
Fall 2003 BMI 226 / CS 426 Notes P- 1

PARALLELIZATION

Fall 2003 BMI 226 / CS 426 Notes P- 2

COMPUTER TIME IS THE MOTHER'S
MILK OF MACHINE INTELLIGENCE

Fall 2003 BMI 226 / CS 426 Notes P- 3

THE GOOD GNU’S

• The speed of commercially available single
computers continues to double approximately
every 18 months in accordance with Moore’s
law. This exponential growth in
computational power (equivalent to two
orders of magnitude per decade) is currently
expected to continue (and possibly accelerate)
over the next decade. Petaflop computing is
expected to be available in the next few years.
• GA and GP are especially amenable to
efficient (and almost effortless)
parallelization.
• Parallel cluster computer systems can be
assembled with relative ease in the Beowulf-
style using “Commodity Off-The-Shelf”
(COTS) hardware

Fall 2003 BMI 226 / CS 426 Notes P- 4

THE FITNESS EVALUATION IS THE
MOST TIME-CONSUMING PART OF

THE VAST MAJORITY OF PROBLEMS
OF INTEREST

• Simulations are typically very time-
consuming
• Exception: operations research problems

• Simulations often must be made for
numerous possible initial conditions
• Multiple independent scenarios must be
run if the simulation is probabilistic
• Time-consuming transition calculations
• Time-consuming primitive functions
• Large numbers of data points
• Many “corners” must be separately tested
to account for variations arising from
• temperature
• manufacturing of physical components
• reference voltage
• loads

Fall 2003 BMI 226 / CS 426 Notes P- 5

THE FITNESS EVALUATION IS THE
MOST TIME-CONSUMING PART OF

THE VAST MAJORITY OF PROBLEMS
OF INTEREST

MORE GOOD GNU’S FOR GA AND GP

• Fitness evaluation of one individual in the
population is not coupled to that of other
individuals in the population.
• In fact, the evaluation of each separate
fitness case is usually not coupled to the
evaluation of other fitness cases

Fall 2003 BMI 226 / CS 426 Notes P- 6

PARALLELIZATION OF GA OR GP

• Multiple independent runs
• Farm-out of individuals
• Farm-Out of fitness cases
• Semi-isolated subpopulations (also called
“demes,” “island model of parallelization,”
or “distributed GA”)

Fall 2003 BMI 226 / CS 426 Notes P- 7

MULTIPLE INDEPENDENT RUNS

• Adequacy of population size of run

Fall 2003 BMI 226 / CS 426 Notes P- 8

FARM-OUT OF INDIVIDUALS

....Evaluate Fitness of
Individual 2

Evaluate Fitness of
Individual M

Gen := 0

Create Initial
Random Population

No

Yes Designate
Result EndTermination

Criterion Satisfied?

Yes

No
Gen := Gen + 1 i = M?

i := 0

Perform Genetic
Operations

Evaluate Fitness of
Individual 1

• Works especially well for a moderate
number of processors
• Need to match hardware and problem
• Timing issues arising from unequal
evaluation times

Fall 2003 BMI 226 / CS 426 Notes P- 9

FARM-OUT OF FITNESS CASES

Initialize for
Fitness Case 1

Initialize for
Fitness Case N

Initialize for
Fitness Case 2

Evaluate
Fitness Case 1

Evaluate
Fitness Case 2

Evaluate
Fitness Case N

...

...

Accumulate
Fitness Values

• Works especially well for a moderate
number of processors
• Need to match hardware and problem
• Timing issues arising from unequal
evaluation times

Fall 2003 BMI 226 / CS 426 Notes P- 10

SEMI-ISOLATED SUBPOPULATIONS

Population 1 Population 2

Population 3 Population 4

• No synchronization of generations
• Occasional small amounts of migration (low
bandwidth communication)
• Emigrants emigrate (fitness-based
selection)
• Immigrants arrive, are temporarily
buffered, and are assimilated (unfitness-
based selection used to make space)
• Fault-tolerant

Fall 2003 BMI 226 / CS 426 Notes P- 11

PARALLELIZATION BY
SUBPOPULATIONS ("ISLAND" OR

"DEME" MODEL OR "DISTRIBUTED
GENETIC ALGORITHM")

DEBUGGER
(optional)

BOSS
(Tram)

HOST
(Pentium PC)

OUTPUT
FILE

CONTROL
PARAMETER

FILE

VIDEO
DISPLAY

KEYBOARD

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

Fall 2003 BMI 226 / CS 426 Notes P- 12

LINES OF COMMUNICATION

• between the Boss process and the
processing nodes of the network
• between (toroidally) adjacent processing
nodes of the network
• between the Host and the Boss process

