MOLECULAR BIOLOGY

DEOXYRIBONUCLEIC ACID (DNA)

- adenine (A)
- cytosine (C)
- guanine (G)
- thymine (T)

TRANSCRIPTION (A --> U)

mRNA GGG UGC UCA TRANSLATION

protein G C S Gly Cys Ser glycine cysteine serine

One-letter	Amino acid	Three-letter	Genetic code
code	residue	code	
Α	Alanine	Ala	GC*
С	Cysteine	Cys	UGU, UGC
D	Aspartic Acid	Asp	GAU, GAC
E	Glutamic Acid	Glu	GAA, GAG
F	Phenylalanine	Phe	UUU, UUC
G	Glycine	Gly	GG*
Н	Histidine	His	CAU, CAC
1	Isoleucine	lle	AUU, AUC, AUA
Κ	Lysine	Lys	AAA, AAG
L	Leucine	Leu	UUA, UUG,CU*
Μ	Methionine	Met	AUG
Ν	Asparagine	Asn	AAU, AAC
Р	Proline	Pro	CC*
Q	Glutamine	GIn	CAA, CAG
R	Arginine	Arg	CG*, AGA, AGG
S	Serine	Ser	UC*, AGU, AGC
Т	Threonine	Thr	AC*
V	Valine	Val	GU*
W	Tryptophan	Trp	UGG
Y	Tyrosine	Tyr	UAU, UAC

THE GENETIC CODE

HEMOGLOBIN "S" (M25113 IN EMBL)

						_
ATGGTGCACC	TGACTCCTGT	GGAGAAGTCY	GCNGTTACTG	CNYTNTGGGG	50	
MetValHisL	euThrProVa	lGluLysSer	AlaValThrA	laXaaTrpGl		
CAAGGTGAAC	GTGGATGAAG	TTGGTGGTGA	GGCCCTGGGC	AGGCTGCTGG	100	
yLysValAsn	ValAspGluV	alGlyGlyGl	uAlaLeuGly	ArgLeuLeuV		
TGGTCTACCC	TTGGACCCAG	AGGTTCTTTG	AGTCCTTTGG	GGATCTGTCC	150	
alValTyrPr	oTrpThrGln	ArgPhePheG	luSerPheGl	yAspLeuSer		
ACTCCTGATG	CAGTTATGGG	CAACCCTAAG	GTGAAGGCTC	ATGGCAAGAA	200	
ThrProAspA	laValMetGl	yAsnProLys	ValLysAlaH	isGlyLysLy		
AGTGCTCGGT	GCCTTTAGTG	ATGGCCTGGC	TCACCTGGAC	AACCTCAAGG	250	
sValLeuGly	AlaPheSerA	spGlyLeuAl	aHisLeuAsp	AsnLeuLysG		
GCACCTTTGC	CACACTGAGT	GAGCTGCACT	GTGACAAGCT	GCACGTGGAT	300	
lyThrPheAl	aThrLeuSer	GluLeuHisC	ysAspLysLe	uHisValAsp		
CCTGAGAACT	TCAGGCTCCT	GGGCAACGTG	CTGGTCTGTG	TGCTGGCCCA	350	
ProGluAsnP	heArgLeuLe	uGlyAsnVal	LeuValCysV	alLeuAlaHi		
TCACTTTGGC	AAAGAATTCA	CCCCACCAGT	GCAGGCAGCC	TATCAGAAAG	400	
sHisPheGly	LysGluPheT	hrProProVa	lGlnAlaAla	TyrGlnLysV		
TGGTGGCTGG	TGTGGCTAAT	GCCCTGGCCC	ACAAGTATCA	CTAAGCTCGC	450	
alValAlaGl	yValAlaAsn	AlaLeuAlaH	isLysTyrHi	s		
TTTCTTGCTG	TCCAATTTCT	ATTAAAGGTT	CCTTTGTTCC	CTAAGTCCAA	500	
СТАСТАААСТ	GGGGGATATT	ATGAAGGGCC	TTGAGCATCT	GGATTCTGCC	550	
T <u>aataaa</u> aaa	CATTTATTTT	CATTGC			576	

HYPOTHETICAL PROTEIN WITH UNSPECIFIED SIDE CHAINS

HYPOTHETICAL PROTEIN SEGMENT CONSISTING OF GLY, CYS, AND SER

THE STRUCTURE AND FUNCTIONS OF LIVING ORGANISMS ARE PRIMARILY DETERMINED BY PROTEINS

• <u>Enzymatic catalysis</u>: Proteins catalyze chemical reactions in biological systems. Nearly all chemical reactions in biological systems are catalyzed by a specific macromolecule (i.e., an enzyme) and nearly all known enzymes are proteins.

