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PARALLELIZATION 
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COMPUTER TIME IS THE MOTHER'S 
MILK OF MACHINE INTELLIGENCE 
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THE GOOD GNU’S 
 

• The speed of commercially available single 
computers continues to double approximately 
every 18 months in accordance with Moore’s 
law. This exponential growth in 
computational power (equivalent to two 
orders of magnitude per decade) is currently 
expected to continue (and possibly accelerate) 
over the next decade. Petaflop computing is 
expected to be available in the next few years.  
• GA and GP are especially amenable to 
efficient (and almost effortless) 
parallelization.  
• Parallel cluster computer systems can be 
assembled with relative ease in the Beowulf-
style using “Commodity Off-The-Shelf” 
(COTS) hardware 
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THE FITNESS EVALUATION IS THE 
MOST TIME-CONSUMING PART OF 

THE VAST MAJORITY OF PROBLEMS 
OF INTEREST 

 
• Simulations are typically very time-
consuming 
• Exception: operations research problems  

• Simulations often must be made for 
numerous possible initial conditions 
• Multiple independent scenarios must be 
run if the simulation is probabilistic 
• Time-consuming transition calculations 
• Time-consuming primitive functions 
• Large numbers of data points  
• Many “corners” must be separately tested 
to account for variations arising from 
• temperature  
• manufacturing of physical components 
• reference voltage  
• loads 
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THE FITNESS EVALUATION IS THE 
MOST TIME-CONSUMING PART OF 

THE VAST MAJORITY OF PROBLEMS 
OF INTEREST 

 
MORE GOOD GNU’S FOR GA AND GP 

 
• Fitness evaluation of one individual in the 
population is not coupled to that of other 
individuals in the population. 
• In fact, the evaluation of each separate 
fitness case is usually not coupled to the 
evaluation of other fitness cases 
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PARALLELIZATION OF GA OR GP 
 
• Multiple independent runs  
• Farm-out of individuals 
• Farm-Out of fitness cases 
• Semi-isolated subpopulations (also called 
“demes,” “island model of parallelization,” 
or “distributed GA”) 
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MULTIPLE INDEPENDENT RUNS 
 

• Adequacy of population size of run 
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FARM-OUT OF INDIVIDUALS 
 

....Evaluate Fitness of  
Individual 2

Evaluate Fitness of  
Individual M

Gen := 0

Create Initial 
Random Population

No

Yes Designate 
Result EndTermination 

Criterion Satisfied?

Yes

No
Gen := Gen + 1 i = M?

i := 0

Perform Genetic 
Operations

Evaluate Fitness of  
Individual 1

 
• Works especially well for a moderate 
number of processors 
• Need to match hardware and problem 
• Timing issues arising from unequal 
evaluation times 
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FARM-OUT OF FITNESS CASES 
 

Initialize for 
Fitness Case 1

Initialize for 
Fitness Case N

Initialize for 
Fitness Case 2

Evaluate 
Fitness Case 1

Evaluate 
Fitness Case 2

Evaluate 
Fitness Case N

...

...

Accumulate 
Fitness Values

 
• Works especially well for a moderate 
number of processors 
• Need to match hardware and problem 
• Timing issues arising from unequal 
evaluation times 
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SEMI-ISOLATED SUBPOPULATIONS 
 

Population 1 Population 2

Population 3 Population 4

 
• No synchronization of generations 
• Occasional small amounts of migration (low 
bandwidth communication) 
• Emigrants emigrate (fitness-based 
selection) 
• Immigrants arrive, are temporarily 
buffered, and are assimilated (unfitness-
based selection used to make space) 
• Fault-tolerant 
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PARALLELIZATION BY 
SUBPOPULATIONS ("ISLAND" OR 

"DEME" MODEL OR "DISTRIBUTED 
GENETIC ALGORITHM") 
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LINES OF COMMUNICATION 
 
• between the Boss process and the 
processing nodes of the network  
• between (toroidally) adjacent processing 
nodes of the network 
• between the Host and the Boss process  
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THE FOUR INTER-COMMUNICATING 
PROCESSES OF EACH OF THE 

PROCESSING NODES 
 

THE FOUR INTER-COMMUNICATING 
PROCESSES OF EACH OF THE 

PROCESSING NODES 
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10-NODE ALPHA BEOWULF SYSTEM 
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BILL OF MATERIALS FOR 10-NODE 
ALPHA BEOWULF SYSTEM (1999) 