Fall 2003 BMI 226 / CS 426 Notes P- 13

THE FOUR INTER-COMMUNICATING
PROCESSES OF EACH OF THE

PROCESSING NODES

THE FOUR INTER-COMMUNICATING
PROCESSES OF EACH OF THE

PROCESSING NODES

B R E E D E R

M O N I T O R

E X P O R T E R I M P O R T E R

B u f fe r B u f fe r

From Boss

To Boss

From North

From East

To North

From South

From West

To East

To South

To West
N

S

E

W

N

S

E

W

Fall 2003 BMI 226 / CS 426 Notes P- 14

10-NODE ALPHA BEOWULF SYSTEM

Alpha

Alpha

Alpha

Alpha

Alpha

Alpha

Alpha

Alpha

Hub

Host

Alpha Alpha

Fall 2003 BMI 226 / CS 426 Notes P- 15

BILL OF MATERIALS FOR 10-NODE
ALPHA BEOWULF SYSTEM (1999)

Qua
ntity

Item Unit
price

Total

10 533 MHz Alpha 164LX
processor and motherboard

$1,200 $12,000

10 64 MB of SDRAM $115 $1,150
10 Linux operating systems for

nodes
$0 $0

10 100/10 BT DE500-BA Ethernet
network interface card (NIC)

$100 $1,000

10 Axxion midtower case with 230
W power supply and fans.

$104 $1,040

1 SMC EZ Hub 12-port Ethernet
hub

$330 $330

1 APC Back-UPS Pro 1400 1,400
VA uninterruptable power
supply (UPS)

$470 $470

11 Ethernet cables $4 $44
1 Shelving for 8 nodes $100 $100
1 Host computer with 64 MB of

RAM, 100 BT Ethernet card, 4
GB disk, video display screen,
keyboard

$2,000 $2,000

1 Linux operating system for host $0 $0
 TOTAL $18,134

Fall 2003 BMI 226 / CS 426 Notes P- 16

PRINCIPLES OF PARALLEL GENETIC
PROGRAMMING

• Like Hormel, Get Everything Out of the
Pig, Including the Oink

• Keep on Trucking

• It Takes a Licking and Keeps on Ticking

• The Whole is Greater than the Sum of the
Parts

Fall 2003 BMI 226 / CS 426 Notes P- 17

LIKE HORMEL, GET EVERYTHING OUT
OF THE PIG, INCLUDING THE OINK

One important guiding principle in
implementing parallel genetic programming
is to fully utilize the computing power of each
processor at all times. Thus, each processor
immediately (and separately) begins its main
generational loop as soon as it finishes it
initial random creation of individuals at the
beginning of the run. There is no
synchronization of the generations between
processors. Similarly, each processor moves
on to its next generation, regardless of the
status of any other processor. Less than 1%
of the processors cycles are consumed by the
low-bandwidth migration and
communications tasks of the parallel genetic
programming algorithm.

Fall 2003 BMI 226 / CS 426 Notes P- 18

KEEP ON TRUCKING
A related principle is that processors should
not wait on the achievement of any other
event in the system.

• For example, if immigrants are not received from all
(four) of a processor's neighbors at the time when the
processor is ready to assimilate immigrants, the processor
does not wait for the missing immigrants. It simply
assimilates whatever immigrants are in its buffer and
moves on. The deficiency in immigrants is made up from
randomly chosen copies of the processor's just-departed
emigrants.
• Similarly, if a processor receives two groups of
immigrants from a particular neighboring processor
before it is ready to assimilate immigrants, the most recent
group of incoming immigrants overwrite the previously
received immigrants from the particular neighboring
processor (on the principle that later immigrants from a
particular subpopulation are, in general, better than
earlier immigrants from that same subpopulation).

Fall 2003 BMI 226 / CS 426 Notes P- 19

IT TAKES A LICKING AND KEEPS ON
TICKING

The entire system is designed to be highly
fault-tolerant. No processor is considered
essential to the run. No acknowledgment is
required for any message, including the
messages containing emigrants from one
processor to another. If a processor fails (e.g.,
for software or the occasional hardware
reason), the boatload of emigrants exported
to that processor are simply lost at sea and
the run continues.
• We once rearranged the Ethernet cables between the
1,000 processor during a "live" run. The connecting and
disconnecting of wires during the run did not affect the
successful completion of the run. Moreover, power cords
to many processors were disconnected and reconnected
during the run during this rewiring.

