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THE CHALLENGE 
 

"How can computers learn to solve problems without 
being explicitly programmed?  In other words, how 
can computers be made to do what is needed to be 
done, without being told exactly how to do it?"  

        Attributed to Arthur Samuel (1959) 
 
 

CRITERION FOR SUCCESS 
 

"The aim [is] ... to get machines to exhibit behavior, 
which if done by humans, would be assumed to 
involve the use of intelligence." 

        Arthur Samuel (1983) 
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SOME (OF THE MANY) 
REPRESENTATIONS USED TO TRY TO 

ACHIEVE MACHINE INTELLIGENCE IN 
THE FIELDS OF ARTIFICIAL 

INTELLIGENCE (AI) AND MACHINE 
LEARNING (ML) 

 
• Decision trees 
• If-then production rules (e.g., expert system) 
• Horn clauses 
• Neural nets (matrices of numerical weights) 
• Bayesian networks 
• Frames 
• Propositional logic 
• Binary decision diagrams 
• Formal grammars  
• Vectors of numerical coefficients for polynomials (adaptive 
systems) 
• Tables of values (reinforcement learning) 
• Conceptual clusters  
• Concept sets  
• Parallel if-then rules (e.g., genetic classifier systems) 
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A COMPUTER PROGRAM 
 

Potential
Recursions

Potential
Internal
Storage

Program

Potential
Subroutines

Input Output

Potential
Loops

 
  

 
 

REPRESENTATION 
• "Our view is that computer programs are the best 
representation of computer programs." 
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FLOWCHART FOR GENETIC 
PROGRAMMING (GP) 

Perform Reproduction

Yes

No

Gen := Gen + 1

Select Two Individuals
Based on Fitness

Perform
Crossover

Perform Mutation Insert Mutant into
New Population

Copy into New
Population

i := i + 1

Select One Individual
Based on Fitness

Pr

Pc

Pm

Select Genetic Operation

i = M?

Create Initial Random
Population for Run

No

Termination Criterion
Satisfied for Run?

Yes

Gen := 0 Run := Run + 1

Designate
Result for Run

End

Run := 0

i := 0

No
Run = N?

Yes

i := 0

i := i + 1i = M?

Apply Fitness Measure to Individual in the Population

Yes

No

Select One Individual
Based on Fitness

Insert  Offspring
into New

Population
i := i + 1

Select an Architecture Altering Operation
Based on its Specified Probability

Perform the
Architecture Altering

Operation

Insert  Offspring into
New Population

Select One Individual
Based on Fitness  
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COMPUTER PROGRAM  
=  PARSE TREE  =  PROGRAM TREE 

=  PROGRAM IN LISP =  DATA  =  LIST 
 
(+ 1 2 (IF (> TIME 10) 3 4))  

 
• ATOMS (TERMINALS) = 1, 2, 10, 3, 4, TIME 
 
• FUNCTIONS = +, IF, >  
 

+

>

10

43

21

TIME

IF
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EXAMPLE OF RANDOM CREATION OF 
A PROGRAM TREE 

 
• Terminal set T = {A, B, C} 
• Function set F = {+, –, *, %, IFLTE} 
 

BEGIN WITH TWO-ARGUMENT + 
+

 
CONTINUE WITH TWO-ARGUMENT * 

+

*

1

2

 
COMPLETE WITH TERMINALS A, B, 

AND C 
+

*

A B

C

 
• The result is a syntactically valid executable program 
(provided the set of functions is closed) 
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MUTATION OPERATION 
 

• Select parent probabilistically based on fitness 
• Pick point from 1 to NUMBER-OF-POINTS 
• Delete subtree at the picked point 
• Grow new subtree at the mutation point in same way as 
generated trees for initial random population (generation 0) 
• The result is a syntactically valid executable program 
 

ONE PARENTAL PROGRAM 
OR

NOR

D0 D1D2 D1

AND

1

32

4 765  
 

OFFSPRING PRODUCED BY MUTATION 

NOR

NOT NOT

D0 D1

OR

NOR

D0 D1
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CROSSOVER (SEXUAL 
RECOMBINATION) OPERATION FOR 

COMPUTER PROGRAMS 
 
• Select two parents probabilistically based on fitness 
• Randomly pick a number from 1 to NUMBER-OF-POINTS 
– independently for each of the two parental programs 
• Identify the two subtrees rooted at the two picked points 

0.234Z + X – 0.789

X 0.789

–

0.234 Z

*

+

ZY(Y + 0.314Z)

Z Y

*

0.314 Z

*Y

+

*
1 1

2 25 5

8 9

3 34 46 7 76

 
 
 

Parent 1: 
(+ (* 0.234 Z) (- X 0.789)) 

 
Parent 2: 
(* (* Z Y) (+ Y (* 0.314 Z))) 
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THE CROSSOVER OPERATION 
(TWO OFFSPRING VERSION) 

 

X 0.789

–

+

0.314 Z

*Y

+

Y + 0.314Z + X – 0.789

Z Y

*

*

0.234 Z

*

0.234Z  Y2

 
Offspring 1: 
(+ (+ Y (* 0.314 Z)) 
   (- X 0.789)) 

 
Offspring 2: 
(* (* Z Y) (* 0.234 Z)) 
 

• The result is a syntactically valid executable program 
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FIVE MAJOR PREPARATORY STEPS 
FOR GP 

 
• Determining the set of terminals 
• Determining the set of functions 
• Determining the fitness measure 
• Determining the parameters for the run 

• population size 
• number of generations 
• minor parameters 

• Determining the method for designating a 
result and the criterion for terminating a run 
 

Terminal Set
Function Set
Fitness Measure
Parameters
Termination
Criterion

GP A Computer
Program
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(ABBREVIATED) TABLEAU FOR 
SYMBOLIC REGRESSION OF 

QUADRATIC POLYNOMIAL X2 + X + 1 
 Objective: Find a computer program with one 

input (independent variable x), 
whose output equals the value of the 
quadratic polynomial x2 + x + 1 in 
range from -1 to +1.  

1 Terminal set: T = {X} 
2 Function set: F = {+,  -,  *, %} 

NOTE: The protected division 
function % returns a value of 1 when 
division by 0 is attempted (including 
0 divided by 0) 

3 Fitness: The sum of the absolute value of the 
differences (errors), computed (in 
some  way) over values of the 
independent variable x from –1.0 to 
+1.0, between the program’s output 
and the target quadratic polynomial 
x2 + x + 1.  

4 Parameters: Population size M = 4.   
5 Termination: An individual emerges whose sum 

of absolute errors is less than 0.1 
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SYMBOLIC REGRESSION OF 
QUADRATIC POLYNOMIAL X2 + X + 1 

 
INITIAL POPULATION OF FOUR 

RANDOMLY CREATED INDIVIDUALS 
OF GENERATION 0 

 

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

 
X + 1 X2 + 1 2 X 

 
FITNESS 

 
0.67 1.00 1.70 2.67 
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SYMBOLIC REGRESSION OF 
QUADRATIC POLYNOMIAL X2 + X + 1 

 

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

 
 

GENERATION 1 

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

 
x + 1 
 
Copy of (a) 

1 
 
Mutant of (c) 
 
—picking “2” 
as mutation 
point 

X 
 
First 
offspring of 
crossover of 
(a) and (b) 
 
—picking “+” 
of parent (a) 
and left-most 
“x” of parent 
(b) as 
crossover 
points 

x2 + x + 1 
 
Second 
offspring of 
crossover of 
(a) and (b) 
 
—picking “+” 
of parent (a) 
and left-most 
“x” of parent 
(b) as 
crossover 
points 
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SYMBOLIC REGRESSION 
OF QUARTIC POLYNOMIAL X4+X3+X2+X 

(WITH 21 FITNESS CASES) 
Independent 
variable X 
(Input) 

Dependent 
Variable Y 
(Output) 

-1.0 0.0000 
-0.9 -0.1629 
-0.8 -0.2624 
-0.7 -0.3129 
-0.6 -0.3264 
-0.5 -0.3125 
-0.4 -0.2784 
-0.3 -0.2289 
-0.2 -0.1664 
-0.1 -0.0909 

0 0.0 
0.1 0.1111 
0.2 0.2496 
0.3 0.4251 
0.4 0.6496 
0.5 0.9375 
0.6 1.3056 
0.7 1.7731 
0.8 2.3616 
0.9 3.0951 
1.0 4.0000 
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TABLEAU  SYMBOLIC REGRESSION 
OF QUARTIC POLYNOMIAL X4+X3+X2+X 
Objective: Find a function of one independent 

variable, in symbolic form, that fits a 
given sample of 21 (xi, yi) data points 

Terminal set: X (the independent variable). 
Function set: +,  -, *, %, SIN, COS, EXP, 

RLOG 
Fitness cases: The given sample of 21 data points (xi, 

yi) where the xi are in interval [–1,+1]. 
Raw fitness: The sum, taken over the 21 fitness cases, 

of the absolute value of difference 
between value of the dependent variable 
produced by the individual program and 
the target value yi of the dependent 
variable. 

Standardized 
fitness: 

Equals raw fitness. 

Hits: Number of fitness cases (0 – 21) for 
which the value of the dependent 
variable produced by the individual 
program comes within 0.01 of the target 
value yi of the dependent variable. 

Wrapper: None. 
Parameters: Population size, M = 500.   

Maximum number of generations to be 
run, G = 51. 

Success 
Predicate: 

An individual program scores 21 hits. 
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SYMBOLIC REGRESSION 
OF QUARTIC POLYNOMIAL X4+X3+X2+X 

 
 

WORST-OF-GENERATION INDIVIDUAL 
IN GENERATION 0 WITH RAW FITNESS 

OF 1038 
 

(EXP (- (% X (- X (SIN X))) 
(RLOG (RLOG (* X X))))) 
 

Equivalent to  

ex/(x-sin x) - log log x*x 
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SYMBOLIC REGRESSION 
OF QUARTIC POLYNOMIAL X4+X3+X2+X 

 
MEDIAN INDIVIDUAL IN GENERATION 

0 WITH RAW FITNESS OF 23.67  
(AVERGAGE ERROR OF 1.3) 

 
(COS (COS (+ (- (* X X) (% X 
X)) X))) 

 
Equivalent to  

Cos [Cos (x2 + x – 1)] 
 

-1 0 1

-1

0

1

2

3

4

x  + x  + x  + x4 3 2

Cos [Cos (x  + x –1)]2
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SYMBOLIC REGRESSION 
OF QUARTIC POLYNOMIAL X4+X3+X2+X 

 
BEST-OF-GENERATION INDIVIDUAL IN 
GENERATION 0 WITH RAW FITNESS OF 

4.47 (AVERGAGE ERROR OF 0.2) 
 

(* X (+ (+ (- (% X X) (% X X)) 
(SIN (- X X))) (RLOG (EXP (EXP 
X))))) 

 
Equivalent to 

xex 

 

-1 0 1
-1

0

1

2

3

4
x  + x  + x  + x4 3 2

xe x
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SYMBOLIC REGRESSION 
OF QUARTIC POLYNOMIAL X4+X3+X2+X 

 
CREATION OF GENERATION 1 FROM 

GENERATION 0 
 

 
• In the so-called "generational" model for genetic 
algorithms, a new population is created that is equal in size 
to the old population 

• 1% mutation (i.e., 5 individuals out of 500) 
• 9% reproduction (i.e., 45 individuals) 
• 90% crossover (i.e., 225 pairs of parents  yielding 450 
offspring) 

 
• All participants in mutation, reproduction, and crossover 
are chosen from the current population 
PROBABILISTICALLY, BASED ON FITNESS 

• Anything can happen 
• Nothing is guaranteed 
• The search is heavily (but not completely) biased toward 
high-fitness individuals 
• The best is not guaranteed to be chosen 
• The worst is not necessarily excluded 
• Some (but not much) attention is given even to low-
fitness individuals 
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SYMBOLIC REGRESSION 
OF QUARTIC POLYNOMIAL X4+X3+X2+X 

