
 1

INTRODUCTION TO GENETIC

PROGRAMMING

TUTORIAL

GECCO-2003
CHICAGO

SUNDAY JULY 13, 2003

John R. Koza
Consulting Professor (Medical Informatics)

Department of Medicine
School of Medicine

Consulting Professor

Department of Electrical Engineering
School of Engineering

Stanford University

Stanford, California 94305
E-MAIL: koza@stanford.edu

http://www.smi.stanford.edu/people/koza/
http://www.genetic-programming.org
http://www.genetic-programming.com

 2

THE CHALLENGE

"How can computers learn to solve problems without
being explicitly programmed? In other words, how
can computers be made to do what is needed to be
done, without being told exactly how to do it?"

  Attributed to Arthur Samuel (1959)

CRITERION FOR SUCCESS

"The aim [is] ... to get machines to exhibit behavior,
which if done by humans, would be assumed to
involve the use of intelligence."

  Arthur Samuel (1983)

 3

SOME (OF THE MANY)
REPRESENTATIONS USED TO TRY TO

ACHIEVE MACHINE INTELLIGENCE IN
THE FIELDS OF ARTIFICIAL

INTELLIGENCE (AI) AND MACHINE
LEARNING (ML)

• Decision trees
• If-then production rules (e.g., expert system)
• Horn clauses
• Neural nets (matrices of numerical weights)
• Bayesian networks
• Frames
• Propositional logic
• Binary decision diagrams
• Formal grammars
• Vectors of numerical coefficients for polynomials (adaptive
systems)
• Tables of values (reinforcement learning)
• Conceptual clusters
• Concept sets
• Parallel if-then rules (e.g., genetic classifier systems)

 4

A COMPUTER PROGRAM

Potential
Recursions

Potential
Internal
Storage

Program

Potential
Subroutines

Input Output

Potential
Loops

REPRESENTATION
• "Our view is that computer programs are the best
representation of computer programs."

 5

FLOWCHART FOR GENETIC
PROGRAMMING (GP)

Perform Reproduction

Yes

No

Gen := Gen + 1

Select Two Individuals
Based on Fitness

Perform
Crossover

Perform Mutation Insert Mutant into
New Population

Copy into New
Population

i := i + 1

Select One Individual
Based on Fitness

Pr

Pc

Pm

Select Genetic Operation

i = M?

Create Initial Random
Population for Run

No

Termination Criterion
Satisfied for Run?

Yes

Gen := 0 Run := Run + 1

Designate
Result for Run

End

Run := 0

i := 0

No
Run = N?

Yes

i := 0

i := i + 1i = M?

Apply Fitness Measure to Individual in the Population

Yes

No

Select One Individual
Based on Fitness

Insert Offspring
into New

Population
i := i + 1

Select an Architecture Altering Operation
Based on its Specified Probability

Perform the
Architecture Altering

Operation

Insert Offspring into
New Population

Select One Individual
Based on Fitness

 6

COMPUTER PROGRAM
= PARSE TREE = PROGRAM TREE

= PROGRAM IN LISP = DATA = LIST

(+ 1 2 (IF (> TIME 10) 3 4))

• ATOMS (TERMINALS) = 1, 2, 10, 3, 4, TIME

• FUNCTIONS = +, IF, >

+

>

10

43

21

TIME

IF

 7

EXAMPLE OF RANDOM CREATION OF
A PROGRAM TREE

• Terminal set T = {A, B, C}
• Function set F = {+, –, *, %, IFLTE}

BEGIN WITH TWO-ARGUMENT +
+

CONTINUE WITH TWO-ARGUMENT *

+

*

1

2

COMPLETE WITH TERMINALS A, B,

AND C
+

*

A B

C

• The result is a syntactically valid executable program
(provided the set of functions is closed)

 8

MUTATION OPERATION

• Select parent probabilistically based on fitness
• Pick point from 1 to NUMBER-OF-POINTS
• Delete subtree at the picked point
• Grow new subtree at the mutation point in same way as
generated trees for initial random population (generation 0)
• The result is a syntactically valid executable program

ONE PARENTAL PROGRAM
OR

NOR

D0 D1D2 D1

AND

1

32

4 765

OFFSPRING PRODUCED BY MUTATION

NOR

NOT NOT

D0 D1

OR

NOR

D0 D1

 9

CROSSOVER (SEXUAL
RECOMBINATION) OPERATION FOR

COMPUTER PROGRAMS

• Select two parents probabilistically based on fitness
• Randomly pick a number from 1 to NUMBER-OF-POINTS
– independently for each of the two parental programs
• Identify the two subtrees rooted at the two picked points

0.234Z + X – 0.789

X 0.789

–

0.234 Z

*

+

ZY(Y + 0.314Z)

Z Y

*

0.314 Z

*Y

+

*
1 1

2 25 5

8 9

3 34 46 7 76

Parent 1:
(+ (* 0.234 Z) (- X 0.789))

Parent 2:
(* (* Z Y) (+ Y (* 0.314 Z)))

 10

THE CROSSOVER OPERATION
(TWO OFFSPRING VERSION)

X 0.789

–

+

0.314 Z

*Y

+

Y + 0.314Z + X – 0.789

Z Y

*

*

0.234 Z

*

0.234Z Y2

Offspring 1:
(+ (+ Y (* 0.314 Z))
 (- X 0.789))

Offspring 2:
(* (* Z Y) (* 0.234 Z))

• The result is a syntactically valid executable program

 11

FIVE MAJOR PREPARATORY STEPS
FOR GP

• Determining the set of terminals
• Determining the set of functions
• Determining the fitness measure
• Determining the parameters for the run

• population size
• number of generations
• minor parameters

• Determining the method for designating a
result and the criterion for terminating a run

Terminal Set
Function Set
Fitness Measure
Parameters
Termination
Criterion

GP A Computer
Program

 12

(ABBREVIATED) TABLEAU FOR
SYMBOLIC REGRESSION OF

QUADRATIC POLYNOMIAL X2 + X + 1
 Objective: Find a computer program with one

input (independent variable x),
whose output equals the value of the
quadratic polynomial x2 + x + 1 in
range from -1 to +1.

1 Terminal set: T = {X}
2 Function set: F = {+, -, *, %}

NOTE: The protected division
function % returns a value of 1 when
division by 0 is attempted (including
0 divided by 0)

3 Fitness: The sum of the absolute value of the
differences (errors), computed (in
some way) over values of the
independent variable x from –1.0 to
+1.0, between the program’s output
and the target quadratic polynomial
x2 + x + 1.

4 Parameters: Population size M = 4.
5 Termination: An individual emerges whose sum

of absolute errors is less than 0.1

 13

SYMBOLIC REGRESSION OF
QUADRATIC POLYNOMIAL X2 + X + 1

INITIAL POPULATION OF FOUR

RANDOMLY CREATED INDIVIDUALS
OF GENERATION 0

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

X + 1 X2 + 1 2 X

FITNESS

0.67 1.00 1.70 2.67

 14

SYMBOLIC REGRESSION OF
QUADRATIC POLYNOMIAL X2 + X + 1

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

GENERATION 1

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

x + 1

Copy of (a)

1

Mutant of (c)

—picking “2”
as mutation
point

X

First
offspring of
crossover of
(a) and (b)

—picking “+”
of parent (a)
and left-most
“x” of parent
(b) as
crossover
points

x2 + x + 1

Second
offspring of
crossover of
(a) and (b)

—picking “+”
of parent (a)
and left-most
“x” of parent
(b) as
crossover
points

 15

SYMBOLIC REGRESSION
OF QUARTIC POLYNOMIAL X4+X3+X2+X

(WITH 21 FITNESS CASES)
Independent
variable X
(Input)

Dependent
Variable Y
(Output)

-1.0 0.0000
-0.9 -0.1629
-0.8 -0.2624
-0.7 -0.3129
-0.6 -0.3264
-0.5 -0.3125
-0.4 -0.2784
-0.3 -0.2289
-0.2 -0.1664
-0.1 -0.0909

0 0.0
0.1 0.1111
0.2 0.2496
0.3 0.4251
0.4 0.6496
0.5 0.9375
0.6 1.3056
0.7 1.7731
0.8 2.3616
0.9 3.0951
1.0 4.0000

 16

TABLEAU  SYMBOLIC REGRESSION
OF QUARTIC POLYNOMIAL X4+X3+X2+X
Objective: Find a function of one independent

variable, in symbolic form, that fits a
given sample of 21 (xi, yi) data points

Terminal set: X (the independent variable).
Function set: +, -, *, %, SIN, COS, EXP,

RLOG
Fitness cases: The given sample of 21 data points (xi,

yi) where the xi are in interval [–1,+1].
Raw fitness: The sum, taken over the 21 fitness cases,

of the absolute value of difference
between value of the dependent variable
produced by the individual program and
the target value yi of the dependent
variable.

Standardized
fitness:

Equals raw fitness.

Hits: Number of fitness cases (0 – 21) for
which the value of the dependent
variable produced by the individual
program comes within 0.01 of the target
value yi of the dependent variable.

Wrapper: None.
Parameters: Population size, M = 500.

Maximum number of generations to be
run, G = 51.

Success
Predicate:

An individual program scores 21 hits.