Fall 2003 BMI 226 / CS 426 Notes P- 20

IT TAKES A LICKING AND KEEPS ON
TICKING CONTINUED

"NOAH" RUNS

By providing a new start-up message to all
nodes, the newly reconnected nodes came to
life and proceeded to participate in the run.
After just one generation, they received
emigrants from their neighbors (representing
the better individuals of neighboring
processors). Darwinian selection immediately
favored the newly arrived immigrants (who
were, in general, superior to the random
individuals on the recently restarted
processors) and the genetic operations were
consequently performed primarily on the
newly arrived immigrants.

Fall 2003 BMI 226 / CS 426 Notes P- 21

THE WHOLE IS GREATER THAN THE
SUM OF THE PARTS

Many researchers have noted that, for many
problems, genetic programming solves a
problem faster with semi-isolated
subpopulations and occasional migration
than would otherwise be the case. That is, the
performance of genetic programming is often
enhanced because of the use the island model
of parallelization. Thus, it is often said that
parallel genetic programming often delivers a
super linear speed-up in terms of the
computational effort required to yield a
solution (recognizing that, of course, the
benefit of semi-isolated subpopulations can
be simulated on a serial computer). In any
event, the island model of parallelization is an
effective way to make runs of genetic
programming.

Fall 2003 BMI 226 / CS 426 Notes P- 22

PERFORMANCE CURVES FOR THE
PROBLEM OF SYMBOLIC REGRESSION

OF THE BOOLEAN EVEN-5-PARITY
FUNCTION WITH D = 64 DEMES OF SIZE
Q = 500 AND A MIGRATION RATE OF B =

8%

P(
M

,x
)

x

I(
M

,x
,z

)

(2,391,500, 89%)

x* = 764,500 i* = 23.9 E = 3,822,500

(764,500, 63%)

(519,500, 4%)

M = 32,000
R(z) = 5
z = 99%

N = 27
D = 64
Q = 500
B = 8%

P(M, x)
I(M, x, z)

0 1,000,000 2,000,000 3,000,000
0.0

0.2

0.4

0.6

0.8

1.0

40,000,000

80,000,000

0 20 40 60 80

60,000,000

20,000,000

i

Approach Migration

rate B
Computationa
l effort E

Best x* P(M,x)
for best
x*

Panmictic 0% 6,912,000 1,888,000 83%
Parallel 12% 7,072,500 2,357,500 83%
Parallel 8% 3,822,500 764,500 63%
Parallel 4% 8,174,000 2,435,999 71%
Parallel 1% 6,594,000 2,198,000 89%

Fall 2003 BMI 226 / CS 426 Notes P- 23

5 PARALLEL COMPUTER SYSTEMS

• TI LISP machine — 4 nodes (used only for
making multiple independent runs)
• Transtech — 64 nodes with transputer for
both processing and communication
• Parsytec — 64 nodes with transputer for
communication and 80 MHz PowerPC
microprocessor for processing and Parsytec
microkernel
• Compaq (formerly DEC) — 70 nodes with
Alpha 533 MHz processors for processing
and 100 BT Ethernet NIC for communication
and Linux operating system
• 1,000-Pentium machine — 1,000 nodes with
350 MHz Pentium II processors for
processing and 100 megabit Ethernet NIC for
communication and Linux operating system

Fall 2003 BMI 226 / CS 426 Notes P- 24

5 PARALLEL COMPUTER SYSTEMS

• Serial Texas Instruments LISP machine
• 25 MHz = 2.5 x 107 Hz
• 2.5 x 107 Hz × 86,400 sec./day = 2.16 x 1012 cycles/ day
• 0.00216 peta-cycles per day (and 463 days = 1015 cycles)

• 64-node Transtech parallel machine
• INMOS T-805 30-MHz transputer ~ Intel 486/33
• Transputer assembly code operates on one-byte
• Effective equivalent for 64 nodes = 2 x 1013 cycles / day
• 9.25-to-1 speed-up over LISP machine
• 0.02 peta-cycles per day (and 50 days = 1015 cycles)

• 64-node 80 MHz Parsytec parallel machine
• Power PC 601 processors at 8 x 107 Hertz
• 8 x 107 Hz × 64 nodes = 5.12 x 109 Hz
• 22-to-1 speed-up over Transtech (based on cycles)
• 5.12 x 109 Hz/sec. × 86,400 sec./day =4.4 x 1014 Hz/ day
• 0.44 peta-cycles per day (and 2.3 days = 1015 cycles)

