM 

 
• First, the tasks performed by areas A, B, C, 
D, E, F, G, and H are examples of performing 
disparate tasks in parallel in physically 
different areas of the FPGA.  
 
• Second, the two separate 32×64 areas 
operating in parallel on the chip are an 
example (at a higher level) of performing 
identical tasks in parallel in physically 
different areas of the FPGA.  
• Third, the XC6216 evaluates the 2k fitness 
cases independently of the activity of the host 
PC Pentium type computer (which 
simultaneously can prepare the next 
individual(s) for the XC6216).  This is an 
example (at the highest level) of performing 
disparate tasks in parallel.   
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6 WAYS THAT THIS DESIGN EXPLOITS 
PARALLELISM — CONTINUED 

 
• Fourth, the Boolean AND functions and OR 
functions of each COMPARE–EXCHANGE 
operation are performed in parallel (in each 
of the vertical columns of areas C and E).   
• This is an example of recasting a key 

operation (i.e., the COMPARE–EXCHANGE 
operation) as a bit-level operation so that 
the FPGA can be advantageously used.  

•  It is also an example of performing two 
disparate operations (AND and OR) in 
parallel in physically different areas of 
the FPGA (i.e., different locations in the 
vertical columns of areas C and E).   
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6 WAYS THAT THIS DESIGN EXPLOITS 
PARALLELISM — CONTINUED 

 
• Fifth, numerous operations are performed 
in parallel inside control logic A, counter B, 
answer logic F, accumulator G, and reporting 
register H.   
• The parallelization inside answer logic F 

is especially advantageous because 
numerous sequential steps are required 
on a conventional serial microprocessor 
to determine whether k bits are properly 
sorted.   

• Answer logic F is an example of a multi-
step task that is both successfully 
parallelized and pipelined on the FPGA.   

 
• Sixth, most importantly, the 87-step 
pipeline (80 steps for areas C and E and 7 
steps for answer logic F and accumulator G) 
enables 87 fitness cases to be processed in 
parallel in the pipeline.   
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RESULTS — MINIMAL SORTING 
NETWORK PROBLEM 

 
• A 16-step 7-sorter was evolved that has two 
fewer steps than the sorting network 
described in O'Connor and Nelsons' patent 
(1962) and that has the same number of steps 
as the 7-sorter that was devised by Floyd and 
Knuth subsequent to the patent and 
described in Knuth 1973.   
 

GENETICALLY EVOLVED 7-SORTER 
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DEFAULT HIERARCHIES VERSUS 
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HUMAN-DESIGNED 9-SORTER 

1 3 5 7 9 11 13 15 17 19 21 23 25
0

20

40

60

80

100

Step Number

Pe
rc

en
ta

ge
 C

or
re

ct

 
 


