LIMITED VALIDITY STRUCTURES

TRAVELING SALESPERSON PROBLEM (TSP)

- Given a (symmetric) matrix of distances between N cities
- Salesperson is to visit each city once and only once
- Goal is to minimize total distance traveling

TRAVELING SALESPERSON PROBLEM (TSP)

• A tour can be represented by a permutation

• The items in the chromosome are always the same.

• Fitness does not depend on contents of the chromosome. Instead, it depends on the order of the items in the chromosome.

NAÏVE CROSSOVER IN TSP

PARENTS

Tour										
Α	9	8	4	5	6	7	1	3	1	10
B	8	7	1	2	3	10	9	5	4	6

OFFSPRING (ONE CROSSOVER POINT BETWEEN 3 AND 4)

Tour										
С	9	8	4	2	3	10	9	5	4	6
D	8	7	1	5	6	7	1	3	1	10

NAÏVE CROSSOVER IN TSP — CONTINUED

• Syntactic invalidity

POSSIBLE REMEDIES

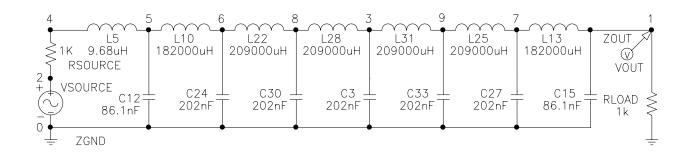
- Deletion
- Penalization
- Repair

PROBLEMS WITH TWO OF THESE POSSIBLE REMEDIES

• The number of permutations is very much smaller than the possible strings $L! < < L^L$

- Therefore, almost everything is deleted or penalized
 - Nothing left
 - When everything is penalized, then, in effect, nothing is penalized

BUILDING BLOCKS FOR TSP


• A sub-tour from a relatively fit individual is a candidate for a good building block

PARTIALLY MATCHED CROSSOVER (PMX) (GOLDBERG *GASOML*, CHAPTER 5)

DADENTC

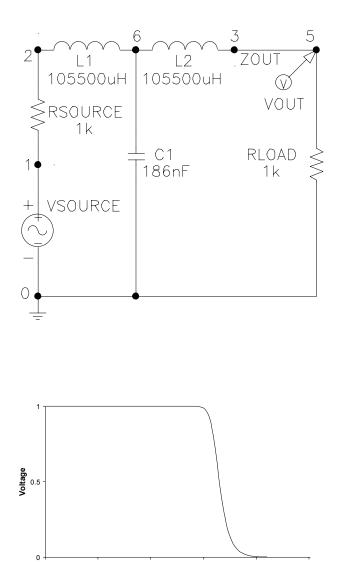
PARENIS										
Tour										
Α	9	8	4	5	6	7	1	3	2	10
B	8	7	1	2	3	10	9	5	4	6
STEP 1: PMX OFFSPRING (CROSSOVER										
POINTS BETWEEN 3-4 AND 6-7)										
Tour										
С				2	3	10				
D				5	6	7				
STE	CP 2	: PN	IX (DFF	SPR	ING	RI (RI	EPA	IR 1	ST
						NG)				
Tour										
С	9	8	4	2	3	10	1	<u>6</u>	5	<u>7</u>
D				5	6	7				
STE	STEP 2: PMX OFFSPRING (REPAIR 2ND									
OFFSPRING)										
Tour										
С	9	8	4	2	3	10	1	6	5	7
D	8	<u>10</u>	1	5	6	7	9	2	4	5