Fall 2003 BMI 226 / CS 426 Notes P- 25

5 PARALLEL COMPUTER SYSTEMS

• 70-node 533 MHz Alpha parallel machine
• 5.33 × 108 Hz × 70 nodes = 3.73 × 1010 Hz = 0.03 tera-Hz
• 7.2-to-1 speed-up over Parsytec (based on cycles)
• 3.73 × 1010 Hz × 86,400 = 3.2 x 1015 cycles/ day
• So, 3.2 peta-cycles per day
• NOTE: The Alpha processor typically yields about 3
instructions per cycle on a GP application, so this system
operates at about 0.09 tera-ops

• 1,000-node 350 MHz Pentium II machine
• 3.5 x 108 Hz × 1,000 = 3.5 x 1011 Hz
• 3.5 x 1011 Hz × 86,400 sec./day = 3.02 x 1016 cycles/ day
• 9.4-to-1 speed-up over Alpha machine (based on cycles)
• 13,633-to-1 speed-up over LISP (based on cycles)
• So, 30 peta-cycles per day
• NOTE: The Pentium II processor typically yields about
3 instructions per cycle on a GP application, so this system
operates at about 1.05 tera-ops

Fall 2003 BMI 226 / CS 426 Notes P- 26

PETA-OPS

• Human brain operates at 1012 neurons
operating at 103 per second = 1015 ops per
second
• 1015 ops = 1 peta-op = 1 bs (brain second)

PETAFLOPS COMPUTING INITIATIVE
• 1015 operations PER SECOND by 2007
• Commercial petaflops by 2010

Fall 2003 BMI 226 / CS 426 Notes P- 27

COMPUTER TIME FOR RUNS
PRODUCING HUMAN-COMPETITIVE

RESULTS FROM GP-3 BOOK (1999)
Claimed instance Population

M
Generation
i

M*(i+1) Minutes Peta-cycles

Transmembrane segment
identification problem with
architecture-altering operations for
automatically defined functions

128,000 28 3,712,000 312 0.096

Transmembrane segment
identification problem with
iteration creation

64,000 42 2,752,000 163 0.050

Minimal sorting network (GPPS
1.0)

640,000 31 20,480,000 145 0.045

Minimal sorting network (GPPS
2.0)

300,000 33 10,200,000 30 0.009

Recognizable ladder topology of
Butterworth or Chebychev lowpass
and highpass filters

320,000 49 16,000,000 138 0.042

Recognizable "bridged T" topology
for filters

320,000 53 17,280,000 481 0.148

Recognizable elliptic topology for
filters

640,000 31 20,480,000 899 0.276

Crossover filter 640,000 137 88,320,000 2,673 0.821
Crossover filter 640,000 158 101,760,000 5,436 1.670
Recognizable voltage gain stage and
a Darlington emitter-follower
section

640,000 45 29,440,000 1,056 0.324

60 dB amplifier 640,000 109 70,400,000 3,139 0.964
96 dB amplifier 640,000 86 55,680,000 4,786 1.470
Squaring computational circuit 640,000 37 24,320,000 2,504 0.769
Cubing computational circuit 640,000 74 48,000,000 2,545 0.782
Square root computational circuit 640,000 71 46,080,000 2,817 0.865
Cube root computational circuit 640,000 60 39,040,000 2,179 0.669
Logarithmic computational circuit 640,000 55 35,840,000 4,309 1.324
Gaussian computational circuit
(MOSFET)

640,000 36 23,680,000 1,190 0.366

Real-time robot controller 640,000 31 20,480,000 22,103 6.790
Temperature-sensing circuit 640,000 25 16,640,000 14,204 4.363
Voltage reference circuit 640,000 80 51,840,000 37,147 11.412
Cellular automata rule for the
majority classification problem

51,200 17 921,600 4,231 1.300

Motifs for the D–E–A-D box family
of proteins

256,000 42 11,008,000 3,297 1.013

Fall 2003 BMI 226 / CS 426 Notes P- 28

COMPUTER TIME FOR 41 RUNS IN GP-4
BOOK (2003)

Problem
Total
population

Generation
i M*(i +1)

Total
hours

Nodes
Hertz Petacycles

Two-lag
plant 66,000 32 2,178,000 44.5

66
3.5 × 1010 5.6

Three-lag
plant 66,000 31 2,112,000 32

66
3.5 × 1010 4.0

Three-lag
plant with
five second
delay 500,000 126 63,500,000 65

1,000

3.5 × 1011 81.9
Non-minimal
phase plant 66,000 38 2,574,000 46

66
3.5 × 1010 5.8

RC circuit
with gain
greater than
two 660,000 927 612,480,000 24

66

3.5 × 1010 3.0
Philbrick
circuit 660,000 39 26,400,000 7

66
3.5 × 1010 0.9

NAND circuit 132,000 17 2,376,000 10 66 3.5 × 1010 1.3
Arithmetic
logic unit
(ALU)
circuit 1,320,000 33 44,880,000 170