 17

SYMBOLIC REGRESSION
OF QUARTIC POLYNOMIAL X4+X3+X2+X

WORST-OF-GENERATION INDIVIDUAL
IN GENERATION 0 WITH RAW FITNESS

OF 1038

(EXP (- (% X (- X (SIN X)))
(RLOG (RLOG (* X X)))))

Equivalent to

ex/(x-sin x) - log log x*x

 18

SYMBOLIC REGRESSION
OF QUARTIC POLYNOMIAL X4+X3+X2+X

MEDIAN INDIVIDUAL IN GENERATION

0 WITH RAW FITNESS OF 23.67
(AVERGAGE ERROR OF 1.3)

(COS (COS (+ (- (* X X) (% X
X)) X)))

Equivalent to

Cos [Cos (x2 + x – 1)]

-1 0 1

-1

0

1

2

3

4

x + x + x + x4 3 2

Cos [Cos (x + x –1)]2

 19

SYMBOLIC REGRESSION
OF QUARTIC POLYNOMIAL X4+X3+X2+X

BEST-OF-GENERATION INDIVIDUAL IN
GENERATION 0 WITH RAW FITNESS OF

4.47 (AVERGAGE ERROR OF 0.2)

(* X (+ (+ (- (% X X) (% X X))
(SIN (- X X))) (RLOG (EXP (EXP
X)))))

Equivalent to

xex

-1 0 1
-1

0

1

2

3

4
x + x + x + x4 3 2

xe x

 20

SYMBOLIC REGRESSION
OF QUARTIC POLYNOMIAL X4+X3+X2+X

CREATION OF GENERATION 1 FROM

GENERATION 0

• In the so-called "generational" model for genetic
algorithms, a new population is created that is equal in size
to the old population

• 1% mutation (i.e., 5 individuals out of 500)
• 9% reproduction (i.e., 45 individuals)
• 90% crossover (i.e., 225 pairs of parents  yielding 450
offspring)

• All participants in mutation, reproduction, and crossover
are chosen from the current population
PROBABILISTICALLY, BASED ON FITNESS

• Anything can happen
• Nothing is guaranteed
• The search is heavily (but not completely) biased toward
high-fitness individuals
• The best is not guaranteed to be chosen
• The worst is not necessarily excluded
• Some (but not much) attention is given even to low-
fitness individuals

 21

SYMBOLIC REGRESSION
OF QUARTIC POLYNOMIAL X4+X3+X2+X

BEST-OF-GENERATION INDIVIDUAL IN
GENERATION 2 WITH RAW FITNESS OF

2.57 (AVERGAGE ERROR OF 0.1)

(+ (* (* (+ X (* X (* X (% (% X
X) (+ X X)))))
 (+ X (* X X))) X) X)

Equivalent to...

x4 + 1.5x3 + 0.5x2 + x

 22

SYMBOLIC REGRESSION
OF QUARTIC POLYNOMIAL X4+X3+X2+X

BEST-OF-RUN INDIVIDUAL IN

GENERATION 34 WITH RAW FITNESS
OF 0.00 (100%-CORRECT)

(+ X (* (+ X (* (* (+ X (- (COS
(- X X)) (- X X))) X) X)) X))

Equivalent to

 x4 + x3 + x2 + x

XX

COS

–

XX XX

–

XX XX

–

+

*

XX

*

XX

XX

+ XX

*

+

XX

 23

SYMBOLIC REGRESSION
OF QUARTIC POLYNOMIAL X4+X3+X2+X

OBSERVATIONS

• GP works on this problem
• GP determines the size and shape of the
solution

• number of operations needed to solve the problem
• size and shape of the program tree
• content of the program tree (i.e., sequence of operations)

• GP operates the same whether the solution
is linear, polynomial, a rational fraction of
polynomials, exponential, trigonometric, etc.
• It's not how a human programmer would
have done it

• Cos (X - X) = 1
• Not parsimonious

• The extraneous functions – SIN, EXP,
RLOG, and RCOS are absent in the best
individual of later generations because they
are detrimental

• Cos (X - X) = 1 is the exception that proves the rule
• The answer is algebraically correct (hence
no further cross validation is needed)

 24

CLASSIFICATION PROBLEM
INTER-TWINED SPIRALS

 25

GP TABLEAU – INTERTWINED SPIRALS
Objective: Find a program to classify a given point

in the x-y plane to the red or blue spiral.
Terminal set: X, Y, ℜ , where ℜ is the ephemeral

random floating-point constant ranging
between –1.000 and +1.000.

Function set: +, -, *, %, IFLTE, SIN, COS.
Fitness cases: 194 points in the x-y plane.
Raw fitness: The number of correctly classified points

(0 – 194)
Standardized
fitness:

The maximum raw fitness (i.e., 194)
minus the raw fitness.

Hits: Equals raw fitness.
Wrapper: Maps any individual program returning

a positive value to class +1 (red) and
maps all other values to class –1 (blue).

Parameters: M = 10,000 (with over-selection). G = 51.
Success
predicate:

An individual program scores 194 hits.

 26

WALL-FOLLOWING PROBLEM

12 SONAR SENSORS

S00 = 12.4

S01 = 16.4 S02 = 12.0 S03 = 12.0 S04 = 16.4

S05 = 9.0

S06 = 16.2

S07 = 22.1S08 = 16.6

S09 = 9.4

S10 = 17.0

S11 = 12.4

 27

WALL-FOLLOWING PROBLEM

FITNESS MEASURE

 28

WALL-FOLLOWING PROBLEM
BEST PROGRAM OF GENERATION 57

• Scores 56 hits (out of 56)
• 145point program tree

 29

24 PROBLEMS SHOWN IN 1992
VIDEOTAPE

GENETIC PROGRAMMING: THE MOVIE
(KOZA AND RICE 1992)

• Symbolic Regression
• Intertwined Spirals
• Artificial Ant
• Truck Backer Upper
• Broom Balancing
• Wall Following
• Box Moving
• Discrete Pursuer-Evader Game
• Differential Pursuer-Evader Game
• Co-Evolution of Game-Playing Strategies
• Inverse Kinematics
• Emergent Collecting
• Central Place Foraging
• Block Stacking
• Randomizer
• 1-D Cellular Automata
• 2-D Cellular Automata
• Task Prioritization
• Programmatic Image Compression
• Finding 3√2
• Econometric Exchange Equation
• Optimization (Lizard)
• Boolean 11-Multiplexer
• 11-Parity–Automatically Defined Functions

 30

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

Potential
Recursions

Potential
Internal
Storage

Program

Potential
Subroutines

Input Output

Potential
Loops

• Subroutines provide one way to REUSE code  possibly
with different instantiations of the dummy variables (formal
parameters)
• Loops (and iterations) provide a 2nd way to REUSE code
• Recursion provide a 3rd way to REUSE code
• Memory provides a 4th way  to REUSE the results of
executing code

 31

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

10 FITNESS-CASES SHOWING THE

VALUE OF THE DEPENDENT
VARIABLE, D, ASSOCIATED WITH THE

VALUES OF THE SIX INDEPENDENT
VARIABLES, L0, W0, H0, L1, W1, H1

Fitness
case

L0 W0 H0 L1 W1 H1 Dependent
variable D

1 3 4 7 2 5 3 54
2 7 10 9 10 3 1 600
3 10 9 4 8 1 6 312
4 3 9 5 1 6 4 111
5 4 3 2 7 6 1 –18
6 3 3 1 9 5 4 –171
7 5 9 9 1 7 6 363
8 1 2 9 3 9 2 –36
9 2 6 8 2 6 10 –24
10 8 1 10 7 5 1 45

 32

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

SOLUTION WITHOUT ADFS

(- (* (* W0 L0) H0)
 (* (* W1 L1) H1))

D = W0*L0*H0 – W1*L1*H1

W0 H0

* L0

*

*

L1 H1

*

W1

–

L1

W1

H1

L0

W0

H0

 33

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

AN OVERALL COMPUTER PROGRAM

CONSISTING OF ONE FUNCTION-
DEFINING BRANCH (ADF,

SUBROUTINE) AND ONE RESULT-
PRODUCING BRANCH (MAIN

PROGRAM)

(progn
 (defun volume (arg0 arg1 arg2)
 (values
 (* arg0 (* arg1 arg2))))
(values (- (volume L0 W0 H0)
 (volume L1 W1 H1))))

progn

(ARG0 ARG1

defun

ARG0 *

ARG2ARG1

*

valuesVOLUME

–

values

L1 W1 H1

VOLUME

W0 H0L0

VOLUME

 34

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

IF WE ADD TWO NEW VARIABLES FOR

VOLUME (V0 ANDV1), THE 6-
DIMENSIONAL NON-LINEAR

REGRESSION PROBLEM BECOMES AN
8-DIMENSIONAL PROBLEM

Fitness
case

L0 W0 H0 L1 W1 H1 V0 V1 D

1 3 4 7 2 5 3 84 30 54
2 7 10 9 10 3 1 630 30 600
3 10 9 4 8 1 6 360 48 312
4 3 9 5 1 6 4 135 24 111
5 4 3 2 7 6 1 24 42 –18
6 3 3 1 9 5 4 9 180 –171
7 5 9 9 1 7 6 405 42 363
8 1 2 9 3 9 2 18 54 –36
9 2 6 8 2 6 10 96 120 –24
10 8 1 10 7 5 1 80 35 45

• However, the problem can now be approached as a 2-
dimensional LINEAR regression problem.

 35

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

TOP-DOWN VIEW OF THREE STEP

HIERARCHICAL PROBLEM-SOLVING
PROCESS

DIVIDE AND CONQUER

Subproblem 1

Subproblem 2

Original
problem

Solution to
original problem

Solution to subproblem 1

Solution to subproblem 2

Decompose Solve
subproblems

Solve original
problem

• Decompose a problem into subproblems

• Solve the subproblems

• Assemble the solutions of the subproblems
into a solution for the overall problem

 36

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

BOTTOM-UP VIEW OF THREE STEP

HIERARCHICAL PROBLEM-SOLVING
PROCESS

Identify

regularities
Change

representation Solve

Second recoding rule

First recoding ruleOriginal
representation

of the
problem

New
representation

of the
 problem

Solution to
problem

• Identify regularities

• Change the representation

• Solve the overall problem

 37

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

• In generation 0, we create a population of programs, each
consisting of a main result-producing branch (RPB) and one
or more function-defining branches (automatically defined
functions, ADFs, subroutines)

• Different ingredients for RPB and ADFs
• The terminal set of an ADF typically contains dummy
arguments (formal parameters), such as ARG0, ARG1, …
• The function set of the RPB contains ADF0, …
• ADFs are private and associated with a particular
individual program in the population

• The entire program is executed and evaluated for fitness
• Genetic operation of reproduction is the same as before
• Mutation operation starts (as before) by picking a
mutation point from either RPB or an ADF and deleting the
subtree rooted at that point. As before, a subtree is then
grown at the point. The new subtree is composed of the
allowable ingredients for that point  so that the result is a
syntactically valid executable program.
• Crossover operation starts (as before) by picking a
crossover point from either RPB or an ADF of one parent.
The choice of crossover point in the second parent is then
restricted (e.g., to the RPB or to the ADF)  so that when
the subtrees are swapped, the result is a syntactically valid
executable program.

 38

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

8 MAIN POINTS FROM BOOK
GENETIC PROGRAMMING II:

AUTOMATIC DISCOVERY OF REUSABLE
PROGRAMS (KOZA 1994)

• ADFs work.
• ADFs do not solve problems in the style of human
programmers.
• ADFs reduce the computational effort required to solve a
problem.
• ADFs usually improve the parsimony of the solutions to a
problem.
• As the size of a problem is scaled up, the size of solutions
increases more slowly with ADFs than without them.
• As the size of a problem is scaled up, the computational
effort required to solve a problem increases more slowly
with ADFs than without them.
• The advantages in terms of computational effort and
parsimony conferred by ADFs increase as the size of the
problem is scaled up.