 
BEST-OF-GENERATION INDIVIDUAL IN 
GENERATION 2 WITH RAW FITNESS OF 

2.57 (AVERGAGE ERROR OF 0.1) 
 

(+ (* (* (+ X (* X (* X (% (% X 
X) (+ X X))))) 
         (+ X (* X X))) X) X) 

 
Equivalent to... 

x4 + 1.5x3 + 0.5x2 + x 
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SYMBOLIC REGRESSION 
OF QUARTIC POLYNOMIAL X4+X3+X2+X 

 
BEST-OF-RUN INDIVIDUAL IN 

GENERATION 34 WITH RAW FITNESS 
OF 0.00 (100%-CORRECT) 

(+ X (* (+ X (* (* (+ X (- (COS 
(- X X)) (- X X))) X) X)) X)) 

Equivalent to 

 x4 + x3 + x2 + x 
 

XX

COS

–

XX XX

–

XX XX

–

+

*

XX

*

XX

XX

+ XX

*

+

XX
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SYMBOLIC REGRESSION 
OF QUARTIC POLYNOMIAL X4+X3+X2+X 

 
OBSERVATIONS 

• GP works on this problem 
• GP determines the size and shape of the 
solution 

• number of operations needed to solve the problem 
• size and shape of the program tree 
• content of the program tree (i.e., sequence of operations) 

• GP operates the same whether the solution 
is linear, polynomial, a rational fraction of 
polynomials, exponential, trigonometric, etc. 
• It's not how a human programmer would 
have done it 

• Cos (X - X) = 1 
• Not parsimonious 

• The extraneous functions – SIN, EXP, 
RLOG, and RCOS are absent in the best 
individual of later generations because they 
are detrimental 

• Cos (X - X) = 1 is the exception that proves the rule 
• The answer is algebraically correct (hence 
no further cross validation is needed) 
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CLASSIFICATION PROBLEM 
INTER-TWINED SPIRALS 
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GP TABLEAU – INTERTWINED SPIRALS 
Objective: Find a program to classify a given point 

in the x-y plane to the red or blue spiral. 
Terminal set: X, Y, ℜ , where ℜ  is the ephemeral 

random floating-point constant ranging 
between –1.000 and +1.000. 

Function set: +, -, *, %, IFLTE, SIN, COS. 
Fitness cases: 194 points in the x-y plane. 
Raw fitness: The number of correctly classified points 

(0 – 194) 
Standardized 
fitness: 

The maximum raw fitness (i.e., 194) 
minus the raw fitness. 

Hits: Equals raw fitness. 
Wrapper: Maps any individual program returning 

a positive value to class +1 (red) and 
maps all other values to class –1 (blue). 

Parameters: M = 10,000 (with over-selection).  G = 51.
Success 
predicate: 

An individual program scores 194 hits. 
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WALL-FOLLOWING PROBLEM 
 

12 SONAR SENSORS 
 

S00 = 12.4

S01 = 16.4 S02 = 12.0 S03 = 12.0 S04 = 16.4

S05 = 9.0

S06 = 16.2

S07 = 22.1S08 = 16.6

S09 = 9.4

S10 = 17.0

S11 = 12.4
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WALL-FOLLOWING PROBLEM 
 

FITNESS MEASURE 
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WALL-FOLLOWING PROBLEM 
BEST PROGRAM OF GENERATION 57 

 
• Scores 56 hits (out of 56)  
• 145point program tree   
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24 PROBLEMS SHOWN IN 1992 
VIDEOTAPE 

GENETIC PROGRAMMING: THE MOVIE 
(KOZA AND RICE 1992) 

• Symbolic Regression 
• Intertwined Spirals 
• Artificial Ant 
• Truck Backer Upper 
• Broom Balancing 
• Wall Following 
• Box Moving 
• Discrete Pursuer-Evader Game 
• Differential Pursuer-Evader Game 
• Co-Evolution of Game-Playing Strategies 
• Inverse Kinematics 
• Emergent Collecting 
• Central Place Foraging 
• Block Stacking 
• Randomizer 
• 1-D Cellular Automata 
• 2-D Cellular Automata 
• Task Prioritization 
• Programmatic Image Compression 
• Finding 3√2 
• Econometric Exchange Equation 
• Optimization (Lizard) 
• Boolean 11-Multiplexer 
• 11-Parity–Automatically Defined Functions 
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AUTOMATICALLY DEFINED 
FUNCTIONS (ADFS, SUBROUTINES) 

 

Potential
Recursions

Potential
Internal
Storage

Program

Potential
Subroutines

Input Output

Potential
Loops

 
 
 
• Subroutines provide one way to REUSE code  possibly 
with different instantiations of the dummy variables (formal 
parameters) 
• Loops (and iterations) provide a 2nd way to REUSE code 
• Recursion provide a 3rd way to REUSE code 
• Memory provides a 4th way  to REUSE the results of 
executing code 
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AUTOMATICALLY DEFINED 
FUNCTIONS (ADFS, SUBROUTINES) 

 
10 FITNESS-CASES SHOWING THE 

VALUE OF THE DEPENDENT 
VARIABLE, D, ASSOCIATED WITH THE 

VALUES OF THE SIX INDEPENDENT 
VARIABLES, L0, W0, H0, L1, W1, H1 

 
Fitness 
case 

L0 W0 H0 L1 W1 H1 Dependent 
variable D 

1 3 4 7 2 5 3 54 
2 7 10 9 10 3 1 600 
3 10 9 4 8 1 6 312 
4 3 9 5 1 6 4 111 
5 4 3 2 7 6 1 –18 
6 3 3 1 9 5 4 –171 
7 5 9 9 1 7 6 363 
8 1 2 9 3 9 2 –36 
9 2 6 8 2 6 10 –24 
10 8 1 10 7 5 1 45 
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AUTOMATICALLY DEFINED 
FUNCTIONS (ADFS, SUBROUTINES) 

 
SOLUTION WITHOUT ADFS 

 
(- (* (* W0 L0) H0) 
   (* (* W1 L1) H1)) 

 
D = W0*L0*H0 – W1*L1*H1 

W0 H0

* L0

* 

* 

L1 H1

* 

W1

– 

 

L1

W1

H1

L0

W0

H0
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AUTOMATICALLY DEFINED 
FUNCTIONS (ADFS, SUBROUTINES) 

 
AN OVERALL COMPUTER PROGRAM 

CONSISTING OF ONE FUNCTION-
DEFINING BRANCH (ADF, 

SUBROUTINE) AND ONE RESULT-
PRODUCING BRANCH (MAIN 

PROGRAM) 
 
(progn  
 (defun volume (arg0 arg1 arg2) 
  (values  
   (* arg0 (* arg1 arg2)))) 
(values  (- (volume L0 W0 H0) 
     (volume L1 W1 H1)))) 

progn

(ARG0 ARG1

defun

ARG0 *

ARG2ARG1

*

valuesVOLUME

–

values

L1 W1 H1

VOLUME

W0 H0L0

VOLUME
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AUTOMATICALLY DEFINED 
FUNCTIONS (ADFS, SUBROUTINES) 

 
IF WE ADD TWO NEW VARIABLES FOR 

VOLUME (V0 ANDV1), THE 6-
DIMENSIONAL NON-LINEAR 

REGRESSION PROBLEM BECOMES AN 
8-DIMENSIONAL PROBLEM 

 
Fitness 
case 

L0 W0 H0 L1 W1 H1 V0 V1 D 

1 3 4 7 2 5 3 84 30 54 
2 7 10 9 10 3 1 630 30 600 
3 10 9 4 8 1 6 360 48 312 
4 3 9 5 1 6 4 135 24 111 
5 4 3 2 7 6 1 24 42 –18 
6 3 3 1 9 5 4 9 180 –171 
7 5 9 9 1 7 6 405 42 363 
8 1 2 9 3 9 2 18 54 –36 
9 2 6 8 2 6 10 96 120 –24 
10 8 1 10 7 5 1 80 35 45 

 
• However, the problem can now be approached as a 2-
dimensional LINEAR regression problem.  
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AUTOMATICALLY DEFINED 
FUNCTIONS (ADFS, SUBROUTINES) 

 
TOP-DOWN VIEW OF THREE STEP 

HIERARCHICAL PROBLEM-SOLVING 
PROCESS 

 
DIVIDE AND CONQUER 

 

Subproblem 1

Subproblem 2

Original
problem

Solution to
original problem

Solution to subproblem 1

Solution to subproblem 2

Decompose Solve
subproblems

Solve original
problem

 
 
 
• Decompose a problem into subproblems 
 
• Solve the subproblems 
 
• Assemble the solutions of the subproblems 
into a solution for the overall problem 
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AUTOMATICALLY DEFINED 
FUNCTIONS (ADFS, SUBROUTINES) 

 
BOTTOM-UP VIEW OF THREE STEP 

HIERARCHICAL PROBLEM-SOLVING 
PROCESS 

 
Identify

regularities
Change

representation Solve

Second recoding rule

First recoding ruleOriginal
representation

of the
problem

New
representation

of the
 problem

Solution to
problem

 
 
 
• Identify regularities 
 
• Change the representation 
 
• Solve the overall problem 
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AUTOMATICALLY DEFINED 
FUNCTIONS (ADFS, SUBROUTINES) 

 
• In generation 0, we create a population of programs, each 
consisting of a main result-producing branch (RPB) and one 
or more function-defining branches (automatically defined 
functions, ADFs, subroutines) 

• Different ingredients for RPB and ADFs  
• The terminal set of an ADF typically contains dummy 
arguments (formal parameters), such as ARG0, ARG1, …  
• The function set of the RPB contains ADF0, …  
• ADFs are private and associated with a particular 
individual program in the population 

• The entire program is executed and evaluated for fitness 
• Genetic operation of reproduction is the same as before 
• Mutation operation starts (as before) by picking a 
mutation point from either RPB or an ADF and deleting the 
subtree rooted at that point.  As before, a subtree is then 
grown at the point.  The new subtree is composed of the 
allowable ingredients for that point  so that the result is a 
syntactically valid executable program.  
• Crossover operation starts (as before) by picking a 
crossover point from either RPB or an ADF of one parent.  
The choice of crossover point in the second parent is then 
restricted (e.g., to the RPB or to the ADF)  so that when 
the subtrees are swapped, the result is a syntactically valid 
executable program.   
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AUTOMATICALLY DEFINED 
FUNCTIONS (ADFS, SUBROUTINES) 

 
8 MAIN POINTS FROM BOOK 
GENETIC PROGRAMMING II: 

AUTOMATIC DISCOVERY OF REUSABLE 
PROGRAMS (KOZA 1994) 

 
• ADFs work.   
• ADFs do not solve problems in the style of human 
programmers.   
• ADFs reduce the computational effort required to solve a 
problem.  
• ADFs usually improve the parsimony of the solutions to a 
problem.   
• As the size of a problem is scaled up, the size of solutions 
increases more slowly with ADFs than without them.  
• As the size of a problem is scaled up, the computational 
effort required to solve a problem increases more slowly 
with ADFs than without them.   
• The advantages in terms of computational effort and 
parsimony conferred by ADFs increase as the size of the 
problem is scaled up.  
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REUSE 
 

MEMORY AND STORAGE 
 

(A)                   (B)                     (C)                            (D) 
 
• (A) Settable (named) variables (Genetic Programming, 
Koza 1992) using setting (writing) functions (SETM0 X) 
and (SETM1 Y) and reading by means of terminals M0 and 
M1. 
• (B) Indexed memory similar to linear (vector) computer 
memory (Teller 1994) using (READ K) and(WRITE X K) 
• (C) Matrix memory (Andre 1994) 
• (D) Relational memory (Brave 1995, 1996) 

 
LANGDON'S DATA STRUCTURES 

• Stacks 
• Queues 
• Lists 
• Rings 
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REUSE 
 

AUTOMATICALLY DEFINED 
ITERATIONS (ADIS) 

 
• Overall program consisting of an automatically defined 
function ADF0, an iteration-performing branch IPB0, and a 
result-producing branch RPB0.  
• Iteration is over a known, fixed set  

• protein or DNA sequence (of varying length 
• time-series data 
• two-dimensional array of pixels 
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REUSE 
 

TRANSMEMBRANE SEGMENT 
IDENTIFICATION PROBLEM 

 
• Goal is to classify a given protein segment as being a 
transmembrane domain or non-transmembrane area of the 
protein 
• Generation 20  Run 3  Subset-creating version 

• in-sample correlation of 0.976  
• out-of-sample correlation of 0.968 
• out-of-sample error rate 1.6% 
(progn  
 
    (defun ADF0 () 
(ORN (ORN (ORN (I?) (H?)) (ORN (P?) (G?))) (ORN (ORN 
(ORN (Y?) (N?)) (ORN (T?) (Q?))) (ORN (A?) (H?)))))) 
 