66

3.5 × 1010 21.4
Square root
computation
al circuit 10,000,000 66 670,000,000 52

1,000

3.5 × 1011 65.5
Lowpass
filter without
an explicit
test fixture 1,000,000 211 212,000,000 9

1,000

3.5 × 1011 11.3
Lowpass
filter with
layout 1,120,000 138 155,680,000 28

56

2.9 × 1010 3.0
Amplifier
with layout 10,000,000 101

1,020,000,0
00 17

1,000
3.5 × 1011 21.4

Yagi-Uda
antenna 500,000 90 45,500,000 22

1,000
3.5 × 1011 27.7

Metabolic
pathway for
phospholipid
cycle 100,000 225 22,600,000 17

1,000

3.5 × 1011 21.4
Metabolic
pathway for
ketone
bodies 100,000 97 9,800,000 20

1,000

3.5 × 1011 25.2
Three-lag
plant with
free variable 500,000 42 21,500,000 23.4

1,000

3.5 × 1011 29.5
Controller
for two 100,000 217 21,800,000 40.6

1,000
3.5 × 1011 51.2

Fall 2003 BMI 226 / CS 426 Notes P- 29
families of
plants
Zobel
network
problem (two
free
variables) 50,000,000 16 8,500,000 2

1,000

3.5 × 1011 3.0
Third-order
elliptic
lowpass filter
with a free
variable for
the modular
angle 1,000,000 293 294,000,000 71

1,000

3.5 × 1011 89.5
Passive
lowpass filter
with s free
variable for
the passband
boundary 10,000,000 78 790,000,000 45

1,000

3.5 × 1011 56.6
Active
lowpass filter
with variable
passband
boundary
with free
variable 5,000,000 101 501,000,000 151

1,000

3.5 × 1011 190.3
Lowpass/hig
hpass filter
with free
variables 10,000,000 47 480,000,000 45

1,000

3.5 × 1011 56.6
Lowpass/hig
hpass filter
with variable
passband
boundary
with a free
variable 10,000,000 93 940,000,000 84

1,000

3.5 × 1011 105.8
Variable
quadratic/cu
bic
computation
al circuit
(one free
variable) 1,000,000 241 242,000,000 49

1,000

3.5 × 1011 61.7
Variable 40–
60 dB
amplifier
(one free
variable) 2,000,000 332 666,000,000 50

1,000

3.5 × 1011 63.0
Improved
PID tuning
rules (four
free
variables) 100,000 76 7,700,000 107

1,000

3.5 × 1011 134.6

Fall 2003 BMI 226 / CS 426 Notes P- 30
First non-
PID
parameterize
d controller
(two free
variables) 100,000 88 8,900,000 320

1,000

3.5 × 1011 403.2
Second non-
PID
parameterize
d controller
(two free
variables) 100,000 38 3,900,000 397

1,000

3.5 × 1011 500.2
Third non-
PID
parameterize
d controller
(two free
variables) 100,000 199 20,000,000 692

1,000

3.5 × 1011 871.9
Reinvention
of negative
feedback 1,000,000 48 49,000,000 7

1,000

3.5 × 1011 8.8
Low-voltage
balun circuit 5,000,000 97 490,000,000 25

1,000
3.5 × 1011 31.5

Mixed
analog-
digital
variable
capacitor
circuit 2,000,000 98 198,000,000 88

1,000

3.5 × 1011 110.9
High-current
load circuit–
First run 2,000,000 114 230,000,000 134

1,000

3.5 × 1011 168.8
High-current
load circuit–
Second run 2,000,000 215 432,000,000 67

1,000

3.5 × 1011 84.4
Voltage-
current
conversion
circuit 5,000,000 109 550,000,000 83

1,000

3.5 × 1011 104.6
Cubic
function
generator–
First run 5,000,000 182 915,000,000 206

1,000

3.5 × 1011 259.6
Cubic
function
generator–
Second run 2,000,000 326 654,000,000 135

1,000

3.5 × 1011 170.1
Tunable
integrated
active filter–
First run 2,000,000 70 142,000,000 23

1,000

3.5 × 1011 29.0
Tunable
integrated
active filter–
Second run 2,000,000 50 102,000,000 14