 39

REUSE

MEMORY AND STORAGE

(A) (B) (C) (D)

• (A) Settable (named) variables (Genetic Programming,
Koza 1992) using setting (writing) functions (SETM0 X)
and (SETM1 Y) and reading by means of terminals M0 and
M1.
• (B) Indexed memory similar to linear (vector) computer
memory (Teller 1994) using (READ K) and(WRITE X K)
• (C) Matrix memory (Andre 1994)
• (D) Relational memory (Brave 1995, 1996)

LANGDON'S DATA STRUCTURES

• Stacks
• Queues
• Lists
• Rings

 40

REUSE

AUTOMATICALLY DEFINED
ITERATIONS (ADIS)

• Overall program consisting of an automatically defined
function ADF0, an iteration-performing branch IPB0, and a
result-producing branch RPB0.
• Iteration is over a known, fixed set

• protein or DNA sequence (of varying length
• time-series data
• two-dimensional array of pixels

 41

REUSE

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

• Goal is to classify a given protein segment as being a
transmembrane domain or non-transmembrane area of the
protein
• Generation 20  Run 3  Subset-creating version

• in-sample correlation of 0.976
• out-of-sample correlation of 0.968
• out-of-sample error rate 1.6%
(progn

 (defun ADF0 ()
(ORN (ORN (ORN (I?) (H?)) (ORN (P?) (G?))) (ORN (ORN
(ORN (Y?) (N?)) (ORN (T?) (Q?))) (ORN (A?) (H?))))))

 (defun ADF1 ()
(values (ORN (ORN (ORN (A?) (I?)) (ORN (L?) (W?)))
(ORN (ORN (T?) (L?)) (ORN (T?) (W?))))))

 (defun ADF2 ()
(values (ORN (ORN (ORN (ORN (ORN (D?) (E?)) (ORN (ORN
(ORN (D?) (E?)) (ORN (ORN (T?) (W?)) (ORN (Q?)
(D?)))) (ORN (K?) (P?)))) (ORN (K?) (P?))) (ORN (T?)
(W?))) (ORN (ORN (E?) (A?)) (ORN (N?) (R?))))))

 (progn (loop-over-residues
 (SETM0 (+ (- (ADF1) (ADF2)) (SETM3 M0))))

 (values (% (% M3 M0) (% (% (% (- L -0.53) (* M0
M0)) (+ (% (% M3 M0) (% (+ M0 M3) (% M1 M2))) M2)) (%
M3 M0))))))

 42

REUSE

EXAMPLE OF A PROGRAM WITH A
FOUR-BRANCH AUTOMATICALLY

DEFINED LOOP (ADL0) AND A RESULT-
PRODUCING BRANCH

SETM1

0

IFLTE

LEN M1 -73 +22

values

SETM0

M0

+

values

READV

M1

SETM1LIST
progn

%

M0 LEN

ADL0+

M1 1

defloop

progn

ADL0

400

410

411 412 413

414

415

416

417

420

440

450

460

470

 43

REUSE

AUTOMATICALLY DEFINED
RECURSION (ADR0) AND A RESULT-

PRODUCING BRANCH
• a recursion condition branch, RCB
• a recursion body branch, RBB
• a recursion update branch, RUB
• a recursion ground branch, RGB

progn

defrecursion values

ADL0 LIST values IFGTZ * IFGTZ ADR0

ARG0 IFGTZ 1 3 RLI -1 1 5

ARG01ARG0 -1

ADR0 IFGTZ IFGTZ

-

ARG0 1

RLI -1 1

ARG0

RLI 1 -1

ARG0

600

610 670

611 612

613

620

621

622 623 624

630

631 635 640

632

633 634

636

637

638 639 641 643 644

642

650

651 652

660 680

661

662

663 664 681

 44

GP TECHNIQUES

• control structures involving multiple result-producing
branches (Luke and Spector 1996a Bennett 1996a Svingen
1997)
• adaptive self-modifying ontogenetic genetic programming
(Spector and Stoffel 1996a 1996b)
• cultural storage and transmission (Spector and Luke 1996a
1996b)
• hierarchical problem solving (Rosca and Ballard 1994a
1994b; Rosca 1995; Rosca 1997)
• modules (Angeline and Pollack 1993 1994; Angeline 1993
1994; Kinnear 1994b)
• logic grammars (Wong and Leung 1995a 1995b 1995c
1995d 1995e 1995f 1997)
• cellular encoding (developmental genetic programming)
for evolving neural networks (Gruau 1992a 1992b 1993
1994a 1994b; Gruau and Whitley 1993; Esparcia-Alcazar
and Sharman 1997)
• developmental methods for evolving finite automata using
genetic programming (Brave 1996a)
• developmental methods for shape optimization (Kennelly
1997)
• evolving graphs and networks (Luke and Spector 1996b)
• using a grammar to represent bias and background
knowledge (Whigham 1995a 1995b 1996)
• developmental methods for fuzzy logic systems (Tunstel
and Jamshidi 1996)

 45

GP TECHNIQUES  CONTINUED

• diploidy and dominance (Greene 1997a 1997b)
• Turing completeness of genetic programming (Teller
1994c; Nordin and Banzhaf 1995)
• evolution of chemical topological structures (Nachbar 1997
1998)
• interactive fitness measures (Poli and Cagnoni 1997;) and
in particular in graphics and art (Sims 1991a 1991b 1992a
1992b 1993)
• variations in crossover operations (Poli and Langdon 1997)
• distributed processes and multi-agent systems (Haynes
Sen Schoenefeld and Wainwright 1995; Ryan 1995; Luke
and Spector 1996a; Iba 1996; Iba Nozoe and Ueda 1997;
Qureshi 1996; Crosbie and Spafford 1995)
• complexity-based fitness measures using minimum
description length (Iba Kurita de Garis and Sato 1993; Iba
deGaris and Sato 1994)
• co-evolution (Reynolds 1994c)
• steady state genetic programming (Reynolds 1993 1994a
1994b)
• use of noise in fitness cases (Reynolds 1994d)
• balancing parsimony and accuracy (Zhang and
Muhlenbein 1993 1994 1995; Blickle l997)
• automatically defined features using genetic algorithms in
conjunction with genetic programming (Andre 1994a)
• grammatical evolution (Conor Ryan and Michael O'Neill)

 46

GP TECHNIQUES  CONTINUED

• graphical program structures and neural programming
(Teller and Veloso 1996, 1997; Teller 1998; Poli 1997a,
1997b)
• automatically defined macros (ADMs) for simultaneous
evolution of programs and their control structures (Spector
1996)
• libraries (Koza 1990a; Koza and Rice 1991; Koza 1992a,
section 6.5.4; Angeline and Pollack 1993, 1994; Angeline
1993, 1994; Kinnear 1994b)
• strong typing (Montana 1995; Montana and Czerwinski
1996; Janikow 1996; Yu and Clack 1997a) and constrained
syntactic structures (Koza 1992a)
• explicit pointers (Andre 1994c)
• evolution of machine code (Nordin 1994, 1997) and linear
genomes (Banzhaf, Nordin, Keller, and Francone 1998)

 47

ARCHITECTURE-ALTERING
OPERATIONS

PROTEIN ALIGNMENT OF "A" AND "B"

PROTEINS

First.protein MRIKFLVVLA VICLFAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA50
Second.protein MRIKFLVVLA VICLLAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA50

First.protein ESSEYEIEVI KHQKEKTEKK EKEKKTHVET KKEVKKKEKK QIPCSEKLKD100
Second.protein DSSEYEIEVI KHQKEKTEKK EKEKKAHVEI KKKIKNKEKK FVPCSEILKD100

First.protein EKLDCETKGV PAGYKAIFKF TENEE-CDWT CDYEALPPPP GAKKDDKKEK149
Second.protein EKLECEKNAT P-GYKALFEF KESESFCEWE CDYEAI---P GAKKDEKKEK146

First.protein KTVKVVKPPK EKPPKKLRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD199
Second.protein KVVKVIKPPK EKPPKKPRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD196

First.protein KKFAKLVQGK QKKGAKKAKG GKKAAPKPGP KPGPK----Q ADKP------239
Second.protein KKFAKLVQGK QKKGAKKAKG GKKAEPKPGP KPAPKPGPKP APKPVPKPAD246

First.protein --KDAKK 244
Second.protein KPKDAKK 253

 48

ARCHITECTURE-ALTERING
OPERATIONS

PROGRAM WITH 1 TWO-ARGUMENT

AUTOMATICALLY DEFINED FUNCTION
(ADF0) AND 1 RESULT-PRODUCING
BRANCH – ARGUMENT MAP OF {2}

progn

400

defun

ADF0 values

OR

ARG1

ARG0ARG1

AND

LIST

410

411
412 419

ARG1ARG0
413 414 420

421
422

423 424

values

AND

D1 D2 D0

D3

D4 D0

ADF0 NAND

ADF0

NOR

470

481

482 483 486

480

485

487

489

490

488

491

 49

ARCHITECTURE-ALTERING
OPERATIONS

PROGRAM WITH ARGUMENT MAP OF

{2, 2} CREATED USING THE
OPERATION OF BRANCH

DUPLICATION

progn

defun

ADF0 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

541

520

values

AND

D1 D2 D0

D3

D4 D0

ADF1 NAND

ADF0

NOR

defun

ADF1 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

550

549

500

510

511

540 570

581

582 583

588

587

589

590 591

519

543 544

542

 50

ARCHITECTURE-ALTERING
OPERATIONS

PROGRAM WITH ARGUMENT MAP OF
{3} CREATED USING THE OPERATION

OF ARGUMENT DUPLICATION

progn

defun

ADF0 values

OR

ARG2 AND

LIST

610

611 612 619

ARG0
613

ARG1
614 620

621
622

623

ARG1

624

ARG2
615

ARG0

values

AND

D1 D2 D0

D3

ADF0 NAND

ADF0

D4 D0

NOR

670

681

682 683

687

690

688

691

D2

684

D4 D0

NOR
689 695

696 697

600

 51

ARCHITECTURE-ALTERING
OPERATIONS

SPECIALIZATION – REFINEMENT –

CASE SPLITTING
• Branch duplication
• Argument duplication
• Branch creation
• Argument creation