Qua
ntity 

Item Unit 
price 

Total 

10 533 MHz Alpha 164LX 
processor and motherboard 

$1,200 $12,000

10 64 MB of SDRAM $115 $1,150 
10 Linux operating systems for 

nodes 
$0 $0 

10 100/10 BT DE500-BA Ethernet 
network interface card (NIC) 

$100 $1,000 

10 Axxion midtower case with 230 
W power supply and fans.  

$104 $1,040 

1 SMC EZ Hub 12-port Ethernet 
hub  

$330 $330 

1 APC Back-UPS Pro 1400 1,400 
VA uninterruptable power 
supply (UPS) 

$470 $470 

11 Ethernet cables $4 $44 
1 Shelving for 8 nodes $100 $100 
1 Host computer with 64 MB of 

RAM, 100 BT Ethernet card, 4 
GB disk, video display screen, 
keyboard 

$2,000 $2,000 

1 Linux operating system for host $0 $0 
  TOTAL $18,134
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PRINCIPLES OF PARALLEL GENETIC 
PROGRAMMING 

 
• Like Hormel, Get Everything Out of the 
Pig, Including the Oink 
 
• Keep on Trucking 
 
• It Takes a Licking and Keeps on Ticking 
 
• The Whole is Greater than the Sum of the 
Parts 
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LIKE HORMEL, GET EVERYTHING OUT 
OF THE PIG, INCLUDING THE OINK 

 
One important guiding principle in 
implementing parallel genetic programming 
is to fully utilize the computing power of each 
processor at all times. Thus, each processor 
immediately (and separately) begins its main 
generational loop as soon as it finishes it 
initial random creation of individuals at the 
beginning of the run. There is no 
synchronization of the generations between 
processors. Similarly, each processor moves 
on to its next generation, regardless of the 
status of any other processor. Less than 1% 
of the processors cycles are consumed by the 
low-bandwidth migration and 
communications tasks of the parallel genetic 
programming algorithm.  
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KEEP ON TRUCKING 
A related principle is that processors should 
not wait on the achievement of any other 
event in the system.  
 
• For example, if immigrants are not received from all 
(four) of a processor's neighbors at the time when the 
processor is ready to assimilate immigrants, the processor 
does not wait for the missing immigrants. It simply 
assimilates whatever immigrants are in its buffer and 
moves on. The deficiency in immigrants is made up from 
randomly chosen copies of the processor's just-departed 
emigrants.  
• Similarly, if a processor receives two groups of 
immigrants from a particular neighboring processor 
before it is ready to assimilate immigrants, the most recent 
group of incoming immigrants overwrite the previously 
received immigrants from the particular neighboring 
processor (on the principle that later immigrants from a 
particular subpopulation are, in general, better than 
earlier immigrants from that same subpopulation).  
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IT TAKES A LICKING AND KEEPS ON 
TICKING 

 
The entire system is designed to be highly 
fault-tolerant. No processor is considered 
essential to the run. No acknowledgment is 
required for any message, including the 
messages containing emigrants from one 
processor to another. If a processor fails (e.g., 
for software or the occasional hardware 
reason), the boatload of emigrants exported 
to that processor are simply lost at sea and 
the run continues.  
• We once rearranged the Ethernet cables between the 
1,000 processor during a "live" run. The connecting and 
disconnecting of wires during the run did not affect the 
successful completion of the run. Moreover, power cords 
to many processors were disconnected and reconnected 
during the run during this rewiring.  
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IT TAKES A LICKING AND KEEPS ON 
TICKING  CONTINUED 

 
"NOAH" RUNS 

 
By providing a new start-up message to all 
nodes, the newly reconnected nodes came to 
life and proceeded to participate in the run. 
After just one generation, they received 
emigrants from their neighbors (representing 
the better individuals of neighboring 
processors). Darwinian selection immediately 
favored the newly arrived immigrants (who 
were, in general, superior to the random 
individuals on the recently restarted 
processors) and the genetic operations were 
consequently performed primarily on the 
newly arrived immigrants.  
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THE WHOLE IS GREATER THAN THE 
SUM OF THE PARTS 