• <u>Tranport and storage of ions and small</u> <u>molecules</u>: Examples: Myoglobin (stores oxygen), Hemoglobin (transports oxygen), transferrin (carries iron in blood), Ferritin (stores iron in liver).

• <u>Coordinated motion</u>: Examples: For muscle contraction, propulsion by flagella. Actin and myosin.

CONTINUATION - THE MANY ROLES OF PROTEINS

• <u>Mechanical Support</u>: Example: the fibrous protein collagen.

• <u>Immune protection</u>: Example: Antibodies recognize and combine in highly specific ways with foreign entities such as bacteria. Self versus non-self.

• <u>Generation and transmission of nerve</u> <u>impulses</u>: Example: Rhodopsin is the photoreceptor protein in retinal rod cells and is used to generate nerve impulses.

• <u>Control of growth and differentiation</u>: For controlled sequential expression of genetic information. Examples: repressor proteins that silence portions of DNA, growth factor proteins, nerve growth factor proteins.

• <u>Hormonal proteins</u>: Transmit chemical instructions.

PRIMARY STRUCTURE OF BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI)

RPDFCLEPPY	TGPCKARIIR	YFYNAKAGLC	QTFVYGGCRA	KRNNFKSAED	50
CMRTCGGA					58

GENERAL STRUCTURE OF BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI)

FEATURES OF THE SECONDARY STRUCTURE AND DISULFIDE BONDS OF BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI)

Feature	Type of feature	Start	End
H1	α-helix	Pro 2	Glu 7
H2	α-helix	Ser 47	Gly 56
S1	β-strand	Leu 29	Tyr 35
S2	β-strand	lle 18	Asn 24
SS1	Disulfide bond	Cys 5	Cys 55
SS2	Disulfide bond	Cys 14	Cys 38
SS3	Disulfide bond	Cys 30	Cys 51

PORTION OF THE TERTIARY STRUCTURE OF BPTI FROM THE PROTEIN DATA BANK (PDB)

Amino acid residue	Residue number	Atom number	Atom	x	y	Z
Cys	5	74	Ν	32.757	10.236	-6.732
Cys	5	75	α-C	31.286	10.029	-6.794
Cys	5	76	С	30.864	8.652	-7.254
Cys	5	77	0	29.690	8.279	-7.116
Cys	5	78	β-C	30.794	11.065	-7.789
Cys	5	79	γ-S	31.075	12.797	-7.325
Cys	5	80	D-H	33.206	10.888	-7.363
Cys	5	81	α-Η	30.964	10.266	-5.800
Cys	5	82	β1-H	31.501	10.869	-8.603
Cys	5	83	β2-Н	29.793	10.892	-8.171
Cys	55	883	Ν	28.364	15.919	-6.980
Cys	55	884	α-C	28.337	14.779	-7.839
Cys	55	885	С	27.258	14.663	-8.899
Cys	55	886	0	27.484	13.831	-9.733
Cys	55	887	β-C	28.265	13.520	-5.893
Cys	55	888	γ- S	29.664	13.161	-5.893
Cys	55	889	D-H	27.614	15.974	-6.323
Cys	55	890	α-H	29.253	14.775	-8.417
Cys	55	891	β 1- Η	27.388	13.519	-6.349
Cys	55	892	β 2- Η	28.059	12.720	-7.695