1,000

3.5 × 1011 17.6

Fall 2003 BMI 226 / CS 426 Notes P- 31
Tunable
integrated
active filter–
Third run 2,000,000 38 78,000,000 12

1,000

3.5 × 1011 15.1
Tunable
integrated
active filter–
Fourth run 2,000,000 27 56,000,000 6

1,000

3.5 × 1011 7.6
Average 3,530,000 128.7 267,000,000 81.9 93.4

Fall 2003 BMI 226 / CS 426 Notes P- 32

DISCUSSION — COMPUTER TIME FOR
41 RUNS IN GP-4 BOOK (2003)

• The 41 runs ran for an average elapsed
time of 81.9 hours (3.4 days) and consumed
an average of 93.4 petacycles

• The number of petacycles consumed by the
runs range over about three orders of
magnitudefrom the 3.0 petacycles
consumed by the relatively simple Zobel
network problem to the 871.9 petacycles
(almost 1018 cycles) consumed by the four-
week run that produced the parsimonious
(third) non-PID controller.

Fall 2003 BMI 226 / CS 426 Notes P- 33

GP-4 BOOK DISCUSSION — CONTINUED

• If available computer speed continues to
double approximately every 18 months in
accordance with Moore’s law for the next
decade, a computation running for an
elapsed time of 81.9 hours (the average from
table 17.1) today will require only about 49
minutes (about 1% as much elapsed time) a
decade from now.
• A computation similar to the most time-
consuming run (the four-week run that
produced the third non-PID parameterized
controller) will require only about 7 hours of
elapsed time a decade from now.
• The runs involving the six post-2000
patented inventions ran for an average
elapsed time of 80 hours each (very close to
the overall average of 81.9 hours).
• If Moore’s law is applied to these runs, a
similar run would require only about 48
minutes of elapsed time a decade from now.

Fall 2003 BMI 226 / CS 426 Notes P- 34

COMPARISON BETWEEN RUNS IN GP-3
AND GP-4 BOOKS

• Comparing the 41 runs from Genetic
Programming IV book (2003) with the 14
runs involving human-competitive results
shown in Genetic Programming III book, the
elapsed time for the two groups of runs was
about the same (3.4 days for GP-4 versus 3.5
days for GP-3 book).

Fall 2003 BMI 226 / CS 426 Notes P- 35

COMPARISON BETWEEN RUNS IN GP-3
AND GP-4 BOOKS — CONTINUED

• However, the problems treated in GP-4
book were qualitatively more substantial
than those in GP-3 book.
• The average population size for the 41

runs in GP-4 is 3,530,000 whereas it was
only 256,000 in GP-3.

• The 41 runs in GP-4 entailed about 8
times as many fitness evaluations as those
in GP-3 (257,000,000 for GP-4 versus
32,800,000 for GP-3 book).

• Moreover, the 41 runs in GP-4 consumed
an average of about 62 times more
computational resources than those in
GP-3 (93.4 petacycles for GP-4 versus 1.5
petacycles for GP-3 book).

Fall 2003 BMI 226 / CS 426 Notes P- 36

COMPARISON BETWEEN RUNS IN GP-3
AND GP-4 BOOKS — CONTINUED

• The fitness measures for problems in GP-

4 are generally far more time-consuming
than those in GP-3 because the fitness
measures in GP-4 contain a considerably
greater number of different elements (up
to a high of 193 elements for the third
non-PID controller in section 13.2.3) and
because the elements of the fitness
measures in GP-4 usually involve time-
domain simulations (which generally
consume far more computer time than
the frequency-domain simulations and
other relatively fast types of simulation
and evaluation found in GP-3 .

Fall 2003 BMI 226 / CS 426 Notes P- 37

FOOTNOTES TO DATA ABOUT 41 RUNS
IN GP-4 BOOK

• No adjustment was made in the durational
data for the fact that, in practice, no fitness
evaluations are actually performed for the
percentage (usually about 9%) of the
population that is reproduced in each
generation or for the (smaller) percentage of
the offspring produced by semantics-
preserving architecture-altering operations
(e.g., subroutine duplication or branch
creation).
• The generation number during which the
best-of-run individual was first created on its
processing node. However, because of the
asynchronous operation of the processing
nodes in the parallel system, other processing
nodes are, at that same moment, generally at
a somewhat earlier or somewhat later
generation number.