 
Many researchers have noted that, for many 
problems, genetic programming solves a 
problem faster with semi-isolated 
subpopulations and occasional migration 
than would otherwise be the case. That is, the 
performance of genetic programming is often 
enhanced because of the use the island model 
of parallelization. Thus, it is often said that 
parallel genetic programming often delivers a 
super linear speed-up in terms of the 
computational effort required to yield a 
solution (recognizing that, of course, the 
benefit of semi-isolated subpopulations can 
be simulated on a serial computer). In any 
event, the island model of parallelization is an 
effective way to make runs of genetic 
programming.  
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PERFORMANCE CURVES FOR THE 
PROBLEM OF SYMBOLIC REGRESSION 

OF THE BOOLEAN EVEN-5-PARITY 
FUNCTION WITH D = 64 DEMES OF SIZE 
Q = 500 AND A MIGRATION RATE OF B = 

8% 
 

P(
M
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Approach Migration 

rate B 
Computationa
l effort E 

Best x* P(M,x) 
for best 
x* 

Panmictic 0% 6,912,000 1,888,000 83% 
Parallel 12% 7,072,500 2,357,500 83% 
Parallel 8% 3,822,500    764,500 63% 
Parallel 4% 8,174,000 2,435,999 71% 
Parallel 1% 6,594,000 2,198,000 89% 
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5 PARALLEL COMPUTER SYSTEMS 
 

• TI LISP machine — 4 nodes (used only for 
making multiple independent runs) 
• Transtech — 64 nodes with transputer for 
both processing and communication 
• Parsytec — 64 nodes with transputer for 
communication and 80 MHz PowerPC 
microprocessor for processing and Parsytec 
microkernel 
• Compaq (formerly DEC) — 70 nodes with 
Alpha 533 MHz processors for processing 
and 100 BT Ethernet NIC for communication 
and Linux operating system 
• 1,000-Pentium machine — 1,000 nodes with 
350 MHz Pentium II processors for 
processing and 100 megabit Ethernet NIC for 
communication and Linux operating system 
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5 PARALLEL COMPUTER SYSTEMS 
 

• Serial Texas Instruments LISP machine 
• 25 MHz = 2.5 x 107 Hz 
• 2.5 x 107 Hz × 86,400 sec./day = 2.16  x 1012 cycles/ day 
• 0.00216 peta-cycles per day (and 463 days = 1015 cycles) 

• 64-node Transtech parallel machine 
• INMOS T-805 30-MHz transputer ~ Intel 486/33 
• Transputer assembly code operates on one-byte 
• Effective equivalent for 64 nodes = 2 x 1013 cycles / day 
• 9.25-to-1 speed-up over LISP machine 
• 0.02 peta-cycles per day (and 50 days = 1015 cycles) 

• 64-node 80 MHz Parsytec parallel machine 
• Power PC 601 processors at 8 x 107 Hertz 
• 8 x 107 Hz × 64 nodes = 5.12 x 109 Hz 
• 22-to-1 speed-up over Transtech (based on cycles) 
• 5.12 x 109 Hz/sec. × 86,400 sec./day =4.4 x 1014 Hz/ day 
• 0.44 peta-cycles per day (and 2.3 days = 1015 cycles) 
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5 PARALLEL COMPUTER SYSTEMS 
 

• 70-node 533 MHz Alpha parallel machine 
• 5.33 × 108 Hz × 70 nodes = 3.73 × 1010 Hz = 0.03 tera-Hz 
• 7.2-to-1 speed-up over Parsytec (based on cycles) 
• 3.73 × 1010 Hz × 86,400 = 3.2 x 1015 cycles/ day 
• So, 3.2 peta-cycles per day 
• NOTE: The Alpha processor typically yields about 3 
instructions per cycle on a GP application, so this system 
operates at about 0.09 tera-ops 
 

• 1,000-node 350 MHz Pentium II machine 
• 3.5 x 108 Hz × 1,000 = 3.5 x 1011 Hz 
• 3.5 x 1011 Hz × 86,400 sec./day = 3.02 x 1016 cycles/ day 
• 9.4-to-1 speed-up over Alpha machine (based on cycles) 
• 13,633-to-1 speed-up over LISP (based on cycles) 
• So, 30 peta-cycles per day 
• NOTE: The Pentium II processor typically yields about 
3 instructions per cycle on a GP application, so this system 
operates at about 1.05 tera-ops 
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PETA-OPS 
 