    (defun ADF1 () 
(values (ORN (ORN (ORN (A?) (I?)) (ORN (L?) (W?))) 
(ORN (ORN (T?) (L?)) (ORN (T?) (W?)))))) 
 
    (defun ADF2 () 
(values (ORN (ORN (ORN (ORN (ORN (D?) (E?)) (ORN (ORN 
(ORN (D?) (E?)) (ORN (ORN (T?) (W?)) (ORN (Q?) 
(D?)))) (ORN (K?) (P?)))) (ORN (K?) (P?))) (ORN (T?) 
(W?))) (ORN (ORN (E?) (A?)) (ORN (N?) (R?)))))) 
 
    (progn (loop-over-residues 
       (SETM0 (+ (- (ADF1) (ADF2)) (SETM3 M0)))) 
 
    (values (% (% M3 M0) (% (% (% (- L -0.53) (* M0 
M0)) (+ (% (% M3 M0) (% (+ M0 M3) (% M1 M2))) M2)) (% 
M3 M0)))))) 
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REUSE 
 

EXAMPLE OF A PROGRAM WITH A 
FOUR-BRANCH AUTOMATICALLY 

DEFINED LOOP (ADL0) AND A RESULT-
PRODUCING BRANCH 

 

SETM1

0

IFLTE

LEN M1 -73 +22

values

SETM0

M0

+

values

READV

M1

SETM1LIST
progn

%

M0 LEN

ADL0+

M1 1

defloop

progn

ADL0

400

410

411 412 413

414

415

416

417

420

440

450

460

470
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REUSE 
 

AUTOMATICALLY DEFINED 
RECURSION (ADR0) AND A RESULT-

PRODUCING BRANCH 
• a recursion condition branch, RCB 
• a recursion body branch, RBB 
• a recursion update branch, RUB 
• a recursion ground branch, RGB 
 

progn

defrecursion values

ADL0 LIST values IFGTZ * IFGTZ ADR0

ARG0 IFGTZ 1 3 RLI -1 1 5

ARG01ARG0 -1

ADR0 IFGTZ IFGTZ

-

ARG0 1

RLI -1 1

ARG0

RLI 1 -1

ARG0

600

610 670

611 612

613

620

621

622 623 624

630

631 635 640

632

633 634

636

637

638 639 641 643 644

642

650

651 652

660 680

661

662

663 664 681
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GP TECHNIQUES 
 

• control structures involving multiple result-producing 
branches (Luke and Spector 1996a  Bennett 1996a  Svingen 
1997)   
• adaptive  self-modifying  ontogenetic genetic programming 
(Spector and Stoffel 1996a  1996b)  
• cultural storage and transmission (Spector and Luke 1996a  
1996b)  
• hierarchical problem solving (Rosca and Ballard 1994a  
1994b; Rosca 1995; Rosca 1997)  
• modules (Angeline and Pollack 1993  1994; Angeline 1993  
1994; Kinnear 1994b)   
• logic grammars (Wong and Leung 1995a  1995b  1995c  
1995d  1995e  1995f  1997)   
• cellular encoding (developmental genetic programming) 
for evolving neural networks (Gruau 1992a  1992b  1993  
1994a  1994b; Gruau and Whitley 1993; Esparcia-Alcazar 
and Sharman 1997)  
• developmental methods for evolving finite automata using 
genetic programming (Brave 1996a)  
• developmental methods for shape optimization (Kennelly 
1997)   
• evolving graphs and networks (Luke and Spector 1996b)  
• using a grammar to represent bias and background 
knowledge (Whigham 1995a  1995b  1996)   
• developmental methods for fuzzy logic systems (Tunstel 
and Jamshidi 1996) 
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GP TECHNIQUES  CONTINUED 
 

• diploidy and dominance (Greene 1997a  1997b)   
• Turing completeness of genetic programming (Teller 
1994c; Nordin and Banzhaf 1995)  
• evolution of chemical topological structures (Nachbar 1997  
1998) 
• interactive fitness measures (Poli and Cagnoni 1997;) and  
in particular  in graphics and art (Sims 1991a  1991b  1992a  
1992b  1993)   
• variations in crossover operations (Poli and Langdon 1997)  
• distributed processes and multi-agent systems (Haynes  
Sen  Schoenefeld  and Wainwright 1995; Ryan 1995; Luke 
and Spector 1996a; Iba 1996; Iba  Nozoe  and Ueda 1997; 
Qureshi 1996; Crosbie and Spafford 1995)  
• complexity-based fitness measures using minimum 
description length (Iba  Kurita  de Garis  and Sato 1993; Iba  
deGaris  and Sato 1994)   
• co-evolution (Reynolds 1994c)  
• steady state genetic programming (Reynolds 1993  1994a  
1994b)   
• use of noise in fitness cases (Reynolds 1994d)  
• balancing parsimony and accuracy (Zhang and 
Muhlenbein 1993  1994  1995; Blickle l997)  
• automatically defined features using genetic algorithms in 
conjunction with genetic programming (Andre 1994a)  
• grammatical evolution (Conor Ryan and Michael O'Neill) 
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GP TECHNIQUES  CONTINUED 
 

• graphical program structures and neural programming 
(Teller and Veloso 1996, 1997; Teller 1998; Poli 1997a, 
1997b) 
• automatically defined macros (ADMs) for simultaneous 
evolution of programs and their control structures (Spector 
1996) 
• libraries (Koza 1990a; Koza and Rice 1991; Koza 1992a, 
section 6.5.4; Angeline and Pollack 1993, 1994; Angeline 
1993, 1994; Kinnear 1994b) 
• strong typing  (Montana 1995; Montana and Czerwinski 
1996; Janikow 1996; Yu and Clack 1997a) and constrained 
syntactic structures (Koza 1992a) 
• explicit pointers (Andre 1994c) 
• evolution of machine code (Nordin 1994, 1997) and linear 
genomes (Banzhaf, Nordin, Keller, and Francone 1998) 
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ARCHITECTURE-ALTERING 
OPERATIONS 

 
PROTEIN ALIGNMENT OF "A" AND "B" 

PROTEINS 
 

First.protein MRIKFLVVLA VICLFAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA50
Second.protein MRIKFLVVLA VICLLAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA50

First.protein ESSEYEIEVI KHQKEKTEKK EKEKKTHVET KKEVKKKEKK QIPCSEKLKD100
Second.protein DSSEYEIEVI KHQKEKTEKK EKEKKAHVEI KKKIKNKEKK FVPCSEILKD100

First.protein EKLDCETKGV PAGYKAIFKF TENEE-CDWT CDYEALPPPP GAKKDDKKEK149
Second.protein EKLECEKNAT P-GYKALFEF KESESFCEWE CDYEAI---P GAKKDEKKEK146

First.protein KTVKVVKPPK EKPPKKLRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD199
Second.protein KVVKVIKPPK EKPPKKPRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD196

First.protein KKFAKLVQGK QKKGAKKAKG GKKAAPKPGP KPGPK----Q ADKP------239
Second.protein KKFAKLVQGK QKKGAKKAKG GKKAEPKPGP KPAPKPGPKP APKPVPKPAD246

First.protein --KDAKK 244
Second.protein KPKDAKK 253
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ARCHITECTURE-ALTERING 
OPERATIONS 

 
PROGRAM WITH 1 TWO-ARGUMENT 

AUTOMATICALLY DEFINED FUNCTION 
(ADF0) AND 1 RESULT-PRODUCING 
BRANCH – ARGUMENT MAP OF {2} 

 
progn

400

defun

ADF0 values

OR

ARG1

ARG0ARG1

AND

LIST

410

411
412 419

ARG1ARG0
413 414 420

421
422

423 424

values

AND

D1 D2 D0

D3

D4 D0

ADF0 NAND

ADF0

NOR

470

481

482 483 486

480

485

487

489

490

488

491  
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ARCHITECTURE-ALTERING 
OPERATIONS 

 
PROGRAM WITH ARGUMENT MAP OF 

{2, 2} CREATED USING THE 
OPERATION OF BRANCH 

DUPLICATION 
 

progn

defun

ADF0 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

541

520

values

AND

D1 D2 D0

D3

D4 D0

ADF1 NAND

ADF0

NOR

defun

ADF1 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

550

549

500

510

511

540 570

581

582 583

588

587

589

590 591

519

543 544

542

 



                                                                                                                                                50 

ARCHITECTURE-ALTERING 
OPERATIONS 

 
PROGRAM WITH ARGUMENT MAP OF 
{3} CREATED USING THE OPERATION 

OF ARGUMENT DUPLICATION 
 

progn

defun

ADF0 values

OR

ARG2 AND

LIST

610

611 612 619

ARG0
613

ARG1
614 620

621
622

623

ARG1

624

ARG2
615

ARG0

values

AND

D1 D2 D0

D3

ADF0 NAND

ADF0

D4 D0

NOR

670

681

682 683

687

690

688

691

D2

684

D4 D0

NOR
689 695

696 697

600
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ARCHITECTURE-ALTERING 
OPERATIONS 

 
SPECIALIZATION – REFINEMENT – 

CASE SPLITTING 
• Branch duplication 
• Argument duplication 
• Branch creation 
• Argument creation 
 

GENERALIZATION 
• Branch deletion 
• Argument deletion 
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16 ATTRIBUTES OF A SYSTEM FOR 
AUTOMATICALLY CREATING 

COMPUTER PROGRAMS 
 

1  Starts with "What needs to be done" 
2  Tells us "How to do it" 
3  Produces a computer program 
4  Automatic determination of program size 
5  Code reuse 
6  Parameterized reuse 
7  Internal storage 
8  Iterations, loops, and recursions 
9  Self-organization of hierarchies 
10  Automatic determination of program architecture 
11  Wide range of programming constructs 
12  Well-defined 
13  Problem-independent 
14  Wide applicability 
15  Scalable 
16  Competitive with human-produced results 
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ARCHITECTURE-ALTERING 
OPERATIONS 

 
GENETIC PROGRAMMING  
PROBLEM SOLVER (GPPS) 

 VERSION 2.0 
 

POTENTIAL
RECURSIONS

POTENTIAL
INTERNAL
STORAGE

INPUT(0)

INPUT(1)

INPUT(2)

INPUT(N1)

GPPS 2.0
PROGRAM

POTENTIAL
SUBROUTINES

POTENTIAL
LOOPS

INPUT
VECTOR

•
•
•

OUTPUT(0)

OUTPUT(1)

OUTPUT(2)

OUTPUT(N2)

OUTPUT
VECTOR

•
•
•

 



                                                                                                                                                54 

IMPLEMENTATION OF GP IN 
ASSEMBLY CODE – COMPILED 

GENETIC PROGRAMMING SYSTEM 
(NORDIN 1994) 

 
• Nordin, Peter. 1997. Evolutionary Program Induction of 
Binary Machine Code and its Application. Munster, 
Germany: Krehl Verlag.  
• Opportunity to speed up GP that is done by slowly 
INTERPRETING GP program trees. 
 Instead of interpreting the GP program tree, EXECUTE 
this sequence of assembly code.   
• Can identify small set of primitive functions that is useful 
for large group of problems, such as +, -, *, % and also use 
some conditional operations (IFLTE), some logical 
functions (AND, OR, XOR, XNOR) and perhaps others (e.g., 
SRL, SLL, SETHI from Sun 4).  
• Then, generate random sequence of assembly code 
instructions at generation 0 from this small set of machine 
code instructions (referring to certain registers).  
• If ADFs are involved, generate fixed header and footer of 
function and appropriate function call.   
• Perform crossover possibly so as to preserve the integrity 
of subtrees.   
• If ADFs are involved, perform crossover so as to preserve 
the integrity of the header and footer of function and the 
function call.  
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DESIGN OF QUANTUM COMPUTER 
CIRCUITS USING GP (SPECTOR ET AL.) 