GENERALIZATION
• Branch deletion
• Argument deletion

 52

16 ATTRIBUTES OF A SYSTEM FOR
AUTOMATICALLY CREATING

COMPUTER PROGRAMS

1  Starts with "What needs to be done"
2  Tells us "How to do it"
3  Produces a computer program
4  Automatic determination of program size
5  Code reuse
6  Parameterized reuse
7  Internal storage
8  Iterations, loops, and recursions
9  Self-organization of hierarchies
10  Automatic determination of program architecture
11  Wide range of programming constructs
12  Well-defined
13  Problem-independent
14  Wide applicability
15  Scalable
16  Competitive with human-produced results

 53

ARCHITECTURE-ALTERING
OPERATIONS

GENETIC PROGRAMMING
PROBLEM SOLVER (GPPS)

 VERSION 2.0

POTENTIAL
RECURSIONS

POTENTIAL
INTERNAL
STORAGE

INPUT(0)

INPUT(1)

INPUT(2)

INPUT(N1)

GPPS 2.0
PROGRAM

POTENTIAL
SUBROUTINES

POTENTIAL
LOOPS

INPUT
VECTOR

•
•
•

OUTPUT(0)

OUTPUT(1)

OUTPUT(2)

OUTPUT(N2)

OUTPUT
VECTOR

•
•
•

 54

IMPLEMENTATION OF GP IN
ASSEMBLY CODE – COMPILED

GENETIC PROGRAMMING SYSTEM
(NORDIN 1994)

• Nordin, Peter. 1997. Evolutionary Program Induction of
Binary Machine Code and its Application. Munster,
Germany: Krehl Verlag.
• Opportunity to speed up GP that is done by slowly
INTERPRETING GP program trees.
 Instead of interpreting the GP program tree, EXECUTE
this sequence of assembly code.
• Can identify small set of primitive functions that is useful
for large group of problems, such as +, -, *, % and also use
some conditional operations (IFLTE), some logical
functions (AND, OR, XOR, XNOR) and perhaps others (e.g.,
SRL, SLL, SETHI from Sun 4).
• Then, generate random sequence of assembly code
instructions at generation 0 from this small set of machine
code instructions (referring to certain registers).
• If ADFs are involved, generate fixed header and footer of
function and appropriate function call.
• Perform crossover possibly so as to preserve the integrity
of subtrees.
• If ADFs are involved, perform crossover so as to preserve
the integrity of the header and footer of function and the
function call.

 55

DESIGN OF QUANTUM COMPUTER
CIRCUITS USING GP (SPECTOR ET AL.)

• Spector, Lee, Barnum, Howard, and Bernstein, Herbert J. 1998.
Genetic programming for quantum computers. In Koza, John R.,
Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo,
Marco, Fogel, David B., Garzon, Max H., Goldberg, David E., Iba,
Hitoshi, and Riolo, Rick. (editors). 1998. Genetic Programming 1998:
Proceedings of the Third Annual Conference. San Francisco, CA:
Morgan Kaufmann. Pages 365 - 373.
• Spector, Lee, Barnum, Howard, and Bernstein, Herbert J. 1999.
Quantum computing applications of genetic programming. In
Spector, Lee, Langdon, William B., O'Reilly, Una-May, and
Angeline, Peter (editors). 1999. Advances in Genetic Programming 3.
Cambridge, MA: The MIT Press. Pages 135-160.
• Spector, Lee, Barnum, Howard, Bernstein, Herbert J., and
Swamy, N. 1999. Finding a better-than-classical quantum AND/OR
algorithm using genetic programming. In IEEE. Proceedings of 1999
Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press.
Pages 2239-2246.
• Barnum, H., Bernstein, H.J. and Spector, Lee. 2000. Quantum
circuits for OR and AND of ORs. Journal of Physics A:
Mathematical and General. 33 (45) 8047-8057. November 17, 2000).
• Spector, Lee, and Bernstein, Herbert J. 2003. Communication
capacities of some quantum gates, discovered in part through
genetic programming. In Shapiro, Jeffery H. and Hirota, Osamu
(editors). Proceedings of the Sixth International Conference on
Quantum Communication, Measurement, and Computing. Princeton,
NJ: Rinton Press. Pages 500-503.

 56

CELLULAR ENCODING
(DEVELOPMENTAL GENETIC

PROGRAMMING)

• Gruau, Frederic. 1992b. Cellular Encoding of Genetic
Neural Networks. Technical report 92-21. Laboratoire de
l'Informatique du Parallélisme. Ecole Normale Supérieure
de Lyon. May 1992.
• Also: Gruau 1992a 1992b 1993 1994a 1994b; Gruau and
Whitley 1993; Esparcia-Alcazar and Sharman 1997)
• Applied by Gruau and Whitley (1995) to 2-pole-balancing
problem
• Applied by Gruau to six-legged walking creature
• Applied by Brave (1995, 1996) to Finite Automata

 57

AUTOMATIC PARALLELIZATION OF
SERIAL PROGRAMS USING GP

• Ryan, Conor. 1999. Automatic Re-engineering of Software
Using Genetic Programming. Amsterdam: Kluwer Academic
Publishers.
• Start with working serial computer program (embryo)
• GP program tree contains validity-preserving functions
that modify the current program. That is, the functions in
the program tree side-effect the current program.
• Execution of the complete GP program tree progressively
modifies the current program
• Fitness is based on execution time on the parallel computer
system

 58

DEVELOPMENTAL GP

THE INITIAL CIRCUIT
• Initial circuit consists of embryo and test fixture
• Embryo has modifiable wires (e.g., Z0 AND Z1)
• Test fixture has input and output ports and usually has
source resistor and load resistor. There are no modifiable
wires (or modifiable components) in the test fixture.
• Circuit-constructing program trees consist of

• Component-creating functions
• Topology-modifying functions
• Development-controlling functions

• Circuit-constructing program tree has one result-
producing branch for each modifiable wire in embryo of the
initial circuit

C FLIP

LIST1

2 3

-

 59

DEVELOPMENTAL GP

DEVELOPMENT OF A CIRCUIT FROM A
CIRCUIT-CONSTRUCTING PROGRAM

TREE AND THE INITIAL CIRCUIT

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8

7

9 1 0 1 1 1 2

1 3 1 4 1 5 1 7 1 81 6 1 9 2 0 2 1

2 2

2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

 60

DEVELOPMENTAL GP

RESULT OF THE C (2) FUNCTION

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

NOTE: Interpretation of arithmetic value

 61

DEVELOPMENTAL GP

RESULT OF SERIES (5) FUNCTION

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

 62

EVALUATION OF FITNESS OF A
CIRCUIT

Program Tree

+ IN OUT z0

Embryonic Circuit

Fully Designed Circuit (NetGraph)

Circuit Netlist (ascii)

Circuit Simulator (SPICE)

Circuit Behavior (Output)

Fitness

 63

BEHAVIOR OF A LOWPASS FILTER
VIEWED IN THE FREQUENCY DOMAIN

• Examine circuit's behavior for each of 101 frequency
values chosen over five decades of frequency (from 1 Hz to
100,000 Hz) with each decade divided into 20 parts (using a
logarithmic scale). The fitness measure

• does not penalize ideal values
• slightly penalizes acceptable deviations
• heavily penalizes unacceptable deviations

• Fitness is sum F(t) =
i = 0

100
∑ [W (f i)d (f i)]

• f(i) is the frequency of fitness case i
•d(x) is the difference between the target and observed
values at frequency of fitness case i
• W(y,x) is the weighting at frequency x

 64

TABLEAU  LOWPASS FILTER
(WITHOUT ADFS OR ARCHITECTURE-

ALTERING OPERATIONS)
Objective: Design a lowpass filter composed of

inductors and capacitors with a
passband below 1,000 Hz, a stopband
above 2,000 Hz, a maximum allowable
passband deviation of 30 millivolts, and
a maximum allowable stopband
deviation of 1 millivolt.

Test fixture and
embryo:

One-input, one-output initial circuit with
a source resistor, load resistor, and two
modifiable wires.

Program
architecture:

Two result-producing branches, RPB0
and RPB1 (i.e., one RPB per modifiable
wire in the embryo).

Initial function
set for the result-
producing
branches:

For construction-continuing subtrees:
Fccs-rpb-initial = {C, L, SERIES,
PARALLEL0, FLIP, NOP, TWO_GROUND,
TWO_VIA0, TWO_VIA1, TWO_VIA2,
TWO_VIA3, TWO_VIA4, TWO_VIA5,
TWO_VIA6, TWO_VIA7}.
For arithmetic-performing subtrees:
Faps = {+, -}.

Initial terminal
set for the result-
producing
branches:

For construction-continuing subtrees:
Tccs-rpb-initial = {END}.
For arithmetic-performing subtrees:
Taps = {←smaller-reals}.

 65

Fitness cases: 101 frequency values in an interval of
five decades of frequency values between
1 Hz and 100,000 Hz.

Raw fitness: Fitness is the sum, over the 101 sampled
frequencies (fitness cases), of the
absolute weighted deviation between the
actual value of the output voltage that is
produced by the circuit at the probe
point and the target value for voltage.
The weighting penalizes unacceptable
output voltages much more heavily than
deviating, but acceptable, voltages.

Standardized
fitness:

Same as raw fitness.

Hits: The number of hits is defined as the
number of fitness cases (out of 101) for
which the voltage is acceptable or ideal
or that lie in the "don't care" band.

Wrapper: None.
Parameters: M = 1,000 to 320,000. G = 1,001. Q

=1,000. D = 64. B = 2%. Nrpb = 2. Srpb =
200.

Result
designation:

Best-so-far pace-setting individual.

Success
predicate:

A program scores the maximum number
(101) of hits.

 66

EVOLVED CAMPBELL FILTER
(7-RUNG LADDER)

• This genetically evolved circuit infringes on U. S. patent
1,227,113 issued to George Campbell of American Telephone
and Telegraph in 1917 (claim 2):

An electric wave filter consisting of a connecting line of
negligible attenuation composed of a plurality of sections,
each section including a capacity element and an inductance
element, one of said elements of each section being in series
with the line and the other in shunt across the line, said
capacity and inductance elements having precomputed
values dependent upon the upper limiting frequency and
the lower limiting frequency of a range of frequencies it is
desired to transmit without attenuation, the values of said
capacity and inductance elements being so proportioned
that the structure transmits with practically negligible
attenuation sinusoidal currents of all frequencies lying
between said two limiting frequencies, while attenuating
and approximately extinguishing currents of neighboring
frequencies lying outside of said limiting frequencies."