• Human brain operates at 1012 neurons 
operating at 103 per second = 1015 ops per 
second 
• 1015 ops = 1 peta-op = 1 bs (brain second) 
 

PETAFLOPS COMPUTING INITIATIVE 
• 1015 operations PER SECOND by 2007 
• Commercial petaflops by 2010 
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COMPUTER TIME FOR RUNS 
PRODUCING HUMAN-COMPETITIVE 

RESULTS FROM GP-3 BOOK (1999) 
Claimed instance Population 

M 
Generation 
i 

M*(i+1) Minutes Peta-cycles 

Transmembrane segment 
identification problem with 
architecture-altering operations for 
automatically defined functions 

128,000 28 3,712,000 312 0.096 

Transmembrane segment 
identification problem with 
iteration creation 

64,000 42 2,752,000 163 0.050 

Minimal sorting network (GPPS 
1.0) 

640,000 31 20,480,000 145 0.045 

Minimal sorting network (GPPS 
2.0) 

300,000 33 10,200,000 30 0.009 

Recognizable ladder topology of 
Butterworth or Chebychev lowpass 
and highpass filters  

320,000 49 16,000,000 138 0.042 

Recognizable "bridged T" topology 
for filters 

320,000 53 17,280,000 481 0.148 

Recognizable elliptic topology for 
filters  

640,000 31 20,480,000 899 0.276 

Crossover filter 640,000 137 88,320,000 2,673 0.821 
Crossover filter 640,000 158 101,760,000 5,436 1.670 
Recognizable voltage gain stage and 
a Darlington emitter-follower 
section 

640,000 45 29,440,000 1,056 0.324 

60 dB amplifier 640,000 109 70,400,000 3,139 0.964 
96 dB amplifier 640,000 86 55,680,000 4,786 1.470 
Squaring computational circuit 640,000 37 24,320,000 2,504 0.769 
Cubing computational circuit 640,000 74 48,000,000 2,545 0.782 
Square root computational circuit 640,000 71 46,080,000 2,817 0.865 
Cube root computational circuit 640,000 60 39,040,000 2,179 0.669 
Logarithmic computational circuit 640,000 55 35,840,000 4,309 1.324 
Gaussian computational circuit 
(MOSFET) 

640,000 36 23,680,000 1,190 0.366 

Real-time robot controller 640,000 31 20,480,000 22,103 6.790 
Temperature-sensing circuit 640,000 25 16,640,000 14,204 4.363 
Voltage reference circuit 640,000 80 51,840,000 37,147 11.412 
Cellular automata rule for the 
majority classification problem 

51,200 17 921,600 4,231 1.300 

Motifs for the D–E–A-D box family 
of proteins 

256,000 42 11,008,000 3,297 1.013 
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COMPUTER TIME FOR 41 RUNS IN GP-4 
BOOK (2003) 

Problem 
Total 
population  

Generation 
i M*(i +1) 

Total 
hours 

Nodes  
Hertz Petacycles 

Two-lag 
plant 66,000 32 2,178,000 44.5 

66 
3.5 × 1010 5.6 

Three-lag 
plant 66,000 31 2,112,000 32 

66 
3.5 × 1010 4.0 

Three-lag 
plant with 
five second 
delay 500,000 126 63,500,000 65 

1,000 

3.5 × 1011 81.9 
Non-minimal 
phase plant 66,000 38 2,574,000 46 

66 
3.5 × 1010 5.8 

RC circuit 
with gain 
greater than 
two 660,000 927 612,480,000 24 

66 

3.5 × 1010 3.0 
Philbrick 
circuit 660,000 39 26,400,000 7 

66 
3.5 × 1010 0.9 

NAND circuit 132,000 17 2,376,000 10 66 3.5 × 1010 1.3 
Arithmetic 
logic unit 
(ALU) 
circuit 1,320,000 33 44,880,000 170 

66 

3.5 × 1010 21.4 
Square root 
computation
al circuit 10,000,000 66 670,000,000 52 

1,000 

3.5 × 1011 65.5 
Lowpass 
filter without 
an explicit 
test fixture 1,000,000 211 212,000,000 9 