 
• Spector, Lee, Barnum, Howard, and Bernstein, Herbert J. 1998. 
Genetic programming for quantum computers. In Koza, John R., 
Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo, 
Marco, Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, 
Hitoshi, and Riolo, Rick. (editors). 1998. Genetic Programming 1998: 
Proceedings of the Third Annual Conference. San Francisco, CA: 
Morgan Kaufmann. Pages 365 - 373.  
• Spector, Lee, Barnum, Howard, and Bernstein, Herbert J. 1999. 
Quantum computing applications of genetic programming. In 
Spector, Lee, Langdon, William B., O'Reilly, Una-May, and 
Angeline, Peter (editors). 1999. Advances in Genetic Programming 3. 
Cambridge, MA: The MIT Press. Pages 135-160.  
• Spector, Lee, Barnum, Howard, Bernstein, Herbert J., and 
Swamy, N. 1999. Finding a better-than-classical quantum AND/OR 
algorithm using genetic programming. In IEEE. Proceedings of 1999 
Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press. 
Pages 2239-2246.  
• Barnum, H., Bernstein, H.J. and Spector, Lee. 2000. Quantum 
circuits for OR and AND of ORs. Journal of Physics A: 
Mathematical and General. 33 (45) 8047-8057. November 17, 2000).  
• Spector, Lee, and Bernstein, Herbert J. 2003. Communication 
capacities of some quantum gates, discovered in part through 
genetic programming. In Shapiro, Jeffery H. and Hirota, Osamu 
(editors). Proceedings of the Sixth International Conference on 
Quantum Communication, Measurement, and Computing. Princeton, 
NJ: Rinton Press. Pages 500-503.  
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CELLULAR ENCODING 
(DEVELOPMENTAL GENETIC 

PROGRAMMING) 
 

• Gruau, Frederic. 1992b. Cellular Encoding of Genetic 
Neural Networks. Technical report 92-21. Laboratoire de 
l'Informatique du Parallélisme. Ecole Normale Supérieure 
de Lyon. May 1992.  
• Also: Gruau 1992a  1992b  1993  1994a  1994b; Gruau and 
Whitley 1993; Esparcia-Alcazar and Sharman 1997) 
• Applied by Gruau and Whitley (1995) to 2-pole-balancing 
problem 
• Applied by Gruau to six-legged walking creature 
• Applied by Brave (1995, 1996) to Finite Automata 
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AUTOMATIC PARALLELIZATION OF 
SERIAL PROGRAMS USING GP 

 
• Ryan, Conor. 1999. Automatic Re-engineering of Software 
Using Genetic Programming. Amsterdam: Kluwer Academic 
Publishers.  
• Start with working serial computer program (embryo) 
• GP program tree contains validity-preserving functions 
that modify the current program.  That is, the functions in 
the program tree side-effect the current program.  
• Execution of the complete GP program tree progressively 
modifies the current program 
• Fitness is based on execution time on the parallel computer 
system  



                                                                                                                                                58 

DEVELOPMENTAL GP 
 

THE INITIAL CIRCUIT 
• Initial circuit consists of embryo and test fixture 
• Embryo has modifiable wires (e.g., Z0 AND Z1) 
• Test fixture has input and output ports and usually has 
source resistor and load resistor.  There are no modifiable 
wires (or modifiable components) in the test fixture.  
• Circuit-constructing program trees consist of 

• Component-creating functions 
• Topology-modifying functions 
• Development-controlling functions 

• Circuit-constructing program tree has one result-
producing branch for each modifiable wire in embryo of the 
initial circuit 

C FLIP

LIST1 

2 3 

- 
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DEVELOPMENTAL GP 
 

DEVELOPMENT OF A CIRCUIT FROM A 
CIRCUIT-CONSTRUCTING PROGRAM 

TREE AND THE INITIAL CIRCUIT 
 
(LIST (C (– 0.963 (– (– -0.875 
-0.113) 0.880)) (series (flip 
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640 
0.749) (L -0.123 end)))) (flip 
(nop (L -0.657 end))))) 

 

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8

7

9 1 0 1 1 1 2

1 3 1 4 1 5 1 7 1 81 6 1 9 2 0 2 1

2 2

2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1  
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DEVELOPMENTAL GP 
 

RESULT OF THE C (2) FUNCTION 

 
(LIST (C (– 0.963 (– (– -0.875 
-0.113) 0.880)) (series (flip 
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640 
0.749) (L -0.123 end)))) (flip 
(nop (L -0.657 end))))) 

NOTE: Interpretation of arithmetic value 
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DEVELOPMENTAL GP 
 

RESULT OF SERIES (5) FUNCTION 

 
(LIST (C (– 0.963 (– (– -0.875 
-0.113) 0.880)) (series (flip 
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640 
0.749) (L -0.123 end)))) (flip 
(nop (L -0.657 end))))) 
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EVALUATION OF FITNESS OF A 
CIRCUIT 

 

Program Tree

+ IN OUT z0

Embryonic Circuit 

Fully Designed Circuit (NetGraph) 

Circuit Netlist (ascii) 

Circuit Simulator (SPICE) 

Circuit Behavior (Output) 

Fitness  
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BEHAVIOR OF A LOWPASS FILTER 
VIEWED IN THE FREQUENCY DOMAIN  

 
• Examine circuit's behavior for each of 101 frequency 
values chosen over five decades of frequency (from 1 Hz to 
100,000 Hz) with each decade divided into 20 parts (using a 
logarithmic scale).  The fitness measure 

• does not penalize ideal values 
• slightly penalizes acceptable deviations 
• heavily penalizes unacceptable deviations 

• Fitness is sum F(t) = 
i = 0 

100 
∑ [W ( f i )d ( f i ) ] 

• f(i) is the frequency of fitness case i 
•d(x) is the difference between the target and observed 
values at frequency of fitness case i 
• W(y,x) is the weighting at frequency x 
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TABLEAU  LOWPASS FILTER 
(WITHOUT ADFS OR ARCHITECTURE-

ALTERING OPERATIONS)
Objective: Design a lowpass filter composed of 

inductors and capacitors with a 
passband below 1,000 Hz, a stopband 
above 2,000 Hz, a maximum allowable 
passband deviation of 30 millivolts, and 
a maximum allowable stopband 
deviation of 1 millivolt.  

Test fixture and 
embryo: 

One-input, one-output initial circuit with 
a source resistor, load resistor, and two 
modifiable wires.  

Program 
architecture: 

Two result-producing branches, RPB0
and RPB1 (i.e., one RPB per modifiable 
wire in the embryo). 

Initial function 
set for the result-
producing 
branches: 

For construction-continuing subtrees: 
Fccs-rpb-initial = {C, L, SERIES, 
PARALLEL0, FLIP, NOP, TWO_GROUND, 
TWO_VIA0, TWO_VIA1, TWO_VIA2, 
TWO_VIA3, TWO_VIA4, TWO_VIA5, 
TWO_VIA6, TWO_VIA7}. 
For arithmetic-performing subtrees: 
Faps = {+, -}. 

Initial terminal 
set for the result-
producing 
branches: 

For construction-continuing subtrees: 
Tccs-rpb-initial = {END}.   
For arithmetic-performing subtrees: 
Taps = {←smaller-reals}.  
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Fitness cases: 101 frequency values in an interval of 
five decades of frequency values between 
1 Hz and 100,000 Hz.  

Raw fitness: Fitness is the sum, over the 101 sampled 
frequencies (fitness cases), of the 
absolute weighted deviation between the 
actual value of the output voltage that is 
produced by the circuit at the probe 
point and the target value for voltage. 
The weighting penalizes unacceptable 
output voltages much more heavily than 
deviating, but acceptable, voltages.   

Standardized 
fitness: 

Same as raw fitness. 

Hits: The number of hits is defined as the 
number of fitness cases (out of 101) for 
which the voltage is acceptable or ideal 
or that lie in the "don't care" band.   

Wrapper: None. 
Parameters: M = 1,000 to 320,000.  G = 1,001.  Q

=1,000. D = 64. B = 2%. Nrpb = 2. Srpb = 
200.   

Result 
designation: 

Best-so-far pace-setting individual.  

Success 
predicate: 

A program scores the maximum number 
(101) of hits.  
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EVOLVED CAMPBELL FILTER 
(7-RUNG LADDER) 

 
• This genetically evolved circuit infringes on U. S. patent 
1,227,113 issued to George Campbell of American Telephone 
and Telegraph in 1917 (claim 2): 

An electric wave filter consisting of a connecting line of 
negligible attenuation composed of a plurality of sections, 
each section including a capacity element and an inductance 
element, one of said elements of each section being in series 
with the line and the other in shunt across the line, said 
capacity and inductance elements having precomputed 
values dependent upon the upper limiting frequency and 
the lower limiting frequency of a range of frequencies it is 
desired to transmit without attenuation, the values of said 
capacity and inductance elements being so proportioned 
that the structure transmits with practically negligible 
attenuation sinusoidal currents of all frequencies lying 
between said two limiting frequencies, while attenuating 
and approximately extinguishing currents of neighboring 
frequencies lying outside of said limiting frequencies."   
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EVOLVED ZOBEL FILTER 
 

• Infringes on U. S. patent 1,538,964 issued in 1925 to Otto 
Zobel of American Telephone and Telegraph Company for 
an “M-derived half section” used in conjunction with one or 
more “constant K” sections. 
• One M-derived half section (C2 and L11) 
• Cascade of three symmetric T-sections 
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GENETICALLY EVOLVED 10 DB 
AMPLIFIER FROM GENERATION 45 

 
SHOWING THE VOLTAGE GAIN STAGE 

AND DARLINGTON EMITTER 
FOLLOWER SECTION 

 

Voltage Gain Stage

Darlington
Emitter-
Follower
Stage 

 



                                                                                                                                                69 

POST-2000 PATENTED INVENTIONS 
 

HIGH CURRENT LOAD CIRCUIT 
BEST-OF-RUN FROM GENERATION 114 
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POST-2000 PATENTED INVENTIONS 
 

REGISTER-CONTROLLED CAPACITOR 
CIRCUIT 

 
SMALLEST COMPLIANT FROM 

GENERATION 98 
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POST-2000 PATENTED INVENTIONS 
 

LOW-VOLTAGE CUBIC SIGNAL 
GENERATION CIRCUIT 

BEST-OF-RUN FROM GENERATION 182 
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POST-2000 PATENTED INVENTIONS 
 

LOW-VOLTAGE BALUN CIRCUIT 
BEST EVOLVED FROM GENERATION 84 
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POST-2000 PATENTED INVENTIONS 
 

VOLTAGE-CURRENT-CONVERSION 
CIRCUIT 

BEST-OF-RUN FROM GENERATION 109 
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POST-2000 PATENTED INVENTIONS 
 

TUNABLE INTEGRATED ACTIVE 
FILTER — GENERATION 50 
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21 PREVIOUSLY PATENTED 
INVENTIONS REINVENTED BY GP 

 Invention Date Inventor Place Patent 
1 Darlington 

emitter-
follower 
section 

1953 Sidney 
Darlington 

Bell Telephone 
Laboratories 

2,663,806 

2 Ladder filter 1917 George 
Campbell 

American 
Telephone and 
Telegraph 

1,227,113 

3 Crossover 
filter  

1925 Otto Julius 
Zobel 

American 
Telephone and 
Telegraph 

1,538,964 

4 “M-derived 
half section” 
filter 

1925 Otto Julius 
Zobel 

American 
Telephone and 
Telegraph 

1,538,964 

5 Cauer 
(elliptic) 
topology for 
filters 

1934–
1936 

Wilhelm 
Cauer 

University of 
Gottingen 

1,958,742, 
1,989,545 

6 Sorting 
network 

1962 Daniel G. 
O’Connor 
and 
Raymond J. 
Nelson 

General Precision, 
Inc. 

