
Fall 2003 BMI 226 / CS 426 Notes QQQ-1

GENETIC PROGRAMMING PROBLEM
SOLVER (GPPS)

Fall 2003 BMI 226 / CS 426 Notes QQQ-2

GENETIC PROGRAMMING PROBLEM
SOLVER (GPPS) VERSION 2.0

POTENTIAL
RECURSIONS

POTENTIAL
INTERNAL
STORAGE

INPUT(0)

INPUT(1)

INPUT(2)

INPUT(N1)

GPPS 2.0
PROGRAM

POTENTIAL
SUBROUTINES

POTENTIAL
LOOPS

INPUT
VECTOR

•
•
•

OUTPUT(0)

OUTPUT(1)

OUTPUT(2)

OUTPUT(N2)

OUTPUT
VECTOR

•
•
•

Fall 2003 BMI 226 / CS 426 Notes QQQ-3

GENETIC PROGRAMMING PROBLEM
SOLVER (GPPS)

• GPPS provides a general-purpose method
for automatically creating computer
programs that solve, or approximately solve,
problems.
• GPPS uses a standardized set of functions
and terminals and thereby eliminates the
need for the user to prespecify a function set
and terminal set for the problem.
• GPPS uses architecture-altering operations
to create, duplicate, and delete subroutines
and loops (and, in GPPS 2.0, recursions and
internal storage) during the run. Thus, GPPS
eliminates the need for the user to specify in
advance whether to employ subroutines,
loops, recursions, and internal storage in
solving a given problem. GPPS similarly
eliminates the need for the user to specify the
number of arguments possessed by each
subroutine.

Fall 2003 BMI 226 / CS 426 Notes QQQ-4

GPPS OBSERVATIONS

• The four arithmetic functions of addition,
subtraction, multiplication, and division and
a conditional branching operator (e.g., the
three-argument "If Greater Than Zero"
IFGTZ) constitute the core of the repertoire
of primitive machine code instructions for
virtually every general-purpose computer.
• Floating-point numbers can represent
Boolean-valued variables, integer-valued
variables, and floating-point variables
• Inputs to the to-be-evolved computer
programs can, without loss of generality and
without a significant sacrifice in convenience,
be received in an input vector.
• Outputs can be similarly handled by means
of an output vector.
• Problem-specific side-effecting functions
(e.g., robotic control functions) can be
handled, without loss of generality, by means
of an output interface that interprets the
numbers produced in the output vector.

Fall 2003 BMI 226 / CS 426 Notes QQQ-5

THREE PREPARATORY STEPS WITH
GENETIC PROGRAMMING PROBLEM

SOLVER (GPPS)

Fitness Measure
Parameters

Termination
Criterion
and Results
Designation

GPPS A Computer
Program

Fall 2003 BMI 226 / CS 426 Notes QQQ-6

THREE PREPARATORY STEPS —
CONTINUED

• When GPPS is used to solve a problem, the
program architecture, the function set, and
the terminal set do not change from problem
to problem.
• That is, the first and second preparatory steps of genetic

programming are eliminated.
• Thus, there are only three problem-specific
preparatory steps with GPPS, namely
determining the fitness measure, determining
the run's control parameters and
determining the termination criterion and
the method of result designation.
• GPPS makes it especially clear that the
determination of the fitness measure (the
third major preparatory step of genetic
programming) is, as a general rule, the most
important preparatory step in applying
genetic programming to a problem.

Fall 2003 BMI 226 / CS 426 Notes QQQ-7

GENETIC PROGRAMMING PROBLEM
SOLVER (GPPS 2.0)

Objective: Create, using the
Genetic
Programming
Problem Solver 2.0, a
computer program
that takes the values
of one independent
floating-point
variable x in the
input vector and
deposits a value into
the output vector that
closely matches the
quadratic polynomial
2.718x2 + 3.1416x.

