
Fall 2003 BMI 226 / CS 426 Notes I-1

TIME-SAVINGS TECHNIQUES

Fall 2003 BMI 226 / CS 426 Notes I-2

TIME-SAVING TECHNIQUES FOR GA
AND GP

• Avoid re-computation of fitness for the
reproduction operation (which may be
performed, say, 9% of the time). This can be
used only when the fitness cases do not vary
from generation to generation.
• Consider reducing accuracy of fitness
calculation. Consider granularity of the data
actually required to adequately solve the
problem (e.g., the 12 sonar distances to the
nearest walls)
• Consider reducing the precision of the
fitness calculation. For example, a short float
data type may be available on your
computer.

Fall 2003 BMI 226 / CS 426 Notes I-3

TIME-SAVING TECHNIQUES —
CONTINUED

• Consider reducing the number of fitness
cases
• Fewer fitness cases often work well
• Potentially increase number of fitness

cases as run progresses
• "Rational Allocation of Trials" (RATS):

In this approach, one only executes as
many fitness cases as necessary to
distinguish individuals (beyond a
statistical doubt). This concept appears in
the literature of many techniques of
machine learning.

Fall 2003 BMI 226 / CS 426 Notes I-4

TIME-SAVING TECHNIQUES 
CONTINUTED

• Use table look-ups when either the state
transition equations of the system being
simulated or the function set involves a lot of
time-consuming (e.g., transcendental)
functions. This was used in wall follower and
box mover problems in GP-1 book.

• Look-up table can be created and used in
lieu of direct function evaluation (e.g.,
Boolean problems, cellular automata
problems)

• Especially useful if there are large
number of points in individual program
• Especially useful with ADFs
• Especially useful with large number of
fitness cases

Fall 2003 BMI 226 / CS 426 Notes I-5

TIME-SAVING TECHNIQUES 
CONTINUTED

• Terminate simulations when

• the values of all the state variables of the
system stabilize
• a trajectory through the state space of the
problem is unacceptable for a reason
exogenous to the mathematical calculation
(e.g., the broom swings through the earth)
• they just take too long. Often, a small
percentage of the individuals consume an
inordinate percentage of the computer
time.

• Put a cap time spent by iterative operator
on one iteration and on individual as a whole
for any particular fitness case.

Fall 2003 BMI 226 / CS 426 Notes I-6

TIME-SAVING TECHNIQUES 
CONTINUTED

• Consider unobvious parts of the algorithm,
such as the randomizer
• Consider other parts of the algorithm, such
as the roulette wheel (possibly replacing it
with an indexing scheme, sort, fast sort, or
tournament selection)
• Disable graphics and other instrumentation
for in production runs
• Use the metering and profiling software!!!

Fall 2003 BMI 226 / CS 426 Notes I-7

TIME-SAVING TECHNIQUES 
CONTINUTED

• Parallel computers
• Rapidly reconfigurable field programmable
gate arrays (FPGA) to get massive
parallelization at hardware speeds or field
programmable transistor arrays (FPTA) for
analog circuits containing transistors

Fall 2003 BMI 226 / CS 426 Notes I-8

ACCELERATING GP

• If the number of fitness cases to be handled
by each individual in the population is large,
consider compiling (in GP) each individual
program
• GP assembly code (Peter Nordin)

Fall 2003 BMI 226 / CS 426 Notes I-9

MEMORY-SAVING TECHNIQUES

• 1-byte representation for GP
• Permits about 200 random constants (and
about 56 functions)
• Also: 2-byte representation

PROGRAMMER-SAVING TECHNIQUES

• Optimize your time, too. Many parts of the
code are virtually irrelevant to optimization

Fall 2003 BMI 226 / CS 426 Notes I-10

COMMON MISTAKES IN APPLYING
GENETIC ALGORITHMS

• Population is MUCH TOO small
• Mutation rate is TOO HIGH
• Excessive GREED is introduced
• Improper initialization
• Fitness is not adequately gradated
• Hand-crafted crossover operators cause
mutation to be introduced for virtually every
crossover
• Hand-crafted crossover operators are not
in sync with the problem
• Misapplying rules of thumb