 67

EVOLVED ZOBEL FILTER

• Infringes on U. S. patent 1,538,964 issued in 1925 to Otto
Zobel of American Telephone and Telegraph Company for
an “M-derived half section” used in conjunction with one or
more “constant K” sections.
• One M-derived half section (C2 and L11)
• Cascade of three symmetric T-sections

 68

GENETICALLY EVOLVED 10 DB
AMPLIFIER FROM GENERATION 45

SHOWING THE VOLTAGE GAIN STAGE

AND DARLINGTON EMITTER
FOLLOWER SECTION

Voltage Gain Stage

Darlington
Emitter-
Follower
Stage

 69

POST-2000 PATENTED INVENTIONS

HIGH CURRENT LOAD CIRCUIT
BEST-OF-RUN FROM GENERATION 114

 70

POST-2000 PATENTED INVENTIONS

REGISTER-CONTROLLED CAPACITOR
CIRCUIT

SMALLEST COMPLIANT FROM

GENERATION 98

 71

POST-2000 PATENTED INVENTIONS

LOW-VOLTAGE CUBIC SIGNAL
GENERATION CIRCUIT

BEST-OF-RUN FROM GENERATION 182

 72

POST-2000 PATENTED INVENTIONS

LOW-VOLTAGE BALUN CIRCUIT
BEST EVOLVED FROM GENERATION 84

 73

POST-2000 PATENTED INVENTIONS

VOLTAGE-CURRENT-CONVERSION
CIRCUIT

BEST-OF-RUN FROM GENERATION 109

 74

POST-2000 PATENTED INVENTIONS

TUNABLE INTEGRATED ACTIVE
FILTER — GENERATION 50

 75

21 PREVIOUSLY PATENTED
INVENTIONS REINVENTED BY GP

 Invention Date Inventor Place Patent
1 Darlington

emitter-
follower
section

1953 Sidney
Darlington

Bell Telephone
Laboratories

2,663,806

2 Ladder filter 1917 George
Campbell

American
Telephone and
Telegraph

1,227,113

3 Crossover
filter

1925 Otto Julius
Zobel

American
Telephone and
Telegraph

1,538,964

4 “M-derived
half section”
filter

1925 Otto Julius
Zobel

American
Telephone and
Telegraph

1,538,964

5 Cauer
(elliptic)
topology for
filters

1934–
1936

Wilhelm
Cauer

University of
Gottingen

1,958,742,
1,989,545

6 Sorting
network

1962 Daniel G.
O’Connor
and
Raymond J.
Nelson

General Precision,
Inc.

3,029,413

7 Computation
al circuits

See
text

See text See text See text

8 Electronic
thermometer

See
text

See text See text See text

9 Voltage
reference
circuit

See
text

See text See text See text

10 60 dB and 96
dB amplifiers

See
text

See text See text See text

11 Second-
derivative
controller

1942 Harry Jones Brown Instrument
Company

2,282,726

12 Philbrick
circuit

1956 George
Philbrick

George A.
Philbrick
Researches

2,730,679

13 NAND circuit 1971 David H.
Chung and
Bill H.

Texas Instruments
Incorporated

3,560,760

 76

Terrell
14 PID

(proportional
, integrative,
and
derivative)
controller

1939 Albert
Callender
and Allan
Stevenson

Imperial Chemical
Limited

2,175,985

15 Negative
feedback

1937 Harold S.
Black

American
Telephone and
Telegraph

2,102,670,
2,102,671

16 Low-voltage
balun circuit

2001 Sang Gug
Lee

Information and
Communications
University

6,265,908

17 Mixed
analog-digital
variable
capacitor
circuit

2000 Turgut
Sefket Aytur

Lucent
Technologies Inc.

6,013,958

18 High-current
load circuit

2001 Timothy
Daun-
Lindberg
and Michael
Miller

International
Business Machines
Corporation

6,211,726

19 Voltage-
current
conversion
circuit

2000 Akira
Ikeuchi and
Naoshi
Tokuda

Mitsumi Electric
Co., Ltd.

6,166,529

20 Cubic
function
generator

2000 Stefano
Cipriani and
Anthony A.
Takeshian

Conexant Systems,
Inc.

6,160,427

21 Tunable
integrated
active filter

2001 Robert
Irvine and
Bernd Kolb

Infineon
Technologies AG

6,225,859

2 PATENTABLE INVENTIONS CREATED
BY GENETIC PROGRAMMING

 Claimed invention Date of patent
application

Inventors

1 Improved general-
purpose tuning rules
for a PID controller

July 12, 2002 Martin A. Keane, John R. Koza,
and Matthew J. Streeter

2 Improved general-
purpose non-PID

July 12, 2002 Martin A. Keane, John R. Koza,
and Matthew J. Streeter

 77

controllers

 78

NOVELTY-DRIVEN EVOLUTION

EXAMPLE OF LOWPASS FILTER

• Two factors in fitness measure
• Circuit’s behavior in the frequency domain
• Largest number of nodes and edges (circuit components)
of a subgraph of the given circuit that is isomorphic to a
subgraph of a template representing the prior art. Graph
isomorphism algorithm with the cost function being based
on the number of shared nodes and edges (instead of just
the number of nodes).

PRIOR ART TEMPLATE

 79

NOVELTY-DRIVEN EVOLUTION 
CONTINUED

• For circuits not scoring the maximum number (101) of
hits, the fitness of a circuit is the product of the two factors.
• For circuits scoring 101 hits (100%-compliant individuals),
fitness is the number of shared nodes and edges divided by
10,000.

FITNESS OF EIGHT 100%-COMPLIANT

CIRCUITS
Solution Frequency

factor
Isomorphism
factor

Fitness

1 0.051039 7 0.357273
2 0.117093 7 0.819651
3 0.103064 7 0.721448
4 0.161101 7 1.127707
5 0.044382 13 0.044382
6 0.133877 7 0.937139
7 0.059993 5 0.299965
8 0.062345 11 0.685795

 80

SOLUTION NO. 1

SOLUTION NO. 5

 81

LAYOUT  LOWPASS FILTER
100%-COMPLIANT CIRCUITS

GENERATION 25 WITH 5 CAPACITORS
AND 11 INDUCTORS  AREA OF 1775.2

RLOAD
(39,-2.8)

1K

RSRC
(-38.5,-2.8)

1k

L2
(-24.5,-2.8)
90200uH

G V0

C13
(-31.5,8.2)

8.91nF

L9
(17.5,-2.8)
90200uH

L10
(0.5,-2.8)
90200uH

L11
(-5.5,-2.8)
90200uH

L12
(-11.5,-2.8)
90200uH

L16
(-17.5,8.2)
42700uH

C19
(-25.5,8.2)

1.75nF

L23
(-5.5,-7.2)
90200uH

L26
(9.5,-2.8)
90200uH

C29
(5.5,4)
311nF

L31
(32.5,-2.8)
90200uH

L33
(17.5,8.2)
90200uH

L32
(23.5,-2.8)
90200uH

G

G

G

G

G

C17
(-21.5,4.2)

165nF

C40
(28.5,0.2)

295nF

VOUT

GENERATION 30 WITH 10 INDUCTORS
AND 5 CAPACITORS  AREA OF 950.3

VOUT

RSRC
(-31.5,-3.2)

1K
G V

L2
(16.5,-3.2)
127000uH

L9
(29.5,-3.2)
63500uH

L10
(8.5,-3.2)
63500uH

L11
(16.5,6.5)
63500uH

C13
(12.5,1)
0.317nF

C19
(23,0.8)
176uH

L22
(0.5,-3.2)
319000uH

C25
(4.5,0.9)
256nF

L28
(-26.5,-3.2)
96000uH

C32
(-3.5,0.9)

256nF

L34
(-20.5,-3.2)
96000uH

L35
(-6.5,-3.2)
288000uH

L37
(-14.5,-3.2)

0.214uH

C38
(-10.5,0.9)

256nF

L40
(-20.5,6.5)
96000uH

G G G

G

G
RLOAD
(36,-3.2)

1K
BEST-OF-RUN CIRCUIT OF

GENERATION 138 WITH 4 INDUCTORS
AND 4 CAPACITORS  AREA OF 359.4

RLOAD
(17.5,5.4)

1K

RSRC
(-16,5.4)

1K

L38
(11,5.4)

96100uH
VG G

C12
(-10,0.5)
155nF

G

C18
(-4,1)
256nF

G

L20
(-7,5.4)

253000uH

C27
(2,1.2)
256nF

G

L29
(-1,5.4)

319000uH

C34
(8,1.4)
256nF

G

L36
(5,5.4)

288000uH

VOUT

 82

LAYOUT  60 DB AMPLIFIER (USING
TRANSISTORS)

COMPARISON

Gen Component
s

Area Four
penalties

Fitness

65 27 8,234 33.034348 33.042583
101 19 4,751 0.061965 0.004751

BEST-OF-RUN CIRCUIT FROM
GENERATION 101

G

R3

R4

C10

R14

R18

G

R21

R24

R27

R30

R33

G

G

G

C52

C53

O

P

P

P

P

Q48

Q45

V

Q36

Q43

Q39

Q54

Q49 Q50Q47Q46Q8

G

 83

PID CONTROLLER

Block diagram of a plant and a PID controller composed of
proportional (P), integrative (I), and derivative (D) blocks

550

552

+15.5

540

542

+1000.0

530

532

+214.0

558

548

s

570

1/s

560

568

578

538

524

522

526

580

+

+

+

Control
Variable

Plant

592

Plant
Output

512
510

-

+

Reference
Signal

596

Controller

520

508 590 594

500

 84

PROGRAM TREE REPRESENTATION
FOR PID CONTROLLER

• ADF can be used for reuse.
• Automatically defined function ADF0 takes the difference
between the reference signal and the plant output and makes
this difference available to three points in the result-
producing branch

PROGN 700

DEFUN 702 VALUES 790

+ 780VALUES 712LIST

706

ADF0

704

- 710

REF

708

PLANT
OUTPUT

794

+214.0

732

ADF0

734

GAIN 730

+1000.0

742

ADF0

744

GAIN 740

1/s 760

+15.5

752

ADF0

754

750

770

GAIN

s

• ADF can be used for internal feedback

980

950

+3.14

942
920

+

ADF0

990
-

945

910

940

930 900

Input Output

 85

FUNCTION SET AND TERMINAL SET
FOR TWO-LAG PLANT PROBLEM

• The function set, F (for every part of the result-producing
branch and any automatically defined functions except the
arithmetic-performing subtrees) is