Fall 2003 BMI 226 / CS 426 Notes QQQ-8

Program
architecture:

One result-producing
branch, RPB.
Automatically
defined loops,
automatically defined
recursions,
automatically defined
stores, and
automatically defined
function(s) and their
arguments will be
created during the
run by the
architecture-altering
operations.

Initial function set for
the result-producing
branches:

Frpb-initial = {+, –, *, %,
IFLTE, TOR, TAND,
TNOT, RLI, WLO,
FLOOR}.

Initial terminal set
for the result-
producing branches:

Trpb-initial = {←bigger-reals,
NINPUTS,
NOUTPUTS, INDEX}.

Fall 2003 BMI 226 / CS 426 Notes QQQ-9

Initial function set for
the automatically
defined functions:

No automatically
defined functions in
generation 0. Fadf-initial
= φ.

Initial terminal set
for the automatically
defined functions:

No automatically
defined functions in
generation 0. Tadf-initial
= φ.

Initial function set for
automatically defined
loops:

No automatically
defined loops in
generation 0. Fadl-initial
= φ.

Initial terminal set
for automatically
defined loops:

No automatically
defined loops in
generation 0. Tadl-initial
= φ.

Initial function set for
automatically defined
recursions:

No automatically
defined recursions in
generation 0. Fadr-initial
= φ.

Fall 2003 BMI 226 / CS 426 Notes QQQ-10

Initial terminal set
for automatically
defined recursions:

No automatically
defined recursions in
generation 0. Fadr-initial
= φ.

Potential function set
for the result-
producing branches:

Frpb-potential = {ADL0,
ADR0, SWB0, SWB1,
ADF0, ADF1, ADF2,
ADF3}.

Potential terminal set
for the result-
producing branches:

Trpb-potential = {LBB0,
SRB0, SRB1}.

Potential function set
for the automatically
defined functions:

Fadf-potential = {ADF0,
ADF1, ADF2, ADF3}.

Potential terminal set
for the automatically
defined functions:

Tadf-potential = {ARG0,
ARG1, NINPUTS,
NOUTPUTS, INDEX,
←bigger-reals}.

Potential function set
for automatically
defined loops:

Fadl-potential = {ADL0,
ADL1, ADL2, ADL3}

Fall 2003 BMI 226 / CS 426 Notes QQQ-11

Potential terminal set
for automatically
defined loops:

Tadl-potential =
{NINPUTS,
NOUTPUTS, INDEX,
←bigger-reals}.

Potential function set
for automatically
defined recursions:

Fadr-potential = {ADR0,
ADR0, ADR1, ADR2,
ADR3}.

Potential terminal set
for automatically
defined recursions:

Tadr-potential =
{NINPUTS,
NOUTPUTS, INDEX,
←bigger-reals}.

Fitness cases: 20 randomly chosen
values of the
independent variable
x between –1.0 and
+1.0.

Fall 2003 BMI 226 / CS 426 Notes QQQ-12

Raw fitness: Raw fitness is the
sum, over the 20
fitness cases, of the
absolute value of the
difference between
the value deposited in
the output vector and
the value of the
quadratic polynomial
2.718x2 + 3.1416x.

Standardized fitness: Same as raw fitness
Hits: The number of fitness

cases (0 to 20) for
which the value
deposited in the
output vector is
within 0.01 of the
value of the quadratic
polynomial 2.718x2 +
3.1416x.

Wrapper: None.

Fall 2003 BMI 226 / CS 426 Notes QQQ-13

Parameters: M = 120,000. G =
1,001. NINPUTS = 1.
NOUTPUTS = 1. Q =
2,000. D = 60. B =
2%. Nrpb = 1. Srpb =
500. Sadf = 100. Nmax-adf

= 4. Nmax-argument-adf = 2.
Nmin-adf-arg = 0. Nmax-adl

= 1. Sadl = 100. Nmax-

argument-adl = 0. Nmin-

argument-adl = 0. Nmax-adl-

executions = 3. Nmax-adr = 1.
Sadr = 100. Nmax-argument-

adr = 0. Nmin-argument-adr =
0. Nmax-adr-executions = 9.
Nmax-ads = 2.