1,000 

3.5 × 1011 11.3 
Lowpass 
filter with 
layout 1,120,000 138 155,680,000 28 

56 

2.9 × 1010 3.0 
Amplifier 
with layout 10,000,000 101 

1,020,000,0
00 17 

1,000 
3.5 × 1011 21.4 

Yagi-Uda 
antenna 500,000 90 45,500,000 22 

1,000 
3.5 × 1011 27.7 

Metabolic 
pathway for 
phospholipid 
cycle 100,000 225 22,600,000 17 

1,000 

3.5 × 1011 21.4 
Metabolic 
pathway for 
ketone 
bodies 100,000 97 9,800,000 20 

1,000 

3.5 × 1011 25.2 
Three-lag 
plant with 
free variable 500,000 42 21,500,000 23.4 

1,000 

3.5 × 1011 29.5 
Controller 
for two 100,000 217 21,800,000 40.6 

1,000 
3.5 × 1011 51.2 
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families of 
plants 
Zobel 
network 
problem (two 
free 
variables) 50,000,000 16 8,500,000 2 

1,000 

3.5 × 1011 3.0 
Third-order 
elliptic 
lowpass filter 
with a free 
variable for 
the modular 
angle 1,000,000 293 294,000,000 71 

1,000 

3.5 × 1011 89.5 
Passive 
lowpass filter 
with s free 
variable for 
the passband 
boundary 10,000,000 78 790,000,000 45 

1,000 

3.5 × 1011 56.6 
Active 
lowpass filter 
with variable 
passband 
boundary 
with free 
variable 5,000,000 101 501,000,000 151 

1,000 

3.5 × 1011 190.3 
Lowpass/hig
hpass filter 
with free 
variables 10,000,000 47 480,000,000 45 

1,000 

3.5 × 1011 56.6 
Lowpass/hig
hpass filter 
with variable 
passband 
boundary 
with a free 
variable 10,000,000 93 940,000,000 84 

1,000 

3.5 × 1011 105.8 
Variable 
quadratic/cu
bic 
computation
al circuit 
(one free 
variable) 1,000,000 241 242,000,000 49 

1,000 

3.5 × 1011 61.7 
Variable 40–
60 dB 
amplifier 
(one free 
variable) 2,000,000 332 666,000,000 50 

1,000 

3.5 × 1011 63.0 
Improved 
PID tuning 
rules (four 
free 
variables) 100,000 76 7,700,000 107 

1,000 

3.5 × 1011 134.6 
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First non-
PID 
parameterize
d controller 
(two free 
variables) 100,000 88 8,900,000 320 

1,000 

3.5 × 1011 403.2 
Second non-
PID 
parameterize
d controller 
(two free 
variables) 100,000 38 3,900,000 397 

1,000 

3.5 × 1011 500.2 
Third non-
PID 
parameterize
d controller 
(two free 
variables) 100,000 199 20,000,000 692 

1,000 

3.5 × 1011 871.9 
Reinvention 
of negative 
feedback 1,000,000 48 49,000,000 7 

1,000 

3.5 × 1011 8.8 
Low-voltage 
balun circuit 5,000,000 97 490,000,000 25 

1,000 
3.5 × 1011 31.5 

Mixed 
analog-
digital 
variable 
capacitor 
circuit 2,000,000 98 198,000,000 88 

1,000 

3.5 × 1011 110.9 
High-current 
load circuit–
First run 2,000,000 114 230,000,000 134 

1,000 

3.5 × 1011 168.8 
High-current 
load circuit–
Second run 2,000,000 215 432,000,000 67 

1,000 

3.5 × 1011 84.4 
Voltage-
current 
conversion 
circuit 5,000,000 109 550,000,000 83 

1,000 

3.5 × 1011 104.6 
Cubic 
function 
generator–
First run 5,000,000 182 915,000,000 206 

1,000 

3.5 × 1011 259.6 
Cubic 
function 
generator–
Second run 2,000,000 326 654,000,000 135 

1,000 

3.5 × 1011 170.1 
Tunable 
integrated 
active filter–
First run 2,000,000 70 142,000,000 23 

1,000 

3.5 × 1011 29.0 
Tunable 
integrated 
active filter–
Second run 2,000,000 50 102,000,000 14 

1,000 

3.5 × 1011 17.6 
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Tunable 
integrated 
active filter–
Third run 2,000,000 38 78,000,000 12 