F = {GAIN, INVERTER, LEAD, LAG, LAG2,

DIFFERENTIAL_INPUT_INTEGRATOR,
DIFFERENTIATOR, ADD_SIGNAL,
SUB_SIGNAL, ADD_3_SIGNAL, ADF0,
ADF1, ADF2, ADF3, ADF4}

• The terminal set, T, (for every part of the result-producing
branch and any automatically defined functions except the
arithmetic-performing subtrees) is

T = { REFERENCE_SIGNAL,

CONTROLLER_OUTPUT, PLANT_OUTPUT,
CONSTANT_0}

 86

ARITHMETIC-PERFORMING SUBTREES
FOR THE TWO-LAG PLANT PROBLEM

• Signal processing blocks such as GAIN, LEAD, LAG,
and LAG2 possess numerical parameter(s)
• Parameter values can be established by an arithmetic-
performing subtree
• A constrained syntactic structure enforces a different
function and terminal set for the arithmetic-performing
subtrees (as opposed to all other parts of the program tree).
• Terminal set, Taps, for the arithmetic-performing subtrees
Taps = {ℜ}
where ℜ denotes constant numerical terminals in the range
from -1.0 to +1.0

• Function set, Faps, for the arithmetic-performing subtrees
Faps = {ADD_NUMERIC, SUB_NUMERIC}

 87

FITNESS MEASURE FOR TWO-LAG
PLANT

• 10-element fitness measure
• The first eight elements of the fitness measure represent
the eight choices of a particular one of two different values
of the plant's internal gain, K (1.0 and 2.0), in conjunction
with a particular one of two different values of the plant's
time constant τ (0.5 and 1.0), in conjunction with a
particular one of two different values for the height of the
reference signal. The two reference signals are step
functions that rise from 0 to 1 volts (or 1 microvolts) at t =
100 milliseconds.
• For each of these eight fitness cases, a transient analysis is
performed in the time domain using the SPICE simulator.
The contribution to fitness for each of these eight elements is

∫
=

6.9

0
))(()(

t
BdtteAtet

• e(t) is difference between plant output and reference signal.
• Multiplication by B (106. or 1) makes both reference
signals equally influential.
• Additional weighting function, A, heavily penalizes non-
compliant amounts of overshoot. A weights all variations up
to 2% above the reference signal by 1.0, but others by 10.0.
• The 9th element of the fitness measure exposes the
controller to an extreme spiked reference signal.
• The 10th element constrains the frequency of the control
variable so as to avoid extreme high frequencies.

 88

BEST-OF-RUN GENETICALLY
EVOLVED CONTROLLER FROM

GENERATION 32 FOR THE TWO-LAG
PLANT

s0837.01+

s168.01

1

+
1−

s156.01
1

+
1−

R(s)

Y(s)
s515.01+

8.15 s0385.01+

U(s)

1
s

1− 918.8

 89

COMPARISON OF THE TIME-DOMAIN
RESPONSE TO 1-VOLT STEP INPUT FOR

THE EVOLVED CONTROLLER
(TRIANGLES) AND THE BISHOP AND
DORF CONTROLLER (SQUARES) FOR
THE TWO-LAG PLANT WITH K=1 AND

τ=1

0 167m 333m 500m 667m 833m 1
0

200m

400m

600m

800m

1

1.2

Time (s)

GP

Textbook

OVERALL MODEL

Gp(s) Gc(s) G(s)
Y(s)

-
U(s)R(s) +

+

+

D(s)

H(s)

 90

COMPARISON OF THE TIME-DOMAIN
RESPONSE TO A 1-VOLT DISTURBANCE

SIGNAL OF THE EVOLVED
CONTROLLER(TRIANGLES) AND THE

BISHOP AND DORF CONTROLLER
(CIRCLES) FOR THE TWO-LAG PLANT

WITH K=1 AND τ=1

0 167m 333m 500m 667m 833m 1
-2m

0

2m

4m

6m

8m

10m

Time(s)

GP

Textbook

 91

REVERSE ENGINEERING OF
METABOLIC PATHWAYS (4-REACTION
NETWORK IN PHOSPHOLIPID CYCLE)

BEST-OF-GENERATION 66

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.88 (1.95)

Glycerol
kinase

ATP

Glycerol

Glycerol-1-
phosphatase

IntC00162

C00116

Int

C00002

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K = 1.46 (1.45)

EC3.1.3.21
K = 1.20 (1.19)

EC2.7.1.30
K = 1.65 (1.69)

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

DESIRED

ADP

Diacyl-glycerol

Triacylglycerol
lipase

Monoacyl-
glycerol

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.95

sn-glycerol-
3-

phosphate

Glycerol
kinase

ATP

Glycerol

Glycerol-1-
phosphatase

C01885C00162

C00009

C00008

C00116

C00093

Orthophosphate

C00002

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K = 1.45

EC3.1.3.21
K = 1.19

EC2.7.1.30
K = 1.69

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

 92

CHARACTERISTICS SUGGESTING THE
USE OF GENETIC PROGRAMMING

(1) discovering the size and shape of the solution,
(2) reusing substructures,
(3) discovering the number of substructures,
(4) discovering the nature of the hierarchical references
among substructures,
(5) passing parameters to a substructure,
(6) discovering the type of substructures (e.g., subroutines,
iterations, loops, recursions, or storage),
(7) discovering the number of arguments possessed by a
substructure,
(8) maintaining syntactic validity and locality by means of a
developmental process, or
(9) discovering a general solution in the form of a
parameterized topology containing free variables

 93

MANY DIFFERENT GA/ES ENCODINGS
HAVE BEEN SUCCESSFULLY USED

A mixture of real-valued variables, integer-valued variables,
and categorical variables are encoded in the chromosome
L .220 2 3 C 403. 3 6 L .528 6 9 L .041 9 0

• Bit-string chromosome
Resistor | 2.5 Ω | Node 3 | Node 6
0 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0

• The component type (a categorical variable) is encoded
as 2 bits (01 = resistor, etc.)

• The component value (real-valued number) is encoded
as 8 bits

• The node (integer-valued variable) to which the
component's 1st lead is connected is encoded by 3 bits

• The node (integer-valued variable) to which the
component's 2nd lead is connected is encoded by 3 bits

• Note that the number of nodes is capped at 8 (or
assumed to be 8)

 94

IT IS OFTEN POSSIBLE TO USE THE
GENETIC ALGORITHM (GA) OR

EVOLUTION STRATEGIES EVEN WHEN
THE SIZE AND SHAPE OF THE
SOLUTION IS A MAJOR ISSUE

• Variable-length genetic algorithm (VGA)

• Maintain constraints

Chromosome #1
 1st Component | 2nd Component
L .220 1 2 C 403. 2 0

Chromosome #2
 1st Component | 2nd Component
R 250. 0 1 C 100. 1 2

Nominal Offspring #1 is invalid
1st Component | 2nd Component
L .220 1 2 C 100. 1 2

• Penalize (in fitness measure)
• Delete
• Repair (most common method)
• Inundate

 95

STRONG INDICATIONS FOR USING
GENETIC ALGORITHM (GA) OR
EVOLUTION STRATEGIES (ES)

• The size and shape of the solution is known or fixed

• Ascertaining numerical parameters is the major issue

• Simplicity is a major consideration

• On-chip evolution the algorithm's logic is implemented
on the chip in hardware

 96

AUTOMATIC SYNTHESIS OF A YAGI-
UDA WIRE ANTENNA USING GENETIC

ALGORITHM (LINDEN 1997)

0 0.5 1 1.5 2
0.2

0

0.2

x(m)

y(
m

)

• When the genetic algorithm (GA) operating on fixed-
length character strings was used to synthesize a particular
Yagi-Uda wire antenna by Linden (1997), the chromosome
was based on

• a particular number of reflectors (one) and
•a particular number of directors.

The chromosome encoded

• the spacing between the parallel wires
• the length of each of the parallel wires

 97

AUTOMATIC SYNTHESIS OF A YAGI-
UDA WIRE ANTENNA USING GENETIC

ALGORITHM (LINDEN 1997) 
CONTINUED

• When the genetic algorithm (GA) operating on fixed-
length character strings was used to synthesize a Yagi-Uda
wire antenna (Linden 1997), the following decisions were
made by the human user prior to the start of the run:

(1) the number of reflectors (one),
(2) the number of directors,
(3) the fact that the driven element, the directors, and the

reflector are all single straight wires,
(4) the fact that the driven element, the directors, and the

reflector are all arranged in parallel,
(5) the fact that the energy source (via the transmission

line) is connected only to single straight wire (the
driven element)  that is, all the directors and
reflectors are parasitically coupled

• Characteristics (3), (4), and (5) are essential characteristics
of the Yagi-Uda antenna, namely an antenna with multiple
parallel parasitically coupled straight-line directors, a single
parallel parasitically coupled straight-line reflector, and a
straight-line driven element. That it, the GA run assumed
that the answer would be a Yagi-Uda antenna.

 98

AUTOMATIC SYNTHESIS OF A WIRE
ANTENNA

EXAMPLE OF TURTLE FUNCTIONS
USED TO CREATE WIRE ANTENNA

1 (PROGN3
2 (TURN-RIGHT 0.125)
3 (LANDMARK
4 (REPEAT 2
5 (PROGN2
6 (DRAW 1.0 HALF-MM-WIRE)
7 (DRAW 0.5 NO-WIRE)))
8 (TRANSLATE-RIGHT 0.125 0.75))

(a) (b) (c) (d) (e) (f) (g)

0 0.5 1 1.5 2
0.2

0

0.2

x(m)

y(
m

)

 99

BEST-OF-RUN ANTENNA FROM
GENERATION 90

 FITNESS OF-16.04

0 0.5 1 1.5 2
0.2

0

0.2

x(m)

y(
m

)

• The GP run discovered

(1) the number of reflectors (one),
(2) the number of directors,
(3) the fact that the driven element, the directors, and the

reflector are all single straight wires,
(4) the fact that the driven element, the directors, and the

reflector are all arranged in parallel,
(5) the fact that the energy source (via the transmission

line) is connected only to single straight wire (the
driven element)  that is, all the directors and
reflectors are parasitically coupled

• Characteristics (3), (4), and (5) are essential characteristics
of the Yagi-Uda antenna, namely an antenna with multiple
parallel parasitically coupled straight-line directors, a single
parallel parasitically coupled straight-line reflector, and a
straight-line driven element.