Result designation: Best-so-far pace-
setting individual.

Success predicate: A program scores 20
hits.

Fall 2003 BMI 226 / CS 426 Notes QQQ-14

GPPS 1.0 OVERALL CAPABILITIES

• GPPS 1.0 is capable of automatically
creating computer programs with

• various numbers of inputs,
• various numbers of outputs,
• a main result-producing branch consisting of a to-be-

evolved sequence of steps,
• to-be-evolved numbers of automatically defined

functions (ADFs) each possessing
• a to-be-evolved number of arguments and
• a to-be-evolved sequence of steps, and

• to-be-evolved numbers of automatically defined loops
(ADLs) each consisting of
• a loop initialization branch consisting of a to-be-evolved

sequence of steps,
• a loop condition branch consisting of a to-be-evolved

sequence of steps,
• a loop body branch consisting of a to-be-evolved sequence of

steps, and
• a loop update branch consisting of a to-be-evolved sequence

of steps, and
• a fixed number of cells of indexed memory.

Fall 2003 BMI 226 / CS 426 Notes QQQ-15

GPPS 2.0 OVERALL CAPABILITIES

• GPPS 2.0 has the additional capabilities
of handling programs with

• an initially-unspecified number of automatically defined
recursions (with each ADR consisting of a recursion
condition branch, a recursion body branch, a recursion
update branch, and a recursion ground branch), and

• an initially-unspecified amount and type of internal
storage as implemented by automatically defined stores
(ADSs).

Fall 2003 BMI 226 / CS 426 Notes QQQ-16

FLOW OF INFORMATION IN A
COMPUTER PROGRAM USING GPPS 1.0

MEMORY(0)

MEMORY(1)

MEMORY(2)

MEMORY(N3)INPUT(0)

INPUT(1)

INPUT(2)

INPUT(N1)

GPPS 1.0
PROGRAM

POTENTIAL
SUBROUTINES

POTENTIAL
LOOPS

INPUT
VECTOR

INDEXED
MEMORY

•
•
•

•
•
•

OUTPUT(0)

OUTPUT(1)

OUTPUT(2)

OUTPUT(N2)

OUTPUT
VECTOR

•
•
•

Fall 2003 BMI 226 / CS 426 Notes QQQ-17

FUNCTIONS IN GPPS 1.0

• GPPS 1.0 contains the following functions:

• arithmetic functions
• addition (+),
• subtraction (–),
• multiplication (*),
• protected division %,

• conditional branching operators
• "If Greater Than Zero" IFGTZ,
• "If Equal Zero" IFEQZ,

• numerically valued logical functions
• conjunction TAND,
• disjunction TOR,
• negation TNOT,

• input reading function
• read linear input RLI,

• writing and reading functions for indexed memory
• write indexed memory WIM,
• read indexed memory RIM,

• output writing and reading functions
• write linear output WLO,
• read linear output RLO,

• conversion function
• FLOOR,

Fall 2003 BMI 226 / CS 426 Notes QQQ-18

TERMINALS IN GPPS 1.0

• GPPS 1.0 contains the following terminals:

• potential automatically defined functions such as
• ADF0,
• ADF1,
• ADF2,
• ADF3,

• potential terminals representing the dummy variables
(formal parameters) of the potential automatically
defined functions such as
• ARG0,
• ARG1,
• ARG2,
• ARG3,

• potential terminals representing the return value of the
loop body branch of each potential automatically
defined loop, such as
• LBB0
• LBB1

• terminals
• floating-point random constants,
• a constant specifying the number of inputs, NINPUTS
• a constant specifying the number of outputs, NOUTPUTS
• the loop index, INDEX

Fall 2003 BMI 226 / CS 426 Notes QQQ-19

EXPLANATION OF TERMINALS IN
GPPS 1.0

NINPUTS is an externally established,
invariant terminal that specifies the number
of input(s) for the problem in the input
vector.
NOUTPUTS is an externally established,
invariant terminal that specifies the number
of output(s) for the problem in the output
vector.
INDEX is the loop index for automatically
defined loops. It is externally initialized to
zero prior to execution of a program. It
remains zero if there are no automatically
defined loops in the program. It is externally
initialized to zero as the beginning of
execution of each automatically loop. It is
externally incremented by one after the end
of each execution of a loop update branch. If
it is referenced outside of an automatically
defined loop, it returns its leftover value.

