REVIEW OF PROBLEMS IN GENETIC PROGRAMMING (1992) BOOK
GENETIC PROGRAMMING

MAJOR TYPES OF TERMINALS

<table>
<thead>
<tr>
<th>Type of terminals</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean independent variable</td>
<td>Boolean multiplexer</td>
</tr>
<tr>
<td></td>
<td>Boolean functions of two and three arguments</td>
</tr>
<tr>
<td></td>
<td>Design of two-bit adder circuit</td>
</tr>
<tr>
<td></td>
<td>Neural network design</td>
</tr>
<tr>
<td></td>
<td>Even-4-parity with automatic function definition</td>
</tr>
<tr>
<td>Floating-point independent variable</td>
<td>Symbolic regression</td>
</tr>
<tr>
<td></td>
<td>Symbolic regression with constant creation</td>
</tr>
<tr>
<td></td>
<td>Trigonometric identities</td>
</tr>
<tr>
<td></td>
<td>Solving a pair of linear equations</td>
</tr>
<tr>
<td></td>
<td>Empirical discovery</td>
</tr>
<tr>
<td></td>
<td>Symbolic integration</td>
</tr>
<tr>
<td></td>
<td>Symbolic differentiation</td>
</tr>
<tr>
<td></td>
<td>Solving differential equations</td>
</tr>
<tr>
<td></td>
<td>Solving integral equations</td>
</tr>
<tr>
<td></td>
<td>Solving general functional equations</td>
</tr>
<tr>
<td></td>
<td>Solving quadratic equations</td>
</tr>
<tr>
<td></td>
<td>Inverse kinematics</td>
</tr>
<tr>
<td></td>
<td>Fourier series</td>
</tr>
<tr>
<td></td>
<td>Biathlon (symbolic regression)</td>
</tr>
<tr>
<td>Integer independent variable</td>
<td>Sequence induction</td>
</tr>
<tr>
<td></td>
<td>Randomizer</td>
</tr>
<tr>
<td>Multiple independent floating-point variables</td>
<td>Symbolic multiple regression</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Programmatic image compression</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State of the system</th>
<th>Cart centering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Broom balancing</td>
</tr>
<tr>
<td></td>
<td>Truck backer upper</td>
</tr>
<tr>
<td></td>
<td>Differential pursuer-evader game</td>
</tr>
<tr>
<td></td>
<td>Discrete non-hamstrung squad car game (see Appendix B.3)</td>
</tr>
<tr>
<td></td>
<td>One-dimensional cellular automata</td>
</tr>
<tr>
<td></td>
<td>Two-dimensional cellular automata</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminals are functions with no arguments</th>
<th>Artificial ant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Central place food foraging</td>
</tr>
<tr>
<td></td>
<td>Emergent collecting behavior for ants</td>
</tr>
<tr>
<td></td>
<td>Wall following robot</td>
</tr>
<tr>
<td></td>
<td>Box moving robot</td>
</tr>
<tr>
<td></td>
<td>Task prioritization (Pac Man)</td>
</tr>
<tr>
<td></td>
<td>Biathlon (artificial ant)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class names</th>
<th>Induction of decision trees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grammar induction</td>
</tr>
<tr>
<td></td>
<td>Intertwined spirals</td>
</tr>
<tr>
<td></td>
<td>Discrete 32-outcome game</td>
</tr>
<tr>
<td></td>
<td>Co-evolution of discrete 32-outcome game</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The terminals are only ephemeral random constants</th>
<th>Solving equations for numeric roots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Finding a global optimum point</td>
</tr>
</tbody>
</table>

<p>| Input sensors | Block stacking |</p>
<table>
<thead>
<tr>
<th>Settable variables in addition to the usual terminals</th>
<th>Iterative summation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursive reference to previous computation</td>
<td>Local tracking of a dynamical system</td>
</tr>
<tr>
<td>Parameters</td>
<td>Optimization — Anolis lizard</td>
</tr>
</tbody>
</table>
MAJOR TYPES OF FUNCTIONS