3,029,413 

7 Computation
al circuits 

See 
text 

See text See text See text 

8 Electronic 
thermometer 

See 
text 

See text See text See text 

9 Voltage 
reference 
circuit 

See 
text 

See text See text See text 

10 60 dB and 96 
dB amplifiers 

See 
text 

See text See text See text 

11 Second-
derivative 
controller 

1942 Harry Jones Brown Instrument 
Company 

2,282,726 

12 Philbrick 
circuit 

1956 George 
Philbrick 

George A. 
Philbrick 
Researches 

2,730,679 

13 NAND circuit 1971 David H. 
Chung and 
Bill H. 

Texas Instruments 
Incorporated 

3,560,760 
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Terrell 
14 PID 

(proportional
, integrative, 
and 
derivative) 
controller 

1939 Albert 
Callender 
and Allan 
Stevenson 

Imperial Chemical 
Limited 

2,175,985 

15 Negative 
feedback 

1937 Harold S. 
Black 

American 
Telephone and 
Telegraph 

2,102,670, 
2,102,671 

16 Low-voltage 
balun circuit 

2001 Sang Gug 
Lee 

Information and 
Communications 
University 

6,265,908 

17 Mixed 
analog-digital 
variable 
capacitor 
circuit 

2000 Turgut 
Sefket Aytur 

Lucent 
Technologies Inc. 

6,013,958 

18 High-current 
load circuit 

2001 Timothy 
Daun-
Lindberg 
and Michael 
Miller 

International 
Business Machines 
Corporation 

6,211,726 

19 Voltage-
current 
conversion 
circuit 

2000 Akira 
Ikeuchi and 
Naoshi 
Tokuda 

Mitsumi Electric 
Co., Ltd. 

6,166,529 

20 Cubic 
function 
generator 

2000 Stefano 
Cipriani and 
Anthony A. 
Takeshian 

Conexant Systems, 
Inc. 

6,160,427 

21 Tunable 
integrated 
active filter 

2001 Robert 
Irvine and 
Bernd Kolb 

Infineon 
Technologies AG 

6,225,859 

2 PATENTABLE INVENTIONS CREATED 
BY GENETIC PROGRAMMING 

 Claimed invention Date of patent 
application 

Inventors 

1 Improved general-
purpose tuning rules 
for a PID controller 

July 12, 2002 Martin A. Keane, John R. Koza, 
and Matthew J. Streeter 

2 Improved general-
purpose non-PID 

July 12, 2002 Martin A. Keane, John R. Koza, 
and Matthew J. Streeter 
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controllers 
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NOVELTY-DRIVEN EVOLUTION 
 

EXAMPLE OF LOWPASS FILTER 
 

• Two factors in fitness measure 
• Circuit’s behavior in the frequency domain 
• Largest number of nodes and edges (circuit components) 
of a subgraph of the given circuit that is isomorphic to a 
subgraph of a template representing the prior art. Graph 
isomorphism algorithm with the cost function being based 
on the number of shared nodes and edges (instead of just 
the number of nodes). 
 

PRIOR ART TEMPLATE 
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NOVELTY-DRIVEN EVOLUTION  
CONTINUED 

 
• For circuits not scoring the maximum number (101) of 
hits, the fitness of a circuit is the product of the two factors.  
• For circuits scoring 101 hits (100%-compliant individuals), 
fitness is the number of shared nodes and edges divided by 
10,000. 
 
FITNESS OF EIGHT 100%-COMPLIANT 

CIRCUITS 
Solution Frequency 

factor 
Isomorphism 
factor 

Fitness 

1 0.051039 7 0.357273 
2 0.117093 7 0.819651 
3 0.103064 7 0.721448 
4 0.161101 7 1.127707 
5 0.044382 13 0.044382 
6 0.133877 7 0.937139 
7 0.059993 5 0.299965 
8 0.062345 11 0.685795 
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SOLUTION NO. 1 
 

 
SOLUTION NO. 5 
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LAYOUT  LOWPASS FILTER 
100%-COMPLIANT CIRCUITS 

 
GENERATION 25 WITH 5 CAPACITORS 
AND 11 INDUCTORS  AREA OF 1775.2 

RLOAD
(39,-2.8)

1K

RSRC
(-38.5,-2.8)

1k

L2
(-24.5,-2.8)
90200uH

G V0

C13
(-31.5,8.2)

8.91nF

L9
(17.5,-2.8)
90200uH

L10
(0.5,-2.8)
90200uH

L11
(-5.5,-2.8)
90200uH

L12
(-11.5,-2.8)
90200uH

L16
(-17.5,8.2)
42700uH

C19
(-25.5,8.2)

1.75nF

L23
(-5.5,-7.2)
90200uH

L26
(9.5,-2.8)
90200uH

C29
(5.5,4)
311nF

L31
(32.5,-2.8)
90200uH

L33
(17.5,8.2)
90200uH

L32
(23.5,-2.8)
90200uH

G

G

G

G

G

C17
(-21.5,4.2)

165nF

C40
(28.5,0.2)

295nF

VOUT

 
GENERATION 30 WITH 10 INDUCTORS 
AND 5 CAPACITORS  AREA OF 950.3 

VOUT

RSRC
(-31.5,-3.2)

1K
G V

L2
(16.5,-3.2)
127000uH

L9
(29.5,-3.2)
63500uH

L10
(8.5,-3.2)
63500uH

L11
(16.5,6.5)
63500uH

C13
(12.5,1)
0.317nF

C19
(23,0.8)
176uH

L22
(0.5,-3.2)
319000uH

C25
(4.5,0.9)
256nF

L28
(-26.5,-3.2)
96000uH

C32
(-3.5,0.9)

256nF

L34
(-20.5,-3.2)
96000uH

L35
(-6.5,-3.2)
288000uH

L37
(-14.5,-3.2)

0.214uH

C38
(-10.5,0.9)

256nF

L40
(-20.5,6.5)
96000uH

G G G

G

G
RLOAD
(36,-3.2)

1K  
BEST-OF-RUN CIRCUIT OF 

GENERATION 138 WITH 4 INDUCTORS 
AND 4 CAPACITORS  AREA OF 359.4  

RLOAD
(17.5,5.4)

1K

RSRC
(-16,5.4)

1K

L38
(11,5.4)

96100uH
VG G

C12
(-10,0.5)
155nF

G

C18
(-4,1)
256nF

G

L20
(-7,5.4)

253000uH

C27
(2,1.2)
256nF

G

L29
(-1,5.4)

319000uH

C34
(8,1.4)
256nF

G

L36
(5,5.4)

288000uH

VOUT
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LAYOUT  60 DB AMPLIFIER (USING 
TRANSISTORS) 

 
COMPARISON 

Gen Component
s 

Area Four 
penalties 

Fitness 

65 27 8,234 33.034348 33.042583
101 19 4,751 0.061965 0.004751 
 

BEST-OF-RUN CIRCUIT FROM 
GENERATION 101  

G

R3

R4

C10

R14

R18

G

R21

R24

R27

R30

R33

G

G

G

C52

C53

O

P

P

P

P

Q48

Q45

V

Q36

Q43

Q39

Q54

Q49 Q50Q47Q46Q8

G
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PID CONTROLLER 
 

Block diagram of a plant and a PID controller composed of 
proportional (P), integrative (I), and derivative (D) blocks 
 

550

552

+15.5

540

542

+1000.0

530

532

+214.0

558

548

s

570

1/s

560

568

578

538

524

522

526

580

+

+

+

Control
Variable

Plant

592

Plant
Output

512
510

-

+

Reference
Signal

596

Controller

520

508 590 594

500
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PROGRAM TREE REPRESENTATION 
FOR PID CONTROLLER 

 
• ADF can be used for reuse.  
• Automatically defined function ADF0 takes the difference 
between the reference signal and the plant output and makes 
this difference available to three points in the result-
producing branch 

PROGN 700

DEFUN 702 VALUES 790

+ 780VALUES 712LIST

706

ADF0

704

- 710

REF

708

PLANT
OUTPUT

794

+214.0

732

ADF0

734

GAIN 730

+1000.0

742

ADF0

744

GAIN 740

1/s 760

+15.5

752

ADF0

754

750

770

GAIN

s

 
• ADF can be used for internal feedback 

980

950

+3.14

942
920

+

ADF0

990
-

945

910

940

930 900

Input Output
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FUNCTION SET AND TERMINAL SET 
FOR TWO-LAG PLANT PROBLEM 

 
• The function set, F (for every part of the result-producing 
branch and any automatically defined functions except the 
arithmetic-performing subtrees) is 
 
F = {GAIN, INVERTER, LEAD, LAG, LAG2, 

DIFFERENTIAL_INPUT_INTEGRATOR, 
DIFFERENTIATOR, ADD_SIGNAL, 
SUB_SIGNAL, ADD_3_SIGNAL, ADF0, 
ADF1, ADF2, ADF3, ADF4} 

 
• The terminal set, T, (for every part of the result-producing 
branch and any automatically defined functions except the 
arithmetic-performing subtrees) is  
 
T = { REFERENCE_SIGNAL, 

CONTROLLER_OUTPUT, PLANT_OUTPUT, 
CONSTANT_0} 
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ARITHMETIC-PERFORMING SUBTREES 
FOR THE TWO-LAG PLANT PROBLEM 

 

• Signal processing blocks such as GAIN, LEAD, LAG, 
and LAG2 possess numerical parameter(s) 
• Parameter values can be established by an arithmetic-
performing subtree 
• A constrained syntactic structure enforces a different 
function and terminal set for the arithmetic-performing 
subtrees (as opposed to all other parts of the program tree).  
• Terminal set, Taps, for the arithmetic-performing subtrees 
Taps = {ℜ} 
where ℜ denotes constant numerical terminals in the range 
from -1.0 to +1.0 
 

• Function set, Faps, for the arithmetic-performing subtrees 
Faps = {ADD_NUMERIC, SUB_NUMERIC} 
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FITNESS MEASURE FOR TWO-LAG 
PLANT 

• 10-element fitness measure 
• The first eight elements of the fitness measure represent 
the eight choices of a particular one of two different values 
of the plant's internal gain, K (1.0 and 2.0), in conjunction 
with a particular one of two different values of the plant's 
time constant τ (0.5 and 1.0), in conjunction with a 
particular one of two different values for the height of the 
reference signal.  The two reference signals are step 
functions that rise from 0 to 1 volts (or 1 microvolts) at t = 
100 milliseconds.  
• For each of these eight fitness cases, a transient analysis is 
performed in the time domain using the SPICE simulator.  
The contribution to fitness for each of these eight elements is 