 100

REUSE
LOWPASS FILTER USING ADFS

GENERATION 0 – ONE-RUNG LADDER

BEHAVIOR IN FREQUENCY DOMAIN

 101

REUSE
LOWPASS FILTER USING ADFS

GENERATION 9 - TWO-RUNG LADDER

TWICE-CALLED TWO-PORTED ADF0

BEHAVIOR IN FREQUENCY DOMAIN

 102

REUSE
LOWPASS FILTER USING ADFS

GEN 16 – THREE-RUNG LADDER

THRICE-CALLED TWO-PORTED ADF0

BEHAVIOR IN FREQUENCY DOMAIN

 103

REUSE
LOWPASS FILTER USING ADFS
GEN 20 – FOUR-RUNG LADDER

QUADRUPLY-CALLED TWO-PORTED

ADF0

BEHAVIOR IN FREQUENCY DOMAIN

 104

REUSE
LOWPASS FILTER USING ADFS

GENERATION 31  TOPOLOGY OF
CAUER (ELLIPTIC) FILTER

QUINTUPLY-CALLED THREE-PORTED

ADF0

BEHAVIOR IN FREQUENCY DOMAIN

 105

PASSING A PARAMETER TO A
SUBSTRUCTURE

• The set of potential terminals for each construction-
continuing subtree of an automatically defined function,
Tccs-adf-potential, is
Tccs-adf-potential = {ARG0}

EMERGENCE OF A PARAMETERIZED
ARGUMENT IN A CIRCUIT

SUBSTRUCTURE

HIERARCHY OF BRANCHES FOR THE
BEST-OF-RUN CIRCUIT- FROM

GENERATION 158

RPB2

execute

ADF4 {1}

RPB1RPB0

ADF3 {1} ADF2 {1}ADF3 {1}

ADF2 {1} ADF2 {1} ADF2 {1}

 106

PASSING A PARAMETER TO A
SUBSTRUCTURE

BEST-OF-RUN CIRCUIT FROM

GENERATION 158

 107

THREE-PORTED AUTOMATICALLY
DEFINED FUNCTION ADF3 OF THE

BEST-OF-RUN CIRCUIT FROM
GENERATION 158

ADF3 CONTAINS CAPACITOR C39

PARAMETERIZED BY DUMMY
VARIABLE ARG0

 108

THE FIRST RESULT-PRODUCING
BRANCH, RPB0, CALLING ADF3

(PARALLEL0 (L (+ (– 1.883196E-01 (– -9.095883E-02 5.724576E-
01)) (– 9.737455E-01 -9.452780E-01)) (FLIP END)) (SERIES (C (+
(+ -6.668774E-01 -8.770285E-01) 4.587758E-02) (NOP END))
(SERIES END END (PARALLEL1 END END END END)) (FLIP
(SAFE_CUT))) (PAIR_CONNECT_0 END END END) (PAIR_CONNECT_0 (L
(+ -7.220122E-01 4.896697E-01) END) (L (– -7.195599E-01
3.651142E-02) (SERIES (C (+ -5.111248E-01 (– (– -6.137950E-01
-5.111248E-01) (– 1.883196E-01 (– -9.095883E-02 5.724576E-
01)))) END) (SERIES END END (adf3 6.196514E-01)) (NOP END)))
(NOP END)))

AUTOMATICALLY DEFINED FUNCTION

ADF3
(C (+ (– (+ (+ (+ 5.630820E-01 (– 9.737455E-01 -9.452780E-01))
(+ ARG0 6.953752E-02)) (– (– 5.627716E-02 (+ 2.273517E-01 (+
1.883196E-01 (+ 9.346950E-02 (+ -7.220122E-01 (+ 2.710414E-02
1.397491E-02)))))) (– (+ (– 2.710414E-02 -2.807583E-01) (+ -
6.137950E-01 -8.554120E-01)) (– -8.770285E-01 (– -4.049602E-01
-2.192044E-02))))) (+ (+ 1.883196E-01 (+ (+ (+ (+ 9.346950E-02
(+ -7.220122E-01 (+ 2.710414E-02 1.397491E-02))) (– 4.587758E-
02 -2.340137E-01)) 3.226026E-01) (+ -7.220122E-01 (– -
9.131658E-01 6.595502E-01)))) 3.660116E-01)) 9.496355E-01)
(THREE_GROUND_0 (C (+ (– (+ (+ (+ 5.630820E-01 (– 9.737455E-01
-9.452780E-01)) (+ (– (– -7.195599E-01 3.651142E-02) -
9.761651E-01) (– (+ (– (– -7.195599E-01 3.651142E-02) -
9.761651E-01) 6.953752E-02) 3.651142E-02))) (– (– 5.627716E-02
(– 1.883196E-01 (– -9.095883E-02 5.724576E-01))) (– (+ (–
2.710414E-02 -2.807583E-01) (+ -6.137950E-01 (+ ARG0
6.953752E-02))) (– -8.770285E-01 (– -4.049602E-01 -2.192044E-
02))))) (+ (+ 1.883196E-01 -7.195599E-01) 3.660116E-01))
9.496355E-01) (NOP (FLIP (PAIR_CONNECT_0 END END END)))) (FLIP
(SERIES (FLIP (FLIP (FLIP END))) (C (– (+ 6.238477E-01
6.196514E-01) (+ (+ (– (– 4.037348E-01 4.343444E-01) (+ -
7.788187E-01 (+ (+ (– -8.786904E-01 1.397491E-02) (– -
6.137950E-01 (– (+ (– 2.710414E-02 -2.807583E-01) (+ -
6.137950E-01 -8.554120E-01)) (– -8.770285E-01 (– -4.049602E-01
-2.192044E-02))))) (+ (+ 7.215142E-03 1.883196E-01) (+
7.733750E-01 4.343444E-01))))) (– (– -9.389297E-01 5.630820E-
01) (+ -5.840433E-02 3.568947E-01))) -8.554120E-01)) (NOP
END)) END)) (FLIP (adf2 9.737455E-01))))

 109

ADF3 DOES THREE THINGS
• The structure that develops out of ADF3 includes a
capacitor C112 whose value (5,130 uF) is not a function of
its dummy variable, ARG0.
• The structure that develops out of ADF3 has one
hierarchical reference to ADF2. As previously mentioned,
the invocation of ADF2 is done with a constant (9.737455E-
01) so this invocation of ADF2 produces a 259 µH inductor.
• Most importantly, the structure that develops out of ADF3
creates a capacitor (C39) whose sizing, F(ARG0), is a
function of the dummy variable, ARG0, of automatically
defined function ADF3. Capacitor C39 has different sizing
on different invocations of automatically defined function
ADF3.
• The combined effect of ADF3 is to insert the following
three components:

• an unparameterized 5,130 uF capacitor,
• a parameterized capacitor C39 whose component value

is dependent on ARG0 of ADF3, and
• a parameterized inductor (created by ADF2) whose

sizing is parameterized, but which, in practice, is called
with a constant value.

 110

EMERGENCE OF A PARAMETERIZED
ARGUMENT IN A CIRCUIT

SUBSTRUCTURE

HIERARCHY OF BRANCHES FOR THE
BEST-OF-RUN CIRCUIT- FROM

GENERATION 158

RPB2

execute

ADF4 {1}

RPB1RPB0

ADF3 {1} ADF2 {1}ADF3 {1}

ADF2 {1} ADF2 {1} ADF2 {1}

 111

FREE VARIABLE (INPUT) AND
CONDITIONALS

SOLVING A QUADRATIC EQUATION
USING THE GENETIC ALGORITHM

• Suppose we want the 2 roots of the quadratic equation

0231 2 =+− xx

• Using the genetic algorithm (GA) operating on a fixed-
length character string, we can search a space of encodings
using an alphabet size of 2 (i.e., binary) of length, say, 16
representing two real numbers (each with, say, 4 bits to left
of the "decimal" point). After running the GA, a solution is

 ↓ | ↓
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
 1.0 2.0

• Alternatively, we could use a "floating point" genetic
algorithm (GA) to search a space of 2-part encodings. A
solution is

1.0 2.0
• In either case, the result is a solution to ONE INSTANCE
of the quadratic equation problem.

 112

SOLVING A QUADRATIC EQUATION
USING GENETIC PROGRAMMING (GP)

• Using genetic programming (GP), we can solve the general,
parameterized quadratic equation

02 =++ cbxax

by searching the space of computer programs for a program
that takes a, b, and c as inputs

Potential
Recursions

Potential
Internal
Storage

Program

Potential
Subroutines

Input Output

Potential
Loops

• The result is a solution to ALL INSTANCES of the
quadratic equation problem

 113

GENERAL APPEARANCE OF ONE
POSSIBLE CHROMOSOME ENCODING
USED TO SOLVE ONE INSTANCE OF A

CIRCUIT PROBLEM USING THE
GENETIC ALGORITHM (GA)

OPERATING ON FIXED-LENGTH
CHARACTER STRINGS

EXAMPLE CIRCUIT

 1st Component | 2nd Component | 3rd Component | 4th Component
L .220 2 3 C 403. 3 6 L .528 6 9 L .041 9 0

 114

THE GENERAL APPEARANCE OF
EXPRESSIONS USED TO SOLVE ONE
INSTANCE OF A CIRCUIT PROBLEM

USING GENETIC PROGRAMMING (GP)
IN GENETIC PROGRAMMING III (1999)

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8

7

9 1 0 1 1 1 2

1 3 1 4 1 5 1 7 1 81 6 1 9 2 0 2 1

2 2

2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

(LIST (C (– 0.963 (– (– -0.875 -0.113) 0.880)) (series (flip
end) (series (flip end) (L -0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip (nop (L -0.657 end)))))

EXAMPLE CIRCUIT (GEN 0)

 115

VALUE-SETTING SUBTREES—3 WAYS

ARITHMETIC-PERFORMING SUBTREE

3.2921.234

*

+

2.963

C

END

SINGLE PERTURBABLE CONSTANT

4.809

C

END

FREE VARIABLE

3.2921.234

*

+

C

END

F

 116

PARAMETERIZED TOPOLOGY FOR
"GENERALIZED" LOWPASS FILTER

VARIABLE CUTOFF LOWPASS FILTER

•Want lowpass filter whose passband ends at frequencies f =
1,000, 1,780, 3,160, 5,620, 10,000, 17,800, 31,600, 56,200,
100,000 Hz

f
L

7100198.81 ×=

()()
() f

f
f

ff
fffL ln104451.2ln

104636.3
103714.9103331.1107387.4103406.12

8

12

2516128

+×≈+
+×

+×+×+××=
−

f
f

L ln2100262.23
8

+×=

f
L

7107297.34 ×=

f
C

5106786.11 ×=
f

C
5106786.12 ×=

f
C

5103552.13 ×=

f
C

5104484.64 ×=

f
C

5101056.15 ×=

L2

 117

PARAMETERIZED TOPOLOGY USING
CONDITIONAL DEVELOPMENTAL
OPERATORS (GENETIC SWITCH)

VARIABLE-CUTOFF

LOWPASS/HIGHPASS FILTER CIRCUIT
• Best-of-run circuit from generation 93 when inputs call for
a highpass filter (i.e., F1 > F2).