<table>
<thead>
<tr>
<th>Type of Function</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Arithmetic operations | Solving a pair of linear equations
| | Sequence induction
| | Programmatic image compression
| | Differential pursuer-evader game
| | Fourier series
| | Biathlon (artificial ant)
| | Local tracking of a dynamical system
| | Finding a global optimum point |
| Arithmetic operations plus some transcendental functions | Symbolic regression
| | Trigonometric identities
| | Symbolic regression with constant creation
| | Empirical discovery
| | Symbolic integration
| | Symbolic differentiation
| | Solving differential equations
| | Solving integral equations
| | Solving general functional equations
| | Solving equations for numeric roots
| | Multiple symbolic regression
| | Inverse kinematics |
| Arithmetic operations plus integer modular functions | Randomizer |
| Arithmetic operations plus some transcendental functions and/or decision making function | Cart centering
Broom balancing
Truck backer upper
Intertwined spirals
Optimization — *Anolis* lizard |
|---|---|
| Various IF, CASE, and testing functions | Artificial Ant
Central place food foraging
Emergent collecting behavior for ants
Wall following robot
Box moving robot
Discrete non-hamstrung squad car game (see Appendix B.3)
Induction of decision trees
Grammar induction
Discrete 32-outcome game
Co-evolution of discrete 32-outcome game
Biathlon (artificial ant) |
| Boolean functions | Boolean multiplexer
Boolean functions of two and three arguments
Design of two-bit adder circuit
One-dimensional cellular automata
Two-dimensional cellular automata |
| Complex arithmetic | Solving quadratic equations |
| Problem specific | Neural network design
Task prioritization (Pac Man)
Block stacking |
<table>
<thead>
<tr>
<th>Automatically defined functions in addition to usual functions</th>
<th>Even-4-parity with automatic function definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment function in addition to the usual functions</td>
<td>Iterative summation</td>
</tr>
<tr>
<td>Combinations</td>
<td>Biathlon (some of the time)</td>
</tr>
</tbody>
</table>
TYPES OF WRAPPERS

<table>
<thead>
<tr>
<th>Type of wrapper</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bang-bang force</td>
<td>Cart centering, Broom balancing</td>
</tr>
<tr>
<td>Saturating value</td>
<td>Truck backer upper</td>
</tr>
<tr>
<td>Limited range of integers</td>
<td>Programmatic image compression (i.e., color values)</td>
</tr>
<tr>
<td>Binary</td>
<td>Randomizer, Intertwined spirals, Optimization — Anolis lizard</td>
</tr>
<tr>
<td>Complex numbers</td>
<td>Solving quadratic equations</td>
</tr>
<tr>
<td>Type of fitness measure</td>
<td>Examples</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>