∫
=

6.9

0
))(()(

t
BdtteAtet

 
• e(t) is difference between plant output and reference signal.   
• Multiplication by B (106. or 1) makes both reference 
signals equally influential.   
• Additional weighting function, A, heavily penalizes non-
compliant amounts of overshoot.  A weights all variations up 
to 2% above the reference signal by 1.0, but others by 10.0.  
• The 9th element of the fitness measure exposes the 
controller to an extreme spiked reference signal.   
• The 10th element constrains the frequency of the control 
variable so as to avoid extreme high frequencies.  
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BEST-OF-RUN GENETICALLY 
EVOLVED CONTROLLER FROM 

GENERATION 32 FOR THE TWO-LAG 
PLANT 

 

s0837.01+

s168.01

1

+
1−

s156.01
1

+
1−

R(s)

Y(s)
s515.01+

8.15 s0385.01+

U(s)

1
s

1− 918.8

 



                                                                                                                                                89 

COMPARISON OF THE TIME-DOMAIN 
RESPONSE TO 1-VOLT STEP INPUT FOR 

THE EVOLVED CONTROLLER 
(TRIANGLES) AND THE BISHOP AND 
DORF CONTROLLER (SQUARES) FOR 
THE TWO-LAG PLANT WITH K=1 AND 

τ=1 
 

0 167m 333m 500m 667m 833m 1
0

200m

400m

600m

800m

1

1.2

Time (s)

GP

Textbook

 
 

OVERALL MODEL 

Gp(s) Gc(s) G(s)
Y(s)

-
U(s)R(s) +

+

+

D(s)

H(s)  
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COMPARISON OF THE TIME-DOMAIN 
RESPONSE TO A 1-VOLT DISTURBANCE 

SIGNAL OF THE EVOLVED 
CONTROLLER(TRIANGLES) AND THE 

BISHOP AND DORF CONTROLLER 
(CIRCLES) FOR THE TWO-LAG PLANT 

WITH K=1 AND τ=1 
 

0 167m 333m 500m 667m 833m 1
-2m

0

2m

4m

6m

8m

10m

Time(s)

GP

Textbook
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REVERSE ENGINEERING OF 
METABOLIC PATHWAYS (4-REACTION 
NETWORK IN PHOSPHOLIPID CYCLE) 

 
BEST-OF-GENERATION 66 

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.88 (1.95)

Glycerol
kinase

ATP

Glycerol

Glycerol-1-
phosphatase

IntC00162

C00116

Int

C00002

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K = 1.46 (1.45)

EC3.1.3.21
K = 1.20 (1.19)

EC2.7.1.30
K = 1.65 (1.69)

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

 
DESIRED 

ADP

Diacyl-glycerol

Triacylglycerol
lipase

Monoacyl-
glycerol

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.95

sn-glycerol-
3-

phosphate

Glycerol
kinase

ATP

Glycerol

Glycerol-1-
phosphatase

C01885C00162

C00009

C00008

C00116

C00093

Orthophosphate

C00002

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K = 1.45

EC3.1.3.21
K = 1.19

EC2.7.1.30
K = 1.69

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)
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CHARACTERISTICS SUGGESTING THE 
USE OF GENETIC PROGRAMMING 

 
(1) discovering the size and shape of the solution,  
(2) reusing substructures,  
(3) discovering the number of substructures,  
(4) discovering the nature of the hierarchical references 
among substructures,  
(5) passing parameters to a substructure, 
(6) discovering the type of substructures (e.g., subroutines, 
iterations, loops, recursions, or storage), 
(7) discovering the number of arguments possessed by a 
substructure,  
(8) maintaining syntactic validity and locality by means of a 
developmental process, or 
(9) discovering a general solution in the form of a 
parameterized topology containing free variables 
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MANY DIFFERENT GA/ES ENCODINGS 
HAVE BEEN SUCCESSFULLY USED 

 
A mixture of real-valued variables, integer-valued variables, 
and categorical variables are encoded in the chromosome 
L .220 2 3 C 403. 3 6 L .528 6 9 L .041 9 0 

 
 
• Bit-string chromosome 
Resistor |                               2.5 Ω                           |   Node 3          |   Node 6 
0 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0 

• The component type (a categorical variable) is encoded 
as 2 bits (01 = resistor, etc.) 

• The component value (real-valued number) is encoded 
as 8 bits 

• The node (integer-valued variable) to which the 
component's 1st lead is connected is encoded by 3 bits 

• The node (integer-valued variable) to which the 
component's 2nd lead is connected is encoded by 3 bits 

• Note that the number of nodes is capped at 8 (or 
assumed to be 8) 
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IT IS OFTEN POSSIBLE TO USE THE 
GENETIC ALGORITHM (GA) OR 

EVOLUTION STRATEGIES EVEN WHEN 
THE SIZE AND SHAPE OF THE 
SOLUTION IS A MAJOR ISSUE 

 
• Variable-length genetic algorithm (VGA) 
 
• Maintain constraints 
 
Chromosome #1 
  1st Component |  2nd Component   
L .220 1 2 C 403. 2 0 

 
Chromosome #2 
  1st Component |  2nd Component   
R 250. 0 1 C 100. 1 2 

 
Nominal Offspring #1 is invalid 
1st Component |  2nd Component   
L .220 1 2 C 100. 1 2 

 
• Penalize (in fitness measure) 
• Delete 
• Repair (most common method) 
• Inundate 
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STRONG INDICATIONS FOR USING 
GENETIC ALGORITHM (GA) OR 
EVOLUTION STRATEGIES (ES) 

 
• The size and shape of the solution is known or fixed 
 
• Ascertaining numerical parameters is the major issue 
 
• Simplicity is a major consideration  

• On-chip evolution the algorithm's logic is implemented 
on the chip in hardware 
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AUTOMATIC SYNTHESIS OF A YAGI-
UDA WIRE ANTENNA USING GENETIC 

ALGORITHM (LINDEN 1997) 
 

0 0.5 1 1.5 2
0.2

0

0.2

x(m)

y(
m

)

 
 

 
• When the genetic algorithm (GA) operating on fixed-
length character strings was used to synthesize a particular 
Yagi-Uda wire antenna by Linden (1997), the chromosome 
was based on  

• a particular number of reflectors (one) and  
•a particular number of directors.   

 
The chromosome encoded 

• the spacing between the parallel wires 
• the length of each of the parallel wires 
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AUTOMATIC SYNTHESIS OF A YAGI-
UDA WIRE ANTENNA USING GENETIC 

ALGORITHM (LINDEN 1997)  
CONTINUED 

 
• When the genetic algorithm (GA) operating on fixed-
length character strings was used to synthesize a Yagi-Uda 
wire antenna (Linden 1997), the following decisions were 
made by the human user prior to the start of the run:  

(1) the number of reflectors (one),  
(2) the number of directors,  
(3) the fact that the driven element, the directors, and the 

reflector are all single straight wires, 
(4) the fact that the driven element, the directors, and the 

reflector are all arranged in parallel,  
(5) the fact that the energy source (via the transmission 

line) is connected only to single straight wire (the 
driven element)  that is, all the directors and 
reflectors are parasitically coupled  

• Characteristics (3), (4), and (5) are essential characteristics 
of the Yagi-Uda antenna, namely an antenna with multiple 
parallel parasitically coupled straight-line directors, a single 
parallel parasitically coupled straight-line reflector, and a 
straight-line driven element. That it, the GA run assumed 
that the answer would be a Yagi-Uda antenna.   
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AUTOMATIC SYNTHESIS OF A WIRE 
ANTENNA 

 
EXAMPLE OF TURTLE FUNCTIONS 
USED TO CREATE WIRE ANTENNA 

 
1 (PROGN3 
2   (TURN-RIGHT 0.125) 
3   (LANDMARK 
4     (REPEAT 2 
5       (PROGN2 
6         (DRAW 1.0 HALF-MM-WIRE) 
7         (DRAW 0.5 NO-WIRE))) 
8   (TRANSLATE-RIGHT 0.125 0.75)) 

 

(a) (b) (c) (d) (e) (f) (g)  
 

0 0.5 1 1.5 2
0.2

0

0.2

x(m)

y(
m

)
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BEST-OF-RUN ANTENNA FROM 
GENERATION 90 

 FITNESS OF-16.04 
 
 

0 0.5 1 1.5 2
0.2

0

0.2

x(m)

y(
m

)

 
 
• The GP run discovered 

(1) the number of reflectors (one),  
(2) the number of directors,  
(3) the fact that the driven element, the directors, and the 

reflector are all single straight wires, 
(4) the fact that the driven element, the directors, and the 

reflector are all arranged in parallel,  
(5) the fact that the energy source (via the transmission 

line) is connected only to single straight wire (the 
driven element)  that is, all the directors and 
reflectors are parasitically coupled  

 
• Characteristics (3), (4), and (5) are essential characteristics 
of the Yagi-Uda antenna, namely an antenna with multiple 
parallel parasitically coupled straight-line directors, a single 
parallel parasitically coupled straight-line reflector, and a 
straight-line driven element.   
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REUSE 
LOWPASS FILTER USING ADFS 

 
GENERATION 0 – ONE-RUNG LADDER 

 
BEHAVIOR IN FREQUENCY DOMAIN 
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REUSE 
LOWPASS FILTER USING ADFS 

GENERATION 9 - TWO-RUNG LADDER 

 
TWICE-CALLED TWO-PORTED ADF0 

 
BEHAVIOR IN FREQUENCY DOMAIN 
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REUSE 
LOWPASS FILTER USING ADFS 

GEN 16 – THREE-RUNG LADDER 

 
THRICE-CALLED TWO-PORTED ADF0 

 
BEHAVIOR IN FREQUENCY DOMAIN 
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REUSE 
LOWPASS FILTER USING ADFS 
GEN 20 – FOUR-RUNG LADDER 

 
QUADRUPLY-CALLED TWO-PORTED 

ADF0 

 
BEHAVIOR IN FREQUENCY DOMAIN 
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REUSE 
LOWPASS FILTER USING ADFS 

GENERATION 31  TOPOLOGY OF 
CAUER (ELLIPTIC) FILTER 

 
QUINTUPLY-CALLED THREE-PORTED 

ADF0 

 
BEHAVIOR IN FREQUENCY DOMAIN 
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PASSING A PARAMETER TO A 
SUBSTRUCTURE 

 
• The set of potential terminals for each construction-
continuing subtree of an automatically defined function, 
Tccs-adf-potential, is  
Tccs-adf-potential = {ARG0}  
 

EMERGENCE OF A PARAMETERIZED 
ARGUMENT IN A CIRCUIT 

SUBSTRUCTURE 
 

HIERARCHY OF BRANCHES FOR THE 
BEST-OF-RUN CIRCUIT- FROM 

GENERATION 158 

RPB2

execute

ADF4 {1}

RPB1RPB0

ADF3 {1} ADF2 {1}ADF3 {1}

ADF2 {1} ADF2 {1} ADF2 {1}  
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PASSING A PARAMETER TO A 
SUBSTRUCTURE 

 
BEST-OF-RUN CIRCUIT FROM 

GENERATION 158 
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THREE-PORTED AUTOMATICALLY 
DEFINED FUNCTION ADF3 OF THE 

BEST-OF-RUN CIRCUIT FROM 
GENERATION 158 

 
ADF3 CONTAINS CAPACITOR C39 

PARAMETERIZED BY DUMMY 
VARIABLE ARG0 
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THE FIRST RESULT-PRODUCING 
BRANCH, RPB0, CALLING ADF3 

(PARALLEL0 (L (+ (– 1.883196E-01 (– -9.095883E-02 5.724576E-
01)) (– 9.737455E-01 -9.452780E-01)) (FLIP END)) (SERIES (C (+ 
(+ -6.668774E-01 -8.770285E-01) 4.587758E-02) (NOP END)) 
(SERIES END END (PARALLEL1 END END END END)) (FLIP 
(SAFE_CUT))) (PAIR_CONNECT_0 END END END) (PAIR_CONNECT_0 (L 
(+ -7.220122E-01 4.896697E-01) END) (L (– -7.195599E-01 
3.651142E-02) (SERIES (C (+ -5.111248E-01 (– (– -6.137950E-01 
-5.111248E-01) (– 1.883196E-01 (– -9.095883E-02 5.724576E-
01)))) END) (SERIES END END (adf3 6.196514E-01)) (NOP END))) 
(NOP END))) 