ALIGNMENT OF HUMAN MYOGLOBIN AND 2 CHAINS OF HEMOGLOBIN

MYG_HUMAN	G-LSDGEWQL VLNVWGKVEA DIPGHGQEVL IRLFKGHPET LEKFDKFKHL	49
HBA_HUMAN	v-lspadktn vkaawgkvga hageygaeal ermflsfeit ktyfehf-dl	48
HBB_HUMAN	vhltpeeksa vtalwgkv nvdevggeal grllvvypwt prffesfgdl	48
Consensus	V-LSP.EK V.A.WGKV.AE.G.EAL .RLFP.TF. F.DL	50
MYG_HUMAN	KSEDEMKASE DI KKHGATVL TAL GGILKKK GHHEAEIKPL AQSHATKHKI	99
HBA_HUMAN	shgsa qykghgkkya daltnavahv ddmpnalsal sdlhahklrv	93
HBB_HUMAN	stpdavmgnp kvkahgkkvl gafsdglahl dnlkgtfatl selhedklhv	98
Consensus	SDGSVK.HGKKVL .ALLAH. DL S.LHA.KL.V	100
MYG_HUMAN	PVKYLEFISE CIIQVLQSKH PGDFGADAQG AMNKALELFR KDMASNYKEL	149
HBA_HUMAN	DPVNFKLLSH CLLVTLAAHL PAEFTPAVHA SLDKFLASVS TVLTSKYR	141
HBB_HUMAN	DPENFRLLGN VLVCVLAHHF GKEFTPPVQA AYQKVVAGVA NALAHKYH	146
Consensus	DP.NF.LLS. CLVLA.H. P.EFTP.VQA AK.LA.VLASKY	150
MYC HIMAN	CEOC	152
HRA HIMAN	Gr QG	141
HBR HIMAN		146
		1 I V
Consensus		154

GA'S AND PROTEIN FOLDING WITH SELF-AVOIDING GRAPHS

• Unger, Ron and Moult, John. A genetic algorithm for 3D protein folding simulations. *Proceedings of the Fifth International Conference on Genetic Algorithms*. Ed. Stephanie Forrest. San Mateo, CA: Morgan Kaufmann Publishers, 1993. 581– 588.

• Unger, Ron and Moult, John. "Genetic algorithms for protein folding simulations." *Journal of Molecular Biology* 231 (1993): 75–81.

HYPOTHETICAL PROTEIN WITH UNSPECIFIED SIDE CHAINS

HYPOTHETICAL PROTEIN CONSISTING OF GLY, CYS, AND SER

• Individuals in the population are selfavoiding point-labeled (2 colors) graphs embedded in a 2-dimensional checkerboard lattice

• That is, individual in the population are the actual structures that the GA operates on

• Phenotype (the individual) = Genotype

- 2 psuedo-amino-acids:
 - Black (Hydrophobic)
 - White (Other)

• Fitness is decremented by -1 for each adjacent BLACK point along backbone that is not diagonally adjacent or adjacent along backbone

- The 2 termini can contribute up to -3
- Ordinary points can contribute up to -2

• There are 83,779,155 20-long self-avoiding graphs of the sequence. Fitness ranges from 0 to -9 (best) and there are only 4 9-scoring best conformations out of 83,779,155

• Mutation operation

- Pick point
- Keep trying random rotations that create self-avoiding graph as a result

• Crossover

- Pick point
- Keep trying random rotations that create self-avoiding graph as a result

- Population size M = 200
- Initialization: All alike (flat = 180 degrees)
- Accept result of mutation with Metropolis algorithm
- Accept result of crossover with Metropolis algorithm
- Global minimum of -9 found in all 5 runs after 8,800,000; 7,400,000; 3,200,000; 470,000; and 292,000 fitness evaluations. That is, between 9:1 and 284:1.

SUN'S USE OF GA FOR PROTEIN TERTIARY STRUCTURE PREDICTION USING REDUCED REPRESENTATION MODEL

• Sun, Shaojian. Reduced representation model of protein structure prediction: Statistical potential and genetic algorithms. *Protein Science*. Volume 2. Pages 762-785. 1993.

• Reduced representation

- Only backbone atoms
- Ideal fixed bond lengths and angles
- Single virtual united-atom as side chain

SUN – CONTINUED

• Goal is to find the ϕ (phi) and ψ (psi) angles (2 per amino acid residue)

• Results in folded versions of

- 26-residue melittin RMS error of 1.6 Å
- 36-residue avian pancreatic polypeptide inhibitor (APPI)
- 18-residue apamin (with 2 disulfide bonds) from bee venom

SUN – CONTINUED

- Fitness was a statistical interatomic potential function of his own design
 - Based on 110 proteins (with less than 50% identity)
 - melittin and avian pancreatic polypeptide inhibitor (APPI) were in the 110

• Fitness - 2 components

- Local (NOTE: possible computer savings)
- Non-local

• Apparently floating-point gene values. 2 x 26 = 52 for melittin. Values are integers from -180 to +180. Equivalent to 52 x 9 = 468 bits.

• Population size M = 90

SUN – CONTINUED

Objective:	Given the primary sequence of a protein, find the three-
	dimensional conformation of
	the protein in the form of the
	2N dihedral ϕ and ψ angles
	using a reduced
	representation model of
	protein.
Representatio	• structure = fixed length
n scheme:	string (for a particular
	protein)
	• alphabet size $K = 2$ (in
	binary equivalent)
	• string length $L = 468$ (in
	binary equivalent)
	• mapping.
Fitness cases:	Only one (for a given protein).
Raw fitness:	Statistical fitness function.