1,000 

3.5 × 1011 15.1 
Tunable 
integrated 
active filter–
Fourth run 2,000,000 27 56,000,000 6 

1,000 

3.5 × 1011 7.6 
Average 3,530,000 128.7 267,000,000 81.9   93.4 
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DISCUSSION — COMPUTER TIME FOR 
41 RUNS IN GP-4 BOOK (2003) 

 
• The 41 runs ran for an average elapsed 
time of 81.9 hours (3.4 days) and consumed 
an average of 93.4 petacycles 
 
• The number of petacycles consumed by the 
runs range over about three orders of 
magnitudefrom the 3.0 petacycles 
consumed by the relatively simple Zobel 
network problem to the 871.9 petacycles 
(almost 1018 cycles) consumed by the four-
week run that produced the parsimonious 
(third) non-PID controller.  
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GP-4 BOOK DISCUSSION — CONTINUED 
 
• If available computer speed continues to 
double approximately every 18 months in 
accordance with Moore’s law for the next 
decade, a computation running for an 
elapsed time of 81.9 hours (the average from 
table 17.1) today will require only about 49 
minutes (about 1% as much elapsed time) a 
decade from now.  
• A computation similar to the most time-
consuming run (the four-week run that 
produced the third non-PID parameterized 
controller) will require only about 7 hours of 
elapsed time a decade from now.  
• The runs involving the six post-2000 
patented inventions ran for an average 
elapsed time of 80 hours each (very close to 
the overall average of 81.9 hours).  
• If Moore’s law is applied to these runs, a 
similar run would require only about 48 
minutes of elapsed time a decade from now.  
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COMPARISON BETWEEN RUNS IN GP-3 
AND GP-4 BOOKS 

 
• Comparing the 41 runs from Genetic 
Programming IV book (2003) with the 14 
runs involving human-competitive results 
shown in Genetic Programming III book, the 
elapsed time for the two groups of runs was 
about the same (3.4 days for GP-4 versus 3.5 
days for GP-3 book).  
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COMPARISON BETWEEN RUNS IN GP-3 
AND GP-4 BOOKS — CONTINUED 

 
• However, the problems treated in GP-4 
book were qualitatively more substantial 
than those in GP-3 book.  
• The average population size for the 41 

runs in GP-4 is 3,530,000 whereas it was 
only 256,000 in GP-3.  

• The 41 runs in GP-4  entailed about 8 
times as many fitness evaluations as those 
in  GP-3 (257,000,000 for GP-4 versus 
32,800,000 for GP-3 book).  

• Moreover, the 41 runs in GP-4 consumed 
an average of about 62 times more 
computational resources than those in 
GP-3 (93.4 petacycles for GP-4 versus 1.5 
petacycles for GP-3 book).  
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COMPARISON BETWEEN RUNS IN GP-3 
AND GP-4 BOOKS — CONTINUED 

 
• The fitness measures for problems in GP-

4 are generally far more time-consuming 
than those in GP-3 because the fitness 
measures in GP-4 contain a considerably 
greater number of different elements (up 
to a high of 193 elements for the third 
non-PID controller in section 13.2.3) and 
because the elements of the fitness 
measures in GP-4 usually involve time-
domain simulations (which generally 
consume far more computer time than 
the frequency-domain simulations and 
other relatively fast types of simulation 
and evaluation found in GP-3 .  
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FOOTNOTES TO DATA ABOUT 41 RUNS 
IN GP-4 BOOK 

 
• No adjustment was made in the durational 
data for the fact that, in practice, no fitness 
evaluations are actually performed for the 
percentage (usually about 9%) of the 
population that is reproduced in each 
generation or for the (smaller) percentage of 
the offspring produced by semantics-
preserving architecture-altering operations 
(e.g., subroutine duplication or branch 
creation).  
• The generation number during which the 
best-of-run individual was first created on its 
processing node. However, because of the 
asynchronous operation of the processing 
nodes in the parallel system, other processing 
nodes are, at that same moment, generally at 
a somewhat earlier or somewhat later 
generation number.  
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FOOTNOTES TO DATA ABOUT 41 RUNS 
IN GP-4 BOOK — CONTINUED 