MAJOR TYPES OF FITNESS MEASURES
<table>
<thead>
<tr>
<th>Error</th>
<th>Symbolic regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Symbolic regression with constant creation</td>
</tr>
<tr>
<td></td>
<td>Trigonometric identities</td>
</tr>
<tr>
<td></td>
<td>Solving a pair of linear equations</td>
</tr>
<tr>
<td></td>
<td>Boolean multiplexer</td>
</tr>
<tr>
<td></td>
<td>Boolean functions of two and three arguments</td>
</tr>
<tr>
<td></td>
<td>Empirical discovery</td>
</tr>
<tr>
<td></td>
<td>Symbolic integration</td>
</tr>
<tr>
<td></td>
<td>Symbolic differentiation</td>
</tr>
<tr>
<td></td>
<td>Solving differential equations</td>
</tr>
<tr>
<td></td>
<td>Solving integral equations</td>
</tr>
<tr>
<td></td>
<td>Solving general functional equations</td>
</tr>
<tr>
<td></td>
<td>Solving equations for numeric roots</td>
</tr>
<tr>
<td></td>
<td>Sequence induction</td>
</tr>
<tr>
<td></td>
<td>Programmatic image compression</td>
</tr>
<tr>
<td></td>
<td>Multiple symbolic regression</td>
</tr>
<tr>
<td></td>
<td>Solving quadratic equations</td>
</tr>
<tr>
<td></td>
<td>Fourier series</td>
</tr>
<tr>
<td></td>
<td>Design of a two-bit adder circuit</td>
</tr>
<tr>
<td></td>
<td>Neural network design</td>
</tr>
<tr>
<td></td>
<td>Biathlon (symbolic regression)</td>
</tr>
<tr>
<td></td>
<td>Local tracking of a dynamical system</td>
</tr>
<tr>
<td></td>
<td>Finding a global optimum point</td>
</tr>
<tr>
<td></td>
<td>Even-4-parity with automatic function definition</td>
</tr>
<tr>
<td></td>
<td>Iterative summation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance shortfall</th>
<th>Inverse kinematics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Box moving robot</td>
</tr>
<tr>
<td></td>
<td>Truck backer upper</td>
</tr>
</tbody>
</table>
| Problem specific payoff | Artificial ant
Block stacking (correct)
Discrete 32-outcome game
Central place food foraging
Task prioritization (Pac Man)
Wall following robot
Biathlon (artificial ant)
Optimization — Anolis lizard |
|-------------------------|--|
| Time | Cart centering
Broom balancing
Differential pursuer-evader game
Discrete non-hamstrung squad car game
(see Appendix B.3) |
| Instances correctly identified | Induction of decision trees
Grammar induction
Intertwined spirals |
| Entropy | Randomizer
One-dimensional cellular automata
Two-dimensional cellular automata |
| Center of gravity | Emergent collecting behavior for ants |
| Combination of factors | Block stacking (correct and efficient)
Block stacking (correct, efficient, and parsimonious)
Differential equations with initial conditions |
| Co-Evolution | Co-evolution of discrete 32-outcome game |
| Changing fitness measure | Biathlon
Changing Boolean functions |
MAJOR TYPES OF FITNESS CASES

<table>
<thead>
<tr>
<th>Type of fitness case</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Random floating-point numbers in a specified range for each independent variable | Symbolic regression
Symbolic regression with constant creation
Trigonometric identities
Symbolic integration
Symbolic differentiation
Solving differential equations
Solving integral equations
Solving general functional equations
Programmatic image compression
Multiple symbolic regression
Fourier series
Biathlon (symbolic regression)
Finding a global optimum point
Iterative summation |
| Consecutive integers as independent variable | Sequence induction
Randomizer
Local tracking of a dynamical system |
| Regularly chosen sample points | Intertwined spirals
Inverse kinematics |
| Combinations of Boolean values | Boolean multiplexer
Boolean functions of two and three arguments
Design of two-bit adder circuit
Neural network design
Even-4-parity with automatic function definition |
|---------------------------------|--|
| Randomly chosen initial conditions of a system | Cart centering
Broom balancing
Truck backer upper
Box moving robot
Discrete non-hamstrung squad car game (see Appendix B.3)
Emergent collecting behavior for ants
Differential pursuer-evader game |
| One fitness case | Artificial ant
Biathlon (artificial ant)
Central place food foraging
Wall following robot
Task prioritization (Pac Man)
Solving equations for numeric roots |
| Sets of equations | Solving a pair of linear equations
Solving quadratic equations |
| Temporal sample | One-dimensional cellular automata
Two-dimensional cellular automata |
<p>| Combinations of plays in a game | Discrete 32-outcome game |
| Co-evolution | Co-evolution of discrete 32-outcome game |</p>
<table>
<thead>
<tr>
<th>Structured sample</th>
<th>Block stacking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training examples</td>
<td>Induction of decision trees</td>
</tr>
<tr>
<td>Sequence of data</td>
<td>Grammar induction</td>
</tr>
<tr>
<td>Monte Carlo experiments</td>
<td>Optimization — Anolis lizard</td>
</tr>
<tr>
<td>Given data</td>
<td>Empirical discovery</td>
</tr>
</tbody>
</table>
TYPES OF SIMULATIONS OF BEHAVIOR