Parameters:	• Population size <i>M</i> = 90.
	 Maximum number of
	generations to be $runG = ???$.
	• Special (???) mutation
	operation at ??? frequency
Termination	??? (Reports convergence of
criteria:	all 90!!!).
Result	??? (Reports convergence of
designation:	all 90!!!).

SUN – CONTINUED

• Reproduction NOT based on fitness. Creates 2M individuals.

• Crossover NOT based on fitness. Creates M individuals.

• Special mutation operation (sometimes changing several values at once). Creates 2M individuals.

• Selects the best M out of 5M new individuals.

SUN – CONTINUED

• On Gen 0, initial energy of 90 individual ranges from 1,440.08 to 15,746.34 units (with mean of 2912.00 and standard deviation of 1,960.75)

• On generation X, mean of the 90 individuals "converged" to 1,290.50 (with a standard deviation of 0.31 — i.e., one part in about 4,000).

LE GRAND'S USE OF GA FOR MINIZATION OF "AMBER" POTENTIAL ENERGY FUNCTION

• Le Grand, Scott Michael. *The Application of the genetic algorithm to protein tertiary structure prediction*. PhD Dissertation. Department of Biochemistry, The Pennsylvania State University, 1993.

• Goal is to find the two ϕ (phi) and ψ (psi) angles and 0-8 additional angles χ_1 , ..., χ_8 per amino acid residue.

LE GRAND – CONTINUED

• Tried on 3 polypeptides

- AGAGAGAGA (9 amino acid residues)
- Polyalanine A9 (Alanine 9 times)
- {Met}-enkephalin

• Tried on 4 proteins

- 46-residue crambin
- 26-residue melittin
- 36-residue avian pancreatic polypeptide inhibitor
- 106-residue cytochrome b562 (4 helix bundle)

"AMBER" POTENTIAL ENERGY FUNCTION

Approximates N-body problem with 2-body terms by measuring all N² pairwise interactions of N atoms"

(1) <u>VAN DER WAALS</u> attraction and repulsion inversely depends on 12th and 6th powers of distance between each pair of nonbonded atoms. (Important at short range).

(2) <u>COULOMB</u> electrostatic attraction and repulsion inversely depends on 1st power of distance between each pair of non-bonded atoms. (Important at longer ranges).

"AMBER" POTENTIAL ENERGY FUNCTION – CONTINUED

(3) force (depending on square of deviation) to hold each <u>2-ATOM BOND DISTANCE</u> at a constant equilibrium value. (Ignored by alternative functions that assume that bond length is fixed, except for disulfide bonds). (4) force (depending on square of deviation) to hold each <u>3-ATOM BOND ANGLE</u> at a constant equilibrium value. (Ignored by alternative functions that assume that 3-atom bond angle is fixed, except for disulfide bond angles).

(5) force is Fourier series with frequency and phase dependent on <u>4-ATOM DIHEDRAL</u> <u>ANGLE</u>.

LE GRAND – CONTINUED

• Fitness is AMBER plus additional van der Waals and Coulomb contributions for 1st and 4th atoms of 4-dihedrally-bound atoms AND additional van der Waals contribution for polar hydrogen and non-bonded oxygen and nitrogen.

• 3 kinds of crossover (single-point, twopoint, and uniform)

- steady-state GA. (Tends to be greedy).
- High (and changing) mutation rate.

• Child only replaces parent if it is better than most similar existing individual in the population (a variation of phenotypic sharing)

• Population size M = 200.

LE GRAND – CONTINUED

Objective:	Given the primary sequence of a protein, find the three- dimensional conformation of the protein in the form of the two ϕ (phi) and ψ (psi) angles and 0-8 additional angles χ_1 , , χ_8 per each amino acid residue.
Representati on scheme:	 structure = fixed length string (for a particular protein) alphabet of real-valued genes
Fitness cases:	Only one (for a given protein).
Raw fitness:	AMBER-like potential energy function.

Parameters:	 Population size M = 200. Maximum number of generations to be run specified as 100,000 (200 x 500) iterations
	 Variation of phenotypic sharing.
Termination criteria:	100,000 (200 x 500) iterations OR variance of population is less than 0.1 OR average distance between 200 randomly selected pairs is less than 0.1.
Result designation:	