 
• It is not uncommon for a small fraction of 
the 1,000 processing nodes to stop during a 
particular run because of a deeply-buried 
problem-specific software flaw that becomes 
exposed by the execution of the run’s 
hundreds of millions of genetic operations. 
• Tt is not uncommon for some nodes to be 
out of commission at any given time because 
of fan failures (the only hardware problem 
that we regularly encounter). 
• No adjustment was made to reflect the fact 
that we frequently commandeer 10 nodes of 
the 1,000-node system in the middle of a run 
in order to test a future run’s software.  
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FOOTNOTES TO DATA ABOUT 41 RUNS 
IN GP-4 BOOK — CONTINUED 

 
• In the last three cases, all individuals on the 
adversely affected processing nodes as well as 
all individuals that attempt to emigrate to the 
affected nodes are simply lost.  
• None of these five factors are material to 
the statistics concerning the overall operation 
of a 1,000-node system.  
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COMMERCIAL PRACTICALITY OF 
GENETIC PROGRAMMING FOR 

AUTOMATED CIRCUIT SYNTHESIS 
BASED ON THE 6 POST-2000 PATENTED 

CIRCUITS IN GP-4 BOOK (2003) 
 

 
Problem Population M Generation i M*(i +1) Total hours 
Low-voltage balun circuit 5,000,000 97 490,000,000 25
Mixed analog-digital variable capacitor circuit 2,000,000 98 198,000,000 88
High-current load circuit–First run 2,000,000 114 230,000,000 134
High-current load circuit–Second run 2,000,000 215 432,000,000 67
Voltage-current conversion circuit 5,000,000 109 550,000,000 83
Cubic function generator–First run 5,000,000 182 915,000,000 206
Cubic function generator–Second run 2,000,000 326 654,000,000 135
Tunable integrated active filter–First run 2,000,000 70 142,000,000 23
Tunable integrated active filter–Second run 2,000,000 50 102,000,000 14
Tunable integrated active filter–Third run  2,000,000 38 78,000,000 12
Tunable integrated active filter–Fourth run 2,000,000 27 56,000,000 6
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COMMERCIAL PRACTICALITY OF GP 
FOR POST-2000 PATENTED CIRCUITS — 

CONTINUED 
 
• The average number of hours for runs 
involving the six post-2000 patented circuits 
is 25, 88, 99, 83, 170, and 14, respectively. The 
average of these averages is 80 hours (3.3 
days). We use the average of the averages 
here because we made four runs of the 
problem that took the least computer time.  
• All 6 problems were run on a home-built 
parallel computer system consisting of 1,000 
350-MHz Pentium II processors. This system 
operates at an overall rate of 3.5 × 1011 Hz. A 
3.3-day run represents about 1017 cycles (i.e., 
100 petacycles).  
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COMMERCIAL PRACTICALITY OF GP 
FOR POST-2000 PATENTED CIRCUITS — 

CONTINUED 
 
• The relentless iteration of Moore’s law 
promises increased availability of 
computational resources in future years. If 
available computer capacity continues to 
double approximately every 18 months over 
the next decade, a computation requiring 80 
hours will require only about 1% as much 
computer time (i.e., about 48 minutes) a 
decade from now.  
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COMMERCIAL PRACTICALITY OF GP 
FOR POST-2000 PATENTED CIRCUITS — 

CONTINUED 
 
• Aside from the promise of increased 
availability of computational resources in the 
future, there are two reasons why we are 
currently not near the boundary of the 
current capability of genetic programming to 
automatically synthesize analog circuits. 
• Multiple runs of a probabilistic algorithm 

are often necessary to solve a problem. 
However, ignoring partial runs used for 
debugging purposes, all 11 runs involving 
the six post-2000 patented circuits 
produced a satisfactory solution. The 
success rate of 100% is thus unusual with 
a probabilistic algorithm. This success 
rate suggests that we are currently not 
near the boundary of the current 
capability of genetic programming.  
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COMMERCIAL PRACTICALITY OF GP 
FOR POST-2000 PATENTED CIRCUITS — 

CONTINUED 
 
• The (largely intentional) inefficiency of 

the runs is a second indication. As 
previously mentioned, the runs of genetic 
programming in GP-4 book were 
undertaken with two distinct (and 
conflicting) orientations. One orientation 
involves using as little human-supplied 
knowledge, information, analysis, and 
intelligence as possible. The other is the 
engineer’s orientation to solve problems 
as quickly and efficiently as possible.  