Fall 2003 BMI 226 / CS 426 Notes P- 38

FOOTNOTES TO DATA ABOUT 41 RUNS
IN GP-4 BOOK — CONTINUED

• It is not uncommon for a small fraction of
the 1,000 processing nodes to stop during a
particular run because of a deeply-buried
problem-specific software flaw that becomes
exposed by the execution of the run’s
hundreds of millions of genetic operations.
• Tt is not uncommon for some nodes to be
out of commission at any given time because
of fan failures (the only hardware problem
that we regularly encounter).
• No adjustment was made to reflect the fact
that we frequently commandeer 10 nodes of
the 1,000-node system in the middle of a run
in order to test a future run’s software.

Fall 2003 BMI 226 / CS 426 Notes P- 39

FOOTNOTES TO DATA ABOUT 41 RUNS
IN GP-4 BOOK — CONTINUED

• In the last three cases, all individuals on the
adversely affected processing nodes as well as
all individuals that attempt to emigrate to the
affected nodes are simply lost.
• None of these five factors are material to
the statistics concerning the overall operation
of a 1,000-node system.

Fall 2003 BMI 226 / CS 426 Notes P- 40

COMMERCIAL PRACTICALITY OF
GENETIC PROGRAMMING FOR

AUTOMATED CIRCUIT SYNTHESIS
BASED ON THE 6 POST-2000 PATENTED

CIRCUITS IN GP-4 BOOK (2003)

Problem Population M Generation i M*(i +1) Total hours
Low-voltage balun circuit 5,000,000 97 490,000,000 25
Mixed analog-digital variable capacitor circuit 2,000,000 98 198,000,000 88
High-current load circuit–First run 2,000,000 114 230,000,000 134
High-current load circuit–Second run 2,000,000 215 432,000,000 67
Voltage-current conversion circuit 5,000,000 109 550,000,000 83
Cubic function generator–First run 5,000,000 182 915,000,000 206
Cubic function generator–Second run 2,000,000 326 654,000,000 135
Tunable integrated active filter–First run 2,000,000 70 142,000,000 23
Tunable integrated active filter–Second run 2,000,000 50 102,000,000 14
Tunable integrated active filter–Third run 2,000,000 38 78,000,000 12
Tunable integrated active filter–Fourth run 2,000,000 27 56,000,000 6

Fall 2003 BMI 226 / CS 426 Notes P- 41

COMMERCIAL PRACTICALITY OF GP
FOR POST-2000 PATENTED CIRCUITS —

CONTINUED

• The average number of hours for runs
involving the six post-2000 patented circuits
is 25, 88, 99, 83, 170, and 14, respectively. The
average of these averages is 80 hours (3.3
days). We use the average of the averages
here because we made four runs of the
problem that took the least computer time.
• All 6 problems were run on a home-built
parallel computer system consisting of 1,000
350-MHz Pentium II processors. This system
operates at an overall rate of 3.5 × 1011 Hz. A
3.3-day run represents about 1017 cycles (i.e.,
100 petacycles).

Fall 2003 BMI 226 / CS 426 Notes P- 42

COMMERCIAL PRACTICALITY OF GP
FOR POST-2000 PATENTED CIRCUITS —

CONTINUED

• The relentless iteration of Moore’s law
promises increased availability of
computational resources in future years. If
available computer capacity continues to
double approximately every 18 months over
the next decade, a computation requiring 80
hours will require only about 1% as much
computer time (i.e., about 48 minutes) a
decade from now.

Fall 2003 BMI 226 / CS 426 Notes P- 43

COMMERCIAL PRACTICALITY OF GP
FOR POST-2000 PATENTED CIRCUITS —

CONTINUED

• Aside from the promise of increased
availability of computational resources in the
future, there are two reasons why we are
currently not near the boundary of the
current capability of genetic programming to
automatically synthesize analog circuits.
• Multiple runs of a probabilistic algorithm

are often necessary to solve a problem.
However, ignoring partial runs used for
debugging purposes, all 11 runs involving
the six post-2000 patented circuits
produced a satisfactory solution. The
success rate of 100% is thus unusual with
a probabilistic algorithm. This success
rate suggests that we are currently not
near the boundary of the current
capability of genetic programming.

Fall 2003 BMI 226 / CS 426 Notes P- 44

COMMERCIAL PRACTICALITY OF GP
FOR POST-2000 PATENTED CIRCUITS —

CONTINUED

• The (largely intentional) inefficiency of

the runs is a second indication. As
previously mentioned, the runs of genetic
programming in GP-4 book were
undertaken with two distinct (and
conflicting) orientations. One orientation
involves using as little human-supplied
knowledge, information, analysis, and
intelligence as possible. The other is the
engineer’s orientation to solve problems
as quickly and efficiently as possible.

This dominant orientation is irrelevant to
the practicing engineer.