 
AUTOMATICALLY DEFINED FUNCTION 

ADF3 
(C (+ (– (+ (+ (+ 5.630820E-01 (– 9.737455E-01 -9.452780E-01)) 
(+ ARG0 6.953752E-02)) (– (– 5.627716E-02 (+ 2.273517E-01 (+ 
1.883196E-01 (+ 9.346950E-02 (+ -7.220122E-01 (+ 2.710414E-02 
1.397491E-02)))))) (– (+ (– 2.710414E-02 -2.807583E-01) (+ -
6.137950E-01 -8.554120E-01)) (– -8.770285E-01 (– -4.049602E-01 
-2.192044E-02))))) (+ (+ 1.883196E-01 (+ (+ (+ (+ 9.346950E-02 
(+ -7.220122E-01 (+ 2.710414E-02 1.397491E-02))) (– 4.587758E-
02 -2.340137E-01)) 3.226026E-01) (+ -7.220122E-01 (– -
9.131658E-01 6.595502E-01)))) 3.660116E-01)) 9.496355E-01) 
(THREE_GROUND_0 (C (+ (– (+ (+ (+ 5.630820E-01 (– 9.737455E-01 
-9.452780E-01)) (+ (– (– -7.195599E-01 3.651142E-02) -
9.761651E-01) (– (+ (– (– -7.195599E-01 3.651142E-02) -
9.761651E-01) 6.953752E-02) 3.651142E-02))) (– (– 5.627716E-02 
(– 1.883196E-01 (– -9.095883E-02 5.724576E-01))) (– (+ (– 
2.710414E-02 -2.807583E-01) (+ -6.137950E-01 (+ ARG0 
6.953752E-02))) (– -8.770285E-01 (– -4.049602E-01 -2.192044E-
02))))) (+ (+ 1.883196E-01 -7.195599E-01) 3.660116E-01)) 
9.496355E-01) (NOP (FLIP (PAIR_CONNECT_0 END END END)))) (FLIP 
(SERIES (FLIP (FLIP (FLIP END))) (C (– (+ 6.238477E-01 
6.196514E-01) (+ (+ (– (– 4.037348E-01 4.343444E-01) (+ -
7.788187E-01 (+ (+ (– -8.786904E-01 1.397491E-02) (– -
6.137950E-01 (– (+ (– 2.710414E-02 -2.807583E-01) (+ -
6.137950E-01 -8.554120E-01)) (– -8.770285E-01 (– -4.049602E-01 
-2.192044E-02))))) (+ (+ 7.215142E-03 1.883196E-01) (+ 
7.733750E-01 4.343444E-01))))) (– (– -9.389297E-01 5.630820E-
01) (+ -5.840433E-02 3.568947E-01))) -8.554120E-01)) (NOP 
END)) END)) (FLIP (adf2 9.737455E-01)))) 
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ADF3 DOES THREE THINGS 
• The structure that develops out of ADF3 includes a 
capacitor C112 whose value (5,130 uF) is not a function of 
its dummy variable, ARG0.  
• The structure that develops out of ADF3 has one 
hierarchical reference to ADF2.  As previously mentioned, 
the invocation of  ADF2 is done with a constant (9.737455E-
01) so this invocation of ADF2 produces a 259 µH inductor.   
• Most importantly, the structure that develops out of ADF3 
creates a capacitor (C39) whose sizing, F(ARG0), is a 
function of the dummy variable, ARG0, of automatically 
defined function ADF3. Capacitor C39 has different sizing 
on different invocations of automatically defined function 
ADF3.   
• The combined effect of ADF3 is to insert the following 
three components: 

• an unparameterized 5,130 uF capacitor,  
• a parameterized capacitor C39 whose component value 

is dependent on ARG0 of ADF3, and 
• a parameterized inductor (created by ADF2) whose 

sizing is parameterized, but which, in practice, is called 
with a constant value.   
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EMERGENCE OF A PARAMETERIZED 
ARGUMENT IN A CIRCUIT 

SUBSTRUCTURE 
 

HIERARCHY OF BRANCHES FOR THE 
BEST-OF-RUN CIRCUIT- FROM 

GENERATION 158 
 

RPB2

execute

ADF4 {1}

RPB1RPB0

ADF3 {1} ADF2 {1}ADF3 {1}

ADF2 {1} ADF2 {1} ADF2 {1}  
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FREE VARIABLE (INPUT) AND 
CONDITIONALS 

 
SOLVING A QUADRATIC EQUATION 
USING THE GENETIC ALGORITHM 

 
• Suppose we want the 2 roots of the quadratic equation 

0231 2 =+− xx  
 
• Using the genetic algorithm (GA) operating on a fixed-
length character string, we can search a space of encodings 
using an alphabet size of 2 (i.e., binary) of length, say, 16 
representing two real numbers (each with, say, 4 bits to left 
of the "decimal" point).  After running the GA, a solution is 
 
                        ↓                         |                         ↓ 
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 
                       1.0                                                2.0 
 
• Alternatively, we could use a "floating point" genetic 
algorithm (GA) to search a space of 2-part encodings. A 
solution is 

1.0 2.0 
• In either case, the result is a solution to ONE INSTANCE 
of the quadratic equation problem. 
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SOLVING A QUADRATIC EQUATION 
USING GENETIC PROGRAMMING (GP) 

 
• Using genetic programming (GP), we can solve the general, 
parameterized quadratic equation 

02 =++ cbxax  
 
by searching the space of computer programs for a program 
that takes a, b, and c as inputs  
 

 

Potential
Recursions

Potential
Internal
Storage

Program

Potential
Subroutines

Input Output

Potential
Loops

 
 
 
• The result is a solution to ALL INSTANCES of the 
quadratic equation problem  
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GENERAL APPEARANCE OF ONE 
POSSIBLE CHROMOSOME ENCODING 
USED TO SOLVE ONE INSTANCE OF A 

CIRCUIT PROBLEM USING THE 
GENETIC ALGORITHM (GA) 

OPERATING ON FIXED-LENGTH 
CHARACTER STRINGS 

 
EXAMPLE CIRCUIT 

 
 
  1st Component |  2nd Component  | 3rd Component   | 4th Component 
L .220 2 3 C 403. 3 6 L .528 6 9 L .041 9 0 
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THE GENERAL APPEARANCE OF 
EXPRESSIONS USED TO SOLVE ONE 
INSTANCE OF A CIRCUIT PROBLEM 

USING GENETIC PROGRAMMING (GP) 
IN GENETIC PROGRAMMING III (1999) 

 

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8

7

9 1 0 1 1 1 2

1 3 1 4 1 5 1 7 1 81 6 1 9 2 0 2 1

2 2

2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1  
 

(LIST (C (– 0.963 (– (– -0.875 -0.113) 0.880)) (series (flip 
end) (series (flip end) (L -0.277 end) end) (L (– -0.640 
0.749) (L -0.123 end)))) (flip (nop (L -0.657 end))))) 

EXAMPLE CIRCUIT (GEN 0) 
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VALUE-SETTING SUBTREES—3 WAYS 
 

ARITHMETIC-PERFORMING SUBTREE 

3.2921.234

*

+

2.963

C

END

 
 

SINGLE PERTURBABLE CONSTANT 

4.809

C

END  
 

FREE VARIABLE 

3.2921.234

*

+

C

END

F
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PARAMETERIZED TOPOLOGY FOR 
"GENERALIZED" LOWPASS FILTER 

 
VARIABLE CUTOFF LOWPASS FILTER 

 
•Want lowpass filter whose passband ends at frequencies f = 
1,000, 1,780, 3,160, 5,620, 10,000, 17,800, 31,600, 56,200, 
100,000 Hz 
 

f
L

7100198.81 ×=  

( )( )
( ) f

f
f

ff
fffL ln104451.2ln

104636.3
103714.9103331.1107387.4103406.12

8

12

2516128

+×≈+
+×

+×+×+××=
−

f
f

L ln2100262.23
8

+×=  

f
L

7107297.34 ×=  

f
C

5106786.11 ×=  
f

C
5106786.12 ×=

 

f
C

5103552.13 ×=  

f
C

5104484.64 ×=  

f
C

5101056.15 ×=  

 

L2
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PARAMETERIZED TOPOLOGY USING 
CONDITIONAL DEVELOPMENTAL 
OPERATORS (GENETIC SWITCH) 

 
VARIABLE-CUTOFF 

LOWPASS/HIGHPASS FILTER CIRCUIT 
• Best-of-run circuit from generation 93 when inputs call for 
a highpass filter (i.e., F1 > F2).  

1
100

=1 F
Fµ

C  1
2.57

=2 F
Fµ

C  1
9.49

=3 F
Fµ

C  1
2.57

=4 F
Fµ

C  
1
9.49

=5 F
Fµ

C  1
9.49

=6 F
Fµ

C  

1
3.56

=1 F
H

L  1
113

=6 F
H

L  
1
3.56

=2 F
H

L  1
3.56

=3 F
H

L  1
3.56

=4 F
H

L  1
3.56

=5 F
H

L  

 
 

• Best-of-run circuit from generation 93 when inputs call for 
a lowpass filter.  

1
113

=1 F
H

L  
1

218
=2 F

H
L  1

218
=3 F

H
L  1

218
=4 F

H
L  

1
9.58

=5 F
H

L  

1
183

=1 F
Fµ

C  
1

219
=2 F

Fµ
C  1

219
=3 F

Fµ
C  

1
7.91

=4 F
Fµ

C  
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PARALLELIZATION BY 
SUBPOPULATIONS ("ISLAND" OR 

"DEME" MODEL OR "DISTRIBUTED 
GENETIC ALGORITHM") 

 

DEBUGGER
(optional)

BOSS
(Tram)

HOST
(Pentium PC)

OUTPUT
FILE

CONTROL
PARAMETER

FILE

VIDEO
DISPLAY

KEYBOARD

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

 
 
• Like Hormel, Get Everything Out of the Pig, Including the 
Oink 
• Keep on Trucking 
• It Takes a Licking and Keeps on Ticking 
• The Whole is Greater than the Sum of the Parts 
 

PETA-OPS 
• Human brain operates at 1012 neurons operating at 103 
per second = 1015 ops per second 
• 1015 ops = 1 peta-op = 1 bs (brain second) 
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GENETIC PROGRAMMING OVER 15-
YEAR PERIOD 1987–2002 

 
System Period 

of 
usage 

Petacycles 
(1015cycles) 
per day for 

entire 
system

Speed-up 
over 

previous 
system 

Speed-up 
over first 
system in 
this table

Human-
competitive 

results

Serial 
Texas 
Instruments 
LISP 
machine 

1987–
1994 

0.00216 1 (base) 1 (base) 0

64-node 
Transtech 
transputer 
parallel 
machine 

1994–
1997  

0.02 9 9 2

64-node 
Parsytec 
parallel 
machine 

1995–
2000  

0.44 22 204 12

70-node 
Alpha 
parallel 
machine 

1999–
2001  

3.2 7.3 1,481 2

1,000-node 
Pentium II 
parallel 
machine 

2000–
2002  

30.0 9.4 13,900 12
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PROGRESSION OF RESULTS 
System Period  Speed-

up
Qualitative nature of the results produced 
by genetic programming 

Serial LISP 
machine 

1987–
1994 

1 (base) • Toy problems of the 1980s and early 
1990s from the fields of artificial 
intelligence and machine learning  

64-node 
Transtech 
8-biy 
transputer  

1994–
1997  

9 •Two human-competitive results involving 
one-dimensional discrete data (not patent-
related) 