This dominant orientation is irrelevant to 
the practicing engineer.  
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ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS 

 
• First, each of the problems could have been 
solved much more efficiently by using a more 
customized initial circuit. Our use of the 
floating embryo on the six post-2000 patented 
circuits enabled us to minimize the 
differences in the human-supplied 
preparatory steps among the six problems. 
This uniformity helps to persuade the reader 
that the human user need employ only de 
minimus information and domain knowledge 
in order to launch a run of genetic 
programming. However, the floating embryo 
used on all six problems in this chapter is 
manifestly inefficient.  
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ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS 

 
• Second, the components that are inserted 
into a developing circuit need not be as 
primitive as a single transistor, resistor, or 
capacitor. Instead, the set of component-
creating functions could easily be expanded 
to include numerous frequently-used 
combinations of components. Potentially 
useful combinations of components include 
voltage gain stages, Darlington emitter-
follower sections, current mirrors, cascodes, 
three-ported voltage divider subcircuits 
composed of two resistors in series, and 
three-ported subcircuits consisting of two 
resistors (or capacitors) with their common 
point connected to power or ground. For 
certain problems, the set of primitives could 
readily be expanded to include higher-level 
entities, such as filters, op amps, oscillators, 
voltage-controller current sources, 
multipliers, and phase-locked loops. 
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ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS 

 
• Third, although the runs of the six post-
2000 patented circuits were intentionally 
done in a uniform way, a practicing engineer 
has no reason to enforce such uniformity. For 
example, we did not use automatically 
defined functions for any of the six problems. 
However, most practical electrical circuits 
are replete with reuse. A practicing engineer 
would recognize that reuse is specifically 
important in at least two of the six problems 
(namely the mixed analog-digital integrated 
circuit for variable capacitance and the low-
voltage high-current transistor circuit for 
testing a voltage source). The practicing 
engineer would have no reason to forgo the 
manifest benefits of reuse and automatically 
defined functions.  
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ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS 

 
• Fourth, considerable work has been done in 
recent years to accelerate the convergence 
characteristics of circuit simulators. As a 
result, there are numerous commercially 
available simulators that are considerably 
more efficient than the we used. We use a 
version of the SPICE3 simulator (Quarles, 
Newton, Pederson, and Sangiovanni-
Vincentelli 1994) that we modified in various 
ways. Speedups of up to 10-to-1 are 
reportedly possible today.  
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ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS 

 
• Fifth, there are numerous opportunities to 
incorporate problem-specific knowledge into 
a run of genetic programming. For example, 
the developmental process need not start 
merely with modifiable wires. A substructure 
of known utility for a particular problem can 
be hard-wired into the embryo, thereby 
relieving genetic programming of the need to 
reinvent it.  
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ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS 

 
• Sixth, it is possible to integrate general 
knowledge of electrical engineering into a run 
of genetic programming. For example, 
Sripramong and Toumazou (2002) combine 
current-flow analysis into their runs of 
genetic programming for the purpose of 
automatically synthesizing CMOS amplifiers.  
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ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS 

 
• Seventh, the efficiency of runs can be 
improved by adapting several of the 
principles set forth in The Design of 
Innovation: Lessons from and for Competent 
Genetic Algorithms (Goldberg 2002) to the 
domain of genetic programming.  
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ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS 

 
• Eighth, because there usually are multiple 
competing elements in the fitness measures of 
problems of circuit synthesis in the real 
world, the efficiency of runs of genetic 
programming can be improved by using 
some of the recently published new 
techniques of multiobjective optimization 
(Osyczka 1984; Bagchi 1999; Deb 2001; 
Coello Coello, Van Veldhuizen, and Lamont 
2002; and Zitzler, Deb, Thiele, Coello Coello, 
and Corne 2001).  
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ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS 

 
• Ninth, the efficiency of runs can be 
improved by adapting some of the innovative 
ideas in Efficient and Accurate Parallel 
Genetic Algorithms (Cantu-Paz 2000) to the 
domain of genetic programming.  
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ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS 

 
• Tenth, there has been an outpouring of 
theoretical work in the past few years on the 
theory of genetic algorithms and genetic 
programming. Many of the insights in 
Foundations of Genetic Programming 
(Langdon and Poli 2002) can be used to 
improve the efficiency of runs of genetic 
programming.  
 