<table>
<thead>
<tr>
<th>Type of simulations of behavior</th>
<th>Examples</th>
</tr>
</thead>
</table>
| **Simulation involving a number of time steps** | Cart centering
Broom balancing
Differential pursuer-evader game
Discrete non-hamstrung squad car game (see Appendix B.3)
Emergent collecting behavior for ants
Block stacking
Artificial ant
Biathlon (some of the time)
Central place food foraging |
| **Simulation involving a number of time steps and a terminating physical event** | Truck backer upper
Box moving robot
Wall following robot
Task prioritization (Pac Man) |
| **Temporal sample** | One-dimensional cellular automata
Two-dimensional cellular automata |
| **Simulation involving a number of plays or events** | Discrete 32-outcome game
Optimization — *Anolis* lizard |
| **Simulation involving co-evolution** | Co-evolution of discrete 32-outcome game strategies |
| Time series | Randomizer |
POPULATION SIZE

<table>
<thead>
<tr>
<th>Population sizes</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Boolean functions of two and three arguments</td>
</tr>
<tr>
<td>100</td>
<td>Discrete non-hamstrung squad car game (see Appendix B.3)</td>
</tr>
<tr>
<td>300</td>
<td>Co-evolution of discrete 32-outcome game</td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Cart centering</td>
<td></td>
</tr>
<tr>
<td>Symbolic regression</td>
<td></td>
</tr>
<tr>
<td>Artificial ant</td>
<td></td>
</tr>
<tr>
<td>Trigonometric identities</td>
<td></td>
</tr>
<tr>
<td>Symbolic regression with constant creation</td>
<td></td>
</tr>
<tr>
<td>Empirical discovery of exchange equation</td>
<td></td>
</tr>
<tr>
<td>Empirical discovery of Kepler's Law</td>
<td></td>
</tr>
<tr>
<td>Symbolic integration</td>
<td></td>
</tr>
<tr>
<td>Symbolic differentiation</td>
<td></td>
</tr>
<tr>
<td>Solving differential equations</td>
<td></td>
</tr>
<tr>
<td>Solving integral equations</td>
<td></td>
</tr>
<tr>
<td>Solving general functional equations</td>
<td></td>
</tr>
<tr>
<td>Solving equations for numeric roots</td>
<td></td>
</tr>
<tr>
<td>Sequence induction</td>
<td></td>
</tr>
<tr>
<td>Broom balancing</td>
<td></td>
</tr>
<tr>
<td>Central place food foraging</td>
<td></td>
</tr>
<tr>
<td>Emergent collecting behavior for ants</td>
<td></td>
</tr>
<tr>
<td>Task prioritization (Pac Man)</td>
<td></td>
</tr>
<tr>
<td>Box moving robot</td>
<td></td>
</tr>
<tr>
<td>Randomizer</td>
<td></td>
</tr>
<tr>
<td>One-dimensional cellular automata</td>
<td></td>
</tr>
<tr>
<td>Two-dimensional cellular automata</td>
<td></td>
</tr>
<tr>
<td>Discrete 32-outcome game</td>
<td></td>
</tr>
<tr>
<td>Induction of decision trees</td>
<td></td>
</tr>
<tr>
<td>Grammar induction</td>
<td></td>
</tr>
<tr>
<td>Block stacking</td>
<td></td>
</tr>
<tr>
<td>Iterative summation</td>
<td></td>
</tr>
<tr>
<td>Multiple symbolic regression</td>
<td></td>
</tr>
<tr>
<td>Solving a pair of linear equations</td>
<td></td>
</tr>
<tr>
<td>Inverse kinematics</td>
<td></td>
</tr>
<tr>
<td>Neural network design</td>
<td></td>
</tr>
</tbody>
</table>
| 1,000 | Truck backer upper
Wall following robot
Design of two-bit adder circuit
Biathlon
Optimization — *Anolis* lizard |
|-------|---|
| 2,000 | Programmatic image compression
Box moving robot
Solving quadratic equations
Fourier series
Local tracking of a dynamical system
Finding a global optimum point |
| 4,000 | Boolean multiplexer
Even-4-parity with automatic function definition |
| 10,000 | Intertwined spirals |