Fall 2003 BMI 226 / CS 426 Notes P- 45

ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS

• First, each of the problems could have been
solved much more efficiently by using a more
customized initial circuit. Our use of the
floating embryo on the six post-2000 patented
circuits enabled us to minimize the
differences in the human-supplied
preparatory steps among the six problems.
This uniformity helps to persuade the reader
that the human user need employ only de
minimus information and domain knowledge
in order to launch a run of genetic
programming. However, the floating embryo
used on all six problems in this chapter is
manifestly inefficient.

Fall 2003 BMI 226 / CS 426 Notes P- 46

ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS

• Second, the components that are inserted
into a developing circuit need not be as
primitive as a single transistor, resistor, or
capacitor. Instead, the set of component-
creating functions could easily be expanded
to include numerous frequently-used
combinations of components. Potentially
useful combinations of components include
voltage gain stages, Darlington emitter-
follower sections, current mirrors, cascodes,
three-ported voltage divider subcircuits
composed of two resistors in series, and
three-ported subcircuits consisting of two
resistors (or capacitors) with their common
point connected to power or ground. For
certain problems, the set of primitives could
readily be expanded to include higher-level
entities, such as filters, op amps, oscillators,
voltage-controller current sources,
multipliers, and phase-locked loops.

Fall 2003 BMI 226 / CS 426 Notes P- 47

ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS

• Third, although the runs of the six post-
2000 patented circuits were intentionally
done in a uniform way, a practicing engineer
has no reason to enforce such uniformity. For
example, we did not use automatically
defined functions for any of the six problems.
However, most practical electrical circuits
are replete with reuse. A practicing engineer
would recognize that reuse is specifically
important in at least two of the six problems
(namely the mixed analog-digital integrated
circuit for variable capacitance and the low-
voltage high-current transistor circuit for
testing a voltage source). The practicing
engineer would have no reason to forgo the
manifest benefits of reuse and automatically
defined functions.

Fall 2003 BMI 226 / CS 426 Notes P- 48

ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS

• Fourth, considerable work has been done in
recent years to accelerate the convergence
characteristics of circuit simulators. As a
result, there are numerous commercially
available simulators that are considerably
more efficient than the we used. We use a
version of the SPICE3 simulator (Quarles,
Newton, Pederson, and Sangiovanni-
Vincentelli 1994) that we modified in various
ways. Speedups of up to 10-to-1 are
reportedly possible today.

Fall 2003 BMI 226 / CS 426 Notes P- 49

ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS

• Fifth, there are numerous opportunities to
incorporate problem-specific knowledge into
a run of genetic programming. For example,
the developmental process need not start
merely with modifiable wires. A substructure
of known utility for a particular problem can
be hard-wired into the embryo, thereby
relieving genetic programming of the need to
reinvent it.

Fall 2003 BMI 226 / CS 426 Notes P- 50

ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS

• Sixth, it is possible to integrate general
knowledge of electrical engineering into a run
of genetic programming. For example,
Sripramong and Toumazou (2002) combine
current-flow analysis into their runs of
genetic programming for the purpose of
automatically synthesizing CMOS amplifiers.

Fall 2003 BMI 226 / CS 426 Notes P- 51

ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS

• Seventh, the efficiency of runs can be
improved by adapting several of the
principles set forth in The Design of
Innovation: Lessons from and for Competent
Genetic Algorithms (Goldberg 2002) to the
domain of genetic programming.

Fall 2003 BMI 226 / CS 426 Notes P- 52

ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS

• Eighth, because there usually are multiple
competing elements in the fitness measures of
problems of circuit synthesis in the real
world, the efficiency of runs of genetic
programming can be improved by using
some of the recently published new
techniques of multiobjective optimization
(Osyczka 1984; Bagchi 1999; Deb 2001;
Coello Coello, Van Veldhuizen, and Lamont
2002; and Zitzler, Deb, Thiele, Coello Coello,
and Corne 2001).

Fall 2003 BMI 226 / CS 426 Notes P- 53

ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS

• Ninth, the efficiency of runs can be
improved by adapting some of the innovative
ideas in Efficient and Accurate Parallel
Genetic Algorithms (Cantu-Paz 2000) to the
domain of genetic programming.

Fall 2003 BMI 226 / CS 426 Notes P- 54

ACCELERATION OF RUNS OF POST-
2000 PATENTED CIRCUITS

• Tenth, there has been an outpouring of
theoretical work in the past few years on the
theory of genetic algorithms and genetic
programming. Many of the insights in
Foundations of Genetic Programming
(Langdon and Poli 2002) can be used to
improve the efficiency of runs of genetic
programming.