EVOLVED CAMPBELL FILTER CASCADE OF 6π SECTIONS U. S. PATENT 1,227,113

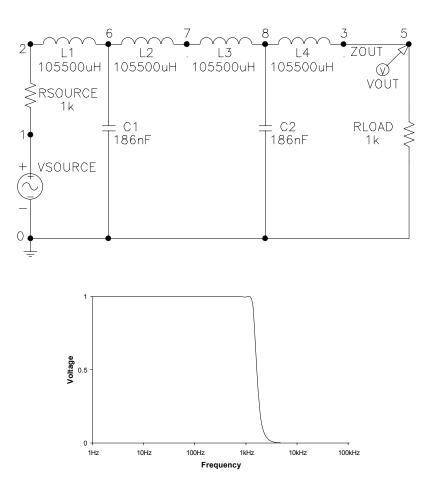
1Hz

10Hz

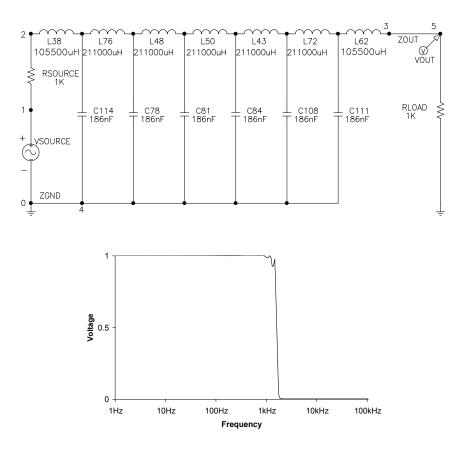
100Hz

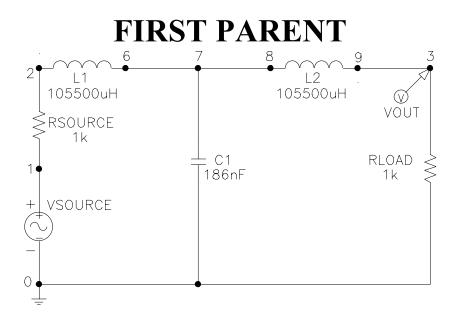

Frequency

10kHz


100kHz

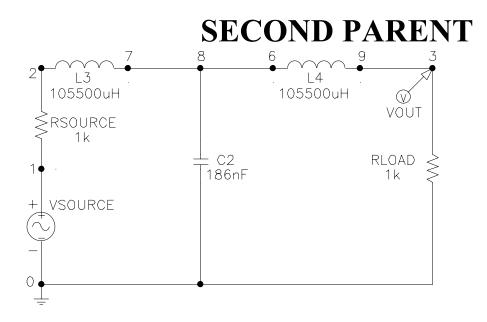
1kHz


CIRCUIT CONSISTING OF ONE T-SECTION


CIRCUIT CONSISTING OF TWO T-SECTIONS

CIRCUIT CONSISTING OF SIX T-SECTIONS

ILLUSTRATIVE NAÏVE CROSSOVER



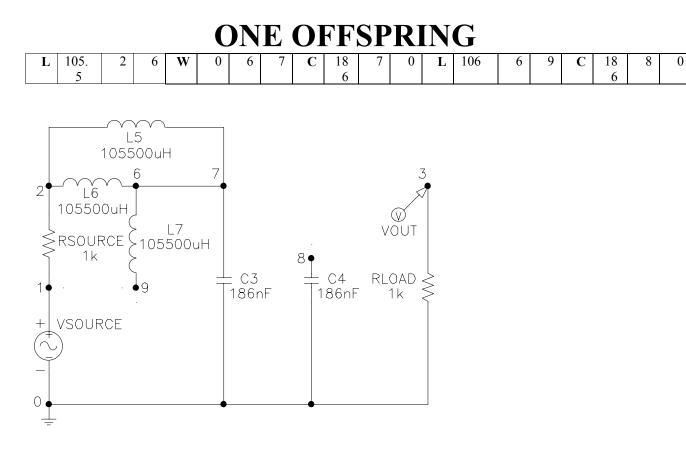
GA CHROMOSOME OF 1ST PARENT L 106 2 6 W 0 6 7 C 186 7 0 W 0 7 8 L 106 8 9 W

0

The chromosome of the 1^{st} parent codes for a single T-section that contains two inductors (L1 and L2) and one capacitor (C1).

ILLUSTRATIVE NAÏVE CROSSOVER

GA CHROMOSOME OF 2ND PARI W L \mathbf{L} W W С


The chromosome of the 2nd parent codes for a single T-section that contains two inductors (L3 and L4) and one capacitor (C2). This individual is functionally equivalent to the first parent.

ILLUSTRATIVE NAÏVE CROSSOVER

RESULT OF THE NAÏVE CROSSOVER (WITH THE CROSSOVER POINT AT THE RIGHT OF THE 12TH GENE)

106

L

ILLUSTRATIVE CROSSOVER

RESULT OF NAÏVE CROSSOVER — CONTINUED

• The offspring circuit contains three inductors and two capacitors.

• Components L6 and C3 originate from the 1st parent (where they were called L1 and C1, respectively).