64-node 
Parsytec 
parallel 
machine 

1995–
2000  

22 • One human-competitive result involving 
two-dimensional discrete data  
• Numerous human-competitive results 
involving continuous signals analyzed in 
the frequency domain 
• Numerous human-competitive results 
involving 20th-century patented inventions 

70-node 
Alpha 
parallel 
machine 

1999–
2001  

7.3 • One human-competitive result involving 
continuous signals analyzed in the time 
domain 
• Circuit synthesis extended from topology 
and sizing to include routing and 
placement (layout) 

1,000-node 
Pentium II 
parallel 
machine 

2000–
2002 

9.4 • Numerous human-competitive results 
involving continuous signals analyzed in 
the time domain 
• Numerous general solutions to problems 
in the form of parameterized topologies 
• Six human-competitive results 
duplicating the functionality of 21st-
century patented inventions 

Long (4-
week) runs 
of 1,000-
node 
Pentium II 
parallel 
machine 

2002 9.3 • Generation of two patentable new 
inventions 
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PROGRESSION OF QUALITATIVELY 
MORE SUBSTANTIAL RESULTS 

PRODUCED BY GENETIC 
PROGRAMMING IN RELATION TO FIVE 
ORDER-OF-MAGNITUDE INCREASES IN 

COMPUTATIONAL POWER  
 
• toy problems 
 
• human-competitive results not related to 
patented inventions 
 
• 20th-century patented inventions 
 
• 21st-century patented inventions 
 
• patentable new inventions 
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EVOLVABLE HARDWARE 
 

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS 

(FPGAs) 
 

SMALL 5 BY 5 CORNER OF XILINX 
XC6216 FPGA 
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EVOLVABLE HARDWARE 
 

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS 

(FPGAs) 
 

SORTING NETWORKS 
 

• A 16-step 7-sorter was evolved that has two fewer steps 
than the sorting network described in O'Connor and 
Nelsons' patent (1962) and that has the same number of 
steps as the 7-sorter that was devised by Floyd and Knuth 
subsequent to the patent and described in Knuth 1973.   
 

GENETICALLY EVOLVED 7-SORTER 
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FUNDAMENTAL DIFFERENCES 
BETWEEN GP AND OTHER 

APPROACHES TO AI AND ML 
 
(1) Representation: Genetic programming overtly conducts 
it search for a solution to the given problem in program 
space.   
(2) Role of point-to-point transformations in the search:  
Genetic programming does not conduct its search by 
transforming a single point in the search space into another 
single point, but instead transforms a set of points into 
another set of points.   
(3) Role of hill climbing in the search:  Genetic 
programming does not rely exclusively on greedy hill 
climbing to conduct its search, but instead allocates a certain 
number of trials, in a principled way, to choices that are 
known to be inferior.   
(4) Role of determinism in the search:  Genetic 
programming conducts its search probabilistically.  
(5) Role of an explicit knowledge base:  None.  
(6) Role of formal logic in the search:  None. 
(7) Underpinnings of the technique: Biologically inspired.  
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36 HUMAN-COMPETITIVE RESULTS 
(LIST AS OF MAY 2003) 

 Claimed instance Basis for claim 
of human-
competitiveness 

Reference 

1 Creation of a better-than-classical quantum 
algorithm for the Deutsch-Jozsa “early 
promise” problem 

B, F Spector, Barnum, and 
Bernstein 1998 

2 Creation of a better-than-classical quantum 
algorithm for Grover’s database search 
problem 

B, F Spector, Barnum, and 
Bernstein 1999 

3 Creation of a quantum algorithm for the depth-
two AND/OR query problem that is better than 
any previously published result 

D Spector, Barnum, Bernstein, 
and Swamy 1999; Barnum, 
Bernstein, and Spector 2000 

4 Creation of a quantum algorithm for the depth-
one OR query problem that is better than any 
previously published result 

D Barnum, Bernstein, and 
Spector 2000 

5 Creation of a protocol for communicating 
information through a quantum gate that was 
previously thought not to permit such 
communication 

D Spector and Bernstein 2003 

6 Creation of a novel variant of quantum dense 
coding 

D Spector and Bernstein 2003 

7 Creation of a soccer-playing program that won 
its first two games in the Robo Cup 1997 
competition 

H Luke 1998 

8 Creation of a soccer-playing program that 
ranked in the middle of the field of 34 human-
written programs in the Robo Cup 1998 
competition 

H Andre and Teller 1999 

9 Creation of four different algorithms for the 
transmembrane segment identification problem 
for proteins 

B, E Sections 18.8 and 18.10 of GP-
2 book and sections 16.5 and 
17.2 of GP-3 book 

10 Creation of a sorting network for seven items 
using only 16 steps 

A, D Sections 21.4.4, 23.6, and 
57.8.1 of GP-3 book 

11 Rediscovery of the Campbell ladder topology 
for lowpass and highpass filters 

A, F Section 25.15.1 of GP-3 book 
and section 5.2 of GP-4 book 

12 Rediscovery of the Zobel “M-derived half 
section” and “constant K” filter sections 

A, F Section 25.15.2 of GP-3 book 

13 Rediscovery of the Cauer (elliptic) topology for 
filters 

A, F Section 27.3.7 of GP-3 book 

14 Automatic decomposition of the problem of 
synthesizing a crossover filter 

A, F Section 32.3 of GP-3 book 

15 Rediscovery of a recognizable voltage gain 
stage and a Darlington emitter-follower section 
of an amplifier and other circuits 

A, F Section 42.3 of GP-3 book 

16 Synthesis of 60 and 96 decibel amplifiers A, F Section 45.3 of GP-3 book 
17 Synthesis of analog computational circuits for 

squaring, cubing, square root, cube root, 
logarithm, and Gaussian functions 

A, D, G Section 47.5.3 of GP-3 book 

18 Synthesis of a real-time analog circuit for time-
optimal control of a robot 

G Section 48.3 of GP-3 book 
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19 Synthesis of an electronic thermometer A, G Section 49.3 of GP-3 book 
20 Synthesis of a voltage reference circuit A, G Section 50.3 of GP-3 book 
21 Creation of a cellular automata rule for the 

majority classification problem that is better 
than the Gacs-Kurdyumov-Levin (GKL) rule 
and all other known rules written by humans 

D, E Andre, Bennett, and Koza 
1996 and section 58.4 of GP-3 
book 

22 Creation of motifs that detect the D–E–A–D 
box family of proteins and the manganese 
superoxide dismutase family 

C Section 59.8 of GP-3 book 

23 Synthesis of topology for a PID-D2 
(proportional, integrative, derivative, and 
second derivative) controller  

A, F Section 3.7 of GP-4 book 

24 Synthesis of an analog circuit equivalent to 
Philbrick circuit 

A, F Section 4.3 of GP-4 book 

25 Synthesis of a NAND circuit A, F Section 4.4 of GP-4 book 
26 Simultaneous synthesis of topology, sizing, 

placement, and routing of analog electrical 
circuits 

A. F, G Chapter 5 of GP-4 book 

27 Synthesis of topology for a PID (proportional, 
integrative, and derivative) controller  

A, F Section 9.2 of GP-4 book 

28 Rediscovery of negative feedback A, E, F, G Chapter 14 of GP-4 book 
29 Synthesis of a low-voltage balun circuit A Section 15.4.1 of GP-4 book 
30 Synthesis of a mixed analog-digital variable 

capacitor circuit A 
Section 15.4.2 of GP-4 book 

31 Synthesis of a high-current load circuit A Section 15.4.3 of GP-4 book 
32 Synthesis of a voltage-current conversion 

circuit A 
Section 15.4.4 of GP-4 book 

33 Synthesis of a Cubic function generator A Section 15.4.5 of GP-4 book 
34 Synthesis of a tunable integrated active filter A Section 15.4.6 of GP-4 book 
35 Creation of PID tuning rules that outperform 

the Ziegler-Nichols and Åström-Hägglund 
tuning rules 

A, B, D, E, F, G Chapter 12 of GP-4 book 

36 Creation of three non-PID controllers that 
outperform a PID controller that uses the 
Ziegler-Nichols or Åström-Hägglund tuning 
rules 

A, B, D, E, F, G Chapter 13 of GP-4 book 
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PROMISING GP APPLICATION AREAS 
 

• Problem areas involving many variables that are 
interrelated in highly non-linear ways 
• Inter-relationship of variables is not well understood 
• A good approximate solution is satisfactory 

• design 
• control 
• classification and pattern recognition 
• data mining 
• system identification and forecasting 

• Discovery of the size and shape of the solution is a major 
part of the problem 
• Areas where humans find it difficult to write programs 

• parallel computers 
• cellular automata 
• multi-agent strategies  / distributed AI 
• FPGAs 

• "black art" problems 
• synthesis of topology and sizing of analog circuits 
• synthesis of topology and tuning of controllers 
• quantum computing circuits 
• synthesis of designs for antennas 

• Areas where you simply have no idea how to program a 
solution, but where the objective (fitness measure) is clear 
• Problem areas where large computerized databases are 
accumulating and computerized techniques are needed to 
analyze the data 
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TURING'S THREE APPROACHES TO 
MACHINE INTELLIGENCE 

 
• Turing made the connection between searches and the 
challenge of getting a computer to solve a problem without 
explicitly programming it in his 1948 essay "Intelligent 
Machines" (in Mechanical Intelligence: Collected Works of A. 
M. Turing, 1992, edited by D. C. Ince).  
 

"Further research into intelligence of machinery will 
probably be very greatly concerned with 'searches' ... 
" 

 
TURING'S THREE APPROACHES TO 

MACHINE INTELLIGENCE  
CONTINUED 

 
1. LOGIC-BASED SEARCH 

One approach that Turing identified is a search through the 
space of integers representing candidate computer 
programs. 

 
2. CULTURAL SEARCH 

Another approach is the "cultural search" which relies on 
knowledge and expertise acquired over a period of years 
from others (akin to present-day knowledge-based systems).   
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TURING'S THREE APPROACHES TO 
MACHINE INTELLIGENCE  

CONTINUED 
 

3. GENETICAL OR EVOLUTIONARY 
SEARCH 

"There is the genetical or evolutionary search by 
which a combination of genes is looked for, the 
criterion being the survival value."   

 
• from Turing’s 1950 paper "Computing Machinery and 
Intelligence" … 

"We cannot expect to find a good child-machine at 
the first attempt.  One must experiment with 
teaching one such machine and see how well it learns.  
One can then try another and see if it is better or 
worse.  There is an obvious connection between this 
process and evolution, by the identifications" 

"Structure of the child machine = Hereditary 
material" 

"Changes of the child machine = Mutations" 

"Natural selection = Judgment of the experimenter" 
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WILLIAM LANGDON’S BIBLIOGRAPHY 
ON GENETIC PROGRAMMING 

This bibliography is the most extensive in the field and 
contains over 3,034 papers (as of January 2003) by over 880 
authors.  
 
Visit 
http://www.cs.bham.ac.uk/~wbl/biblio/  
or  
http://liinwww.ira.uka.de/bibliography/Ai/g
enetic.programming.html  
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GP MAILING LIST 
To subscribe to the Genetic Programming e-mail list,  
• send e-mail message to:  

genetic_programming-subscribe@yahoogroups.com 

• visit the web page   
http://groups.yahoo.com/group/genetic_programming/  

 
INTERNATIONAL SOCIETY FOR 
GENETIC AND EVOLUTIONARY 

COMPUTATION (ISGEC) 
For information on ISGEC, the annual GECCO conference, 
or the bi-annual FOGA workshop, visit 
www.isgec.org  

 
FOR ADDITIONAL INFORMATION ON 

THE GP FIELD 
Visit 
http://www.genetic-programming.org 
for  
• links computer code in various programming languages 
(including C, C++, Java, Mathematica, LISP) 
• partial list of people active in genetic programming 
• list of  known completed PhD theses on GP 
• list of students known to be working on PhD theses on GP 
• information for instructors of university courses on genetic 
algorithms and genetic programming 
 