Fall 2003 BMI 226 / CS 426 Notes QQQ-20

EXPLANATION OF FUNCTIONS IN GPPS
1.0

IFEQZ ("If Equal Zero") is the three-
argument conditional branching operator
that evaluates and returns its second
argument if its first argument (the condition)
is equal to zero, but otherwise evaluates and
returns its third argument

IFGTZ ("If Greater Than Zero") conditional
branching operator

TAND is the two-argument numerical-valued
conjunctive function returning a floating-
point +1.0 if both of its arguments are
positive, but returning –1.0 otherwise. TAND
is a short-circuiting (optimized) function in
the sense that its second argument will not be
evaluated (and any side-effecting function
contained therein will remain unexecuted) if
its first argument is negative.

Fall 2003 BMI 226 / CS 426 Notes QQQ-21

EXPLANATION OF FUNCTIONS IN GPPS
1.0 — CONTINUED

TOR is the two-argument numerical-valued
disjunctive function returning a floating-
point +1.0 if one or both of its arguments is
positive, but returning –1.0 otherwise. TOR is
a short-circuiting (optimized) function in the
sense that its second argument will not be
evaluated (and any side-effecting function
contained therein will remain unexecuted) if
its first argument is positive.

TNOT is the one-argument numerical-valued
negation function returning a floating-point
+1.0 if its argument is negative, but returning
–1.0 otherwise.
RLI ("Read Linear Input") is a one-
argument function that returns the value of
the element of the input vector specified by
the argument. The argument is adjusted by
flooring it and then taking it modulo the size
(NINPUTS) of the input vector.

Fall 2003 BMI 226 / CS 426 Notes QQQ-22

EXPLANATION OF FUNCTIONS IN GPPS
1.0 — CONTINUED

WIM ("Write Indexed Memory") is a two-
argument function that writes the value
returned by the first argument into the
location of indexed memory specified by the
second argument (adjusted in the same
manner as above based on the size of indexed
memory).

RIM ("Read Indexed Memory") is a one-
argument function that returns the value of
the element of the vector of indexed memory
specified by the argument (adjusted in the
same manner as above based on the size of
the indexed memory).

Fall 2003 BMI 226 / CS 426 Notes QQQ-23

EXPLANATION OF FUNCTIONS IN GPPS
1.0 — CONTINUED

WLO ("Write Linear Output") is a two-
argument function that writes the value
returned by the first argument into the
location in the output vector specified by the
second argument (adjusted in the same
manner as above based on the size,
NOUTPUTS, of the output vector).

RLO ("Read Linear Output") is a one-
argument function that reads the location in
the output vector specified by the argument
(adjusted in the same manner as for RLI).
This function enables the output vector to be
used as an additional area of indexed
memory.

FLOOR is the one-argument conversion
function that floors its argument by reducing
it to the next lower integer.

Fall 2003 BMI 226 / CS 426 Notes QQQ-24

INITIALIZATION

• All cells of indexed memory and all cells of
the output vector are initialized to zero for
each set of inputs (i.e., each fitness case).
• Note that if the fitness evaluation of a
program requires that it be run through a
series of time steps, the indexed memory nor
the output vector are not initialized before
each time step.
• For practical reasons, since the
initialization, updating, and terminating of
the iteration is controlled by branches that
will be subject to vicissitudes of the
evolutionary process, the total number of
iterations that can be performed by any one
iteration-performing branch is rationed.