• Components L5, L7, and C4 originate from the 2nd parent (where they were called L3, L4, and C2 respectively).

• After the crossover, one end (node 9) of the inductor L7 is left dangling.

• Similarly, one end (node 8) of the capacitor C4 is also dangling.

• Moreover, the offspring has no connection to the output probe point VOUT.

• Because the offspring is syntactically invalid, a mechanism must now be invoked to repair it.

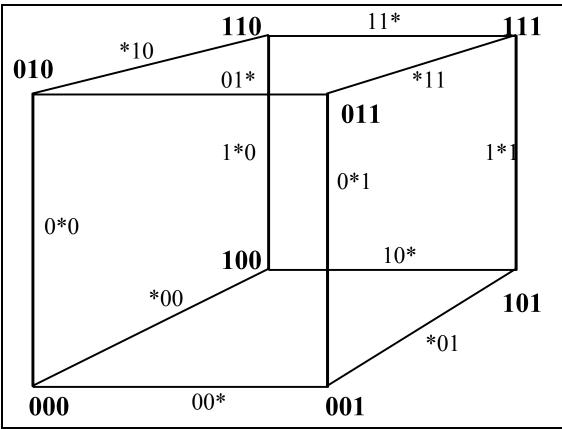
NAÏVE CROSSOVER IN TSP — CONTINUED

• Syntactic invalidity

POSSIBLE REMEDIES

- Deletion
- Penalization
- Repair

THE PROBLEM WITH REPAIR

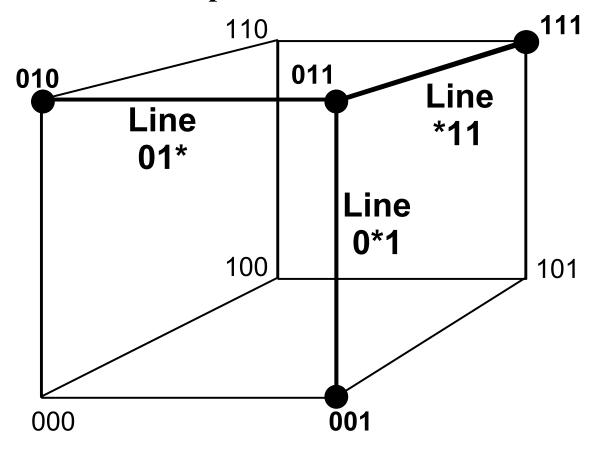

• Repair usually amounts to mutation

CROSSOVER v. MUTATION

COMPARISON OF CROSSOVER, MUTATION, AND BLIND RANDOM SEARCH

	random chosen	from a ly	Fragment comes from a randomly chosen				
	subtree	of a	subtree of a				
Blind random	random	parent	random	parent			
search	from	current	from	current			
	generation	on 0.	generati	on 0.			
Mutation	fitness-s	elected	random	parent			
	parent	from	from	-			
	current		generati	on 0.			
	generatio	on <i>i</i> .	-				
Crossover	fitness-s	elected	fitness-s	elected			
	parent	from	parent	from			
	current		current				
	generatio	on <i>i</i> .	generati	on <i>i</i> .			

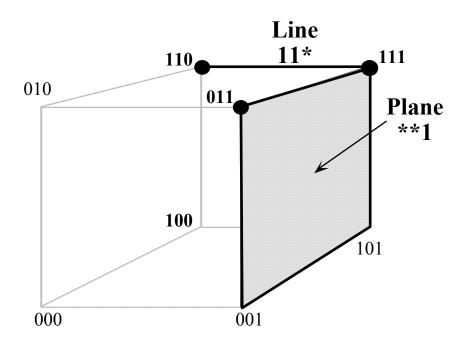
SEARCH SPACE FOR THE HAMBURGER RESTAURANT PROBLEM



GEOMETRIC INTERPRETATION OF THE MUTATION OPERATION

• The single parent is 011

• The 3 possible offspring for a single mutation are 001, 010, or 111


• The 3 possible offspring are Hamming distance 1 from the parent

GEOMETRIC INTERPRETATION OF THE CROSSOVER OPERATION

- The parents are 110 and 011
- The crossover point is between 2nd and 3rd positions in the chromosome

• Offspring 111 lies at intersection of schema 11* and **1

