BMI 226 / CS 426 - Fall 2003 - APPROXIMATE SCHEDULE - Version A

The deadlines for selecting project and turning In project will not change. The deadlines for problem sets are unlikely to change. The rest of the schedule is subject to change (especially in the second half). Updated versions will be circulated during the course.

	2003	Reading Assignments (To Be Read PRIOR to Lecture)	Lecture Items
1	W- Sept 24, 2003		 Description of genetic algorithm (GA) and genetic programming (GP) Overview of field Course administration
2	M – Sept 29	• Read GASOML, Ch 1 • Read GASOML, Ch 2, Pages 27- 54	 Flowchart of GA Preparatory steps for GA 10-member truss example Wire antenna example Artificial ant problem using GA to find finite state automata Artificial ant using GA to find neural net Iterated prisoner's dilemma with GA to find finite state automata Evolution of Communication (GA)
3	W – Oct 1	• PROBLEM SET NO. 1 DUE • Read GP, Part of Ch 3, Pages 17- 59	 GA Hamburger example Schema Schema theorem Schema non-linear equations for GA Variable length string GAs
4	M – Oct 6	 PROBLEM SET NO. 2 DUE Read GP, Ch 5, pages 73-77 Read GP, parts of Ch 6, pages 79-104 and 113-116 Read GP, Ch 7, pages 121-147 (cart centering) Skim GP, part of Ch 4, pages 68-70 (background on LISP) START MEETINGS WITH JK ON SELECTION AND APPROVAL OF PROPOSED PROJECTS 	 Intro to Genetic Programming (GP) Symbolic regression of polynomial, Boolean 11-multiplexer (GP) Cart centering problem (GP) Parts of <i>Genetic Programming: The Movie</i> Artificial Ant problem using GP Discussion of how to select project
5	W – Oct 8	Read GASOML, Ch 3 Read GP, Ch 7, pages 147–190 (artificial ant using GP, symbolic regression of polynomial, Boolean 11-multiplexer)	 GENESIS software in C for GA Goldberg's SGA software Various GA Applications GA Hamming cliff and Gray code GP Constrained Syntactic Structures (strong typing) GP Automatically Defined Functions (ADFs) Parts of Genetic Programming II Videotape: The Next Generation
6	M – Oct 13	• PROBLEM SET NO. 3 DUE • Read GP, Appendix B, pages 705-733	"Little LISP" code for GPGP software in C

7	W - Oct 15	 Skim Goldberg GASOML, Pages 99-120, 126-129, and 136-142 in chapter 4 (Applications) Read GP, Ch 10 (Symbolic Regression) Read GP, Ch 11 (Control and Optimization) 	 Symbolic Regression (GP-Ch 10) Application of GP to control problems (cart centering, broom balancing, truck backer upper, and lizard optimization), Parts of <i>Genetic Programming II Videotape: The Next Generation</i>
8	M – Oct 20	 PROBLEM SET NO. 4 DUE Skim GP, Ch 19 (Constrained Syntactic Structures) Read GP, Ch 20 and 21 (ADFs) Skim GP, Ch 12 (Emergent Behavior) 	 Parts of Genetic Programming II Videotape: The Next Generation Emergent behavior using GP Cellular Encoding of Neural Networks (developmental GP)
9	W – Oct 22	ALL PROJECT PROPOSALS APPROVED – TURN IN 1- PAGE PROJECT SUMMARY SHEET ON PAPER OR BY E- MAIL Read GP, Ch 8 (Computational Effort)	 Computational Effort Time-Saving techniques and other practical aspects of GA and GP programming Common mistakes in applying GAs Art of applying Gas Discussion of how to do project and how to write up project
10	M – Oct 27	• Read Koza <u>Hand-Out</u> on transmembrane domains	 Biological motivations for GAs GA and GP applications to molecular biology Transmembrane segment identification problem Iteration and recursion
11	W – Oct 29	• Read Koza et al. <u>Hand-Out</u> on automated synthesis of analog electrical circuits	 Automated synthesis of topology and sizing for analog electrical circuits Kruiskamp GA for evolving op amp <i>Genetic Programming III Videotape:</i> <i>Human-Competitive Machine Intelligence</i> (45 minutes)
12	M – Nov 3	• Read Koza <u>Hand-Out</u> on gene duplication and architecture- altering operations	• Architecture-altering operations for the evolution of architecture for multi-part programs in GP
13	W – Nov 5	• Read Koza et al. <u>Hand-Out</u> on automated synthesis of controllers	 Automated synthesis of controllers Parameterized topologies for circuits Parameterized topologies for controllers
14	M – Nov 10	 Skim GP, Ch 22 (Parallelization) Skim Goldberg GASOML, Ch 5, Pages 208-212 	Parallelization of GAsParallelization of GA and GP
15	W – Nov 12	• Read Koza et. al. <u>Hand-Out</u> on evolvable hardware (EH) using field-programmable gate arrays (FPGAs)	 Evolvable hardware (EH) using field- programmable gate arrays (FPGAs) Evolvable hardware (EH) applications
16	W – Nov 17	 Read Goldberg GASOML, Ch 6 (Classifier Systems) Skim Goldberg GASOML, Ch 7 (Classifier Systems Applications) Skim GP, Ch 13 (Evolution of Subsumption) 	 Classifier systems SCS computer implementation Classifier systems applications Hierarchical credit allocation Parallelizaton of Classifier Systems (Robertson) Default hierarchies Evolution of subsumption using GP

17	M – Nov 24	• Skim GP, Ch 14 (Entropy)	• Automated synthesis of topology, sizing, placement and routing of electrical circuits
			• Entropy-driven evolution of cellular automata randomizers using GP
18	W – Nov 26	• Read <u>Hand-Out on</u> evolution of assembly code	Evolution of assembly codeLinear genome GP
19	M – Dec 1	 Skim GP, Ch 27 (Comparison of ML techniques) Skim GP, Ch 26 (Review of GP) 	 Various search and machine learning paradigms Simulated annealing Decision trees Evolutionary programming, evolution strategies Current research on GA Current research on GP
20	W – Dec 3, 2003 W – Dec 10, 2003	Last meeting of class PROJECTS DUE -3:15 PM - <u>No extensions</u> !!! TAKE-HOME FINAL DISTIRBUTED during class TAKE-HOME FINAL DUE -	Summary COURSE EVALUATION FORMS
		3:15 PM	