1
100

=1 F
Fµ

C 1
2.57

=2 F
Fµ

C 1
9.49

=3 F
Fµ

C 1
2.57

=4 F
Fµ

C
1
9.49

=5 F
Fµ

C 1
9.49

=6 F
Fµ

C

1
3.56

=1 F
H

L 1
113

=6 F
H

L
1
3.56

=2 F
H

L 1
3.56

=3 F
H

L 1
3.56

=4 F
H

L 1
3.56

=5 F
H

L

• Best-of-run circuit from generation 93 when inputs call for
a lowpass filter.

1
113

=1 F
H

L
1

218
=2 F

H
L 1

218
=3 F

H
L 1

218
=4 F

H
L

1
9.58

=5 F
H

L

1
183

=1 F
Fµ

C
1

219
=2 F

Fµ
C 1

219
=3 F

Fµ
C

1
7.91

=4 F
Fµ

C

 118

PARALLELIZATION BY
SUBPOPULATIONS ("ISLAND" OR

"DEME" MODEL OR "DISTRIBUTED
GENETIC ALGORITHM")

DEBUGGER
(optional)

BOSS
(Tram)

HOST
(Pentium PC)

OUTPUT
FILE

CONTROL
PARAMETER

FILE

VIDEO
DISPLAY

KEYBOARD

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

MESH
NODE

• Like Hormel, Get Everything Out of the Pig, Including the
Oink
• Keep on Trucking
• It Takes a Licking and Keeps on Ticking
• The Whole is Greater than the Sum of the Parts

PETA-OPS
• Human brain operates at 1012 neurons operating at 103
per second = 1015 ops per second
• 1015 ops = 1 peta-op = 1 bs (brain second)

 119

GENETIC PROGRAMMING OVER 15-
YEAR PERIOD 1987–2002

System Period

of
usage

Petacycles
(1015cycles)
per day for

entire
system

Speed-up
over

previous
system

Speed-up
over first
system in
this table

Human-
competitive

results

Serial
Texas
Instruments
LISP
machine

1987–
1994

0.00216 1 (base) 1 (base) 0

64-node
Transtech
transputer
parallel
machine

1994–
1997

0.02 9 9 2

64-node
Parsytec
parallel
machine

1995–
2000

0.44 22 204 12

70-node
Alpha
parallel
machine

1999–
2001

3.2 7.3 1,481 2

1,000-node
Pentium II
parallel
machine

2000–
2002

30.0 9.4 13,900 12

 120

PROGRESSION OF RESULTS
System Period Speed-

up
Qualitative nature of the results produced
by genetic programming

Serial LISP
machine

1987–
1994

1 (base) • Toy problems of the 1980s and early
1990s from the fields of artificial
intelligence and machine learning

64-node
Transtech
8-biy
transputer

1994–
1997

9 •Two human-competitive results involving
one-dimensional discrete data (not patent-
related)

64-node
Parsytec
parallel
machine

1995–
2000

22 • One human-competitive result involving
two-dimensional discrete data
• Numerous human-competitive results
involving continuous signals analyzed in
the frequency domain
• Numerous human-competitive results
involving 20th-century patented inventions

70-node
Alpha
parallel
machine

1999–
2001

7.3 • One human-competitive result involving
continuous signals analyzed in the time
domain
• Circuit synthesis extended from topology
and sizing to include routing and
placement (layout)

1,000-node
Pentium II
parallel
machine

2000–
2002

9.4 • Numerous human-competitive results
involving continuous signals analyzed in
the time domain
• Numerous general solutions to problems
in the form of parameterized topologies
• Six human-competitive results
duplicating the functionality of 21st-
century patented inventions

Long (4-
week) runs
of 1,000-
node
Pentium II
parallel
machine

2002 9.3 • Generation of two patentable new
inventions

 121

PROGRESSION OF QUALITATIVELY
MORE SUBSTANTIAL RESULTS

PRODUCED BY GENETIC
PROGRAMMING IN RELATION TO FIVE
ORDER-OF-MAGNITUDE INCREASES IN

COMPUTATIONAL POWER

• toy problems

• human-competitive results not related to
patented inventions

• 20th-century patented inventions

• 21st-century patented inventions

• patentable new inventions

 122

EVOLVABLE HARDWARE

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS

(FPGAs)

SMALL 5 BY 5 CORNER OF XILINX
XC6216 FPGA

 123

EVOLVABLE HARDWARE

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS

(FPGAs)

SORTING NETWORKS

• A 16-step 7-sorter was evolved that has two fewer steps
than the sorting network described in O'Connor and
Nelsons' patent (1962) and that has the same number of
steps as the 7-sorter that was devised by Floyd and Knuth
subsequent to the patent and described in Knuth 1973.

GENETICALLY EVOLVED 7-SORTER

 124

FUNDAMENTAL DIFFERENCES
BETWEEN GP AND OTHER

APPROACHES TO AI AND ML

(1) Representation: Genetic programming overtly conducts
it search for a solution to the given problem in program
space.
(2) Role of point-to-point transformations in the search:
Genetic programming does not conduct its search by
transforming a single point in the search space into another
single point, but instead transforms a set of points into
another set of points.
(3) Role of hill climbing in the search: Genetic
programming does not rely exclusively on greedy hill
climbing to conduct its search, but instead allocates a certain
number of trials, in a principled way, to choices that are
known to be inferior.
(4) Role of determinism in the search: Genetic
programming conducts its search probabilistically.
(5) Role of an explicit knowledge base: None.
(6) Role of formal logic in the search: None.
(7) Underpinnings of the technique: Biologically inspired.

 125

36 HUMAN-COMPETITIVE RESULTS
(LIST AS OF MAY 2003)

 Claimed instance Basis for claim
of human-
competitiveness

Reference

1 Creation of a better-than-classical quantum
algorithm for the Deutsch-Jozsa “early
promise” problem

B, F Spector, Barnum, and
Bernstein 1998

2 Creation of a better-than-classical quantum
algorithm for Grover’s database search
problem

B, F Spector, Barnum, and
Bernstein 1999

3 Creation of a quantum algorithm for the depth-
two AND/OR query problem that is better than
any previously published result

D Spector, Barnum, Bernstein,
and Swamy 1999; Barnum,
Bernstein, and Spector 2000

4 Creation of a quantum algorithm for the depth-
one OR query problem that is better than any
previously published result

D Barnum, Bernstein, and
Spector 2000

5 Creation of a protocol for communicating
information through a quantum gate that was
previously thought not to permit such
communication

D Spector and Bernstein 2003

6 Creation of a novel variant of quantum dense
coding

D Spector and Bernstein 2003

7 Creation of a soccer-playing program that won
its first two games in the Robo Cup 1997
competition

H Luke 1998

8 Creation of a soccer-playing program that
ranked in the middle of the field of 34 human-
written programs in the Robo Cup 1998
competition

H Andre and Teller 1999

9 Creation of four different algorithms for the
transmembrane segment identification problem
for proteins

B, E Sections 18.8 and 18.10 of GP-
2 book and sections 16.5 and
17.2 of GP-3 book

10 Creation of a sorting network for seven items
using only 16 steps

A, D Sections 21.4.4, 23.6, and
57.8.1 of GP-3 book

11 Rediscovery of the Campbell ladder topology
for lowpass and highpass filters

A, F Section 25.15.1 of GP-3 book
and section 5.2 of GP-4 book

12 Rediscovery of the Zobel “M-derived half
section” and “constant K” filter sections

A, F Section 25.15.2 of GP-3 book

13 Rediscovery of the Cauer (elliptic) topology for
filters

A, F Section 27.3.7 of GP-3 book

14 Automatic decomposition of the problem of
synthesizing a crossover filter

A, F Section 32.3 of GP-3 book

15 Rediscovery of a recognizable voltage gain
stage and a Darlington emitter-follower section
of an amplifier and other circuits

A, F Section 42.3 of GP-3 book

16 Synthesis of 60 and 96 decibel amplifiers A, F Section 45.3 of GP-3 book
17 Synthesis of analog computational circuits for

squaring, cubing, square root, cube root,
logarithm, and Gaussian functions

A, D, G Section 47.5.3 of GP-3 book

18 Synthesis of a real-time analog circuit for time-
optimal control of a robot

G Section 48.3 of GP-3 book

 126

19 Synthesis of an electronic thermometer A, G Section 49.3 of GP-3 book
20 Synthesis of a voltage reference circuit A, G Section 50.3 of GP-3 book
21 Creation of a cellular automata rule for the

majority classification problem that is better
than the Gacs-Kurdyumov-Levin (GKL) rule
and all other known rules written by humans

D, E Andre, Bennett, and Koza
1996 and section 58.4 of GP-3
book

22 Creation of motifs that detect the D–E–A–D
box family of proteins and the manganese
superoxide dismutase family

C Section 59.8 of GP-3 book

23 Synthesis of topology for a PID-D2
(proportional, integrative, derivative, and
second derivative) controller

A, F Section 3.7 of GP-4 book

24 Synthesis of an analog circuit equivalent to
Philbrick circuit

A, F Section 4.3 of GP-4 book

25 Synthesis of a NAND circuit A, F Section 4.4 of GP-4 book
26 Simultaneous synthesis of topology, sizing,

placement, and routing of analog electrical
circuits

A. F, G Chapter 5 of GP-4 book

27 Synthesis of topology for a PID (proportional,
integrative, and derivative) controller

A, F Section 9.2 of GP-4 book

28 Rediscovery of negative feedback A, E, F, G Chapter 14 of GP-4 book
29 Synthesis of a low-voltage balun circuit A Section 15.4.1 of GP-4 book
30 Synthesis of a mixed analog-digital variable

capacitor circuit A
Section 15.4.2 of GP-4 book

31 Synthesis of a high-current load circuit A Section 15.4.3 of GP-4 book
32 Synthesis of a voltage-current conversion

circuit A
Section 15.4.4 of GP-4 book

33 Synthesis of a Cubic function generator A Section 15.4.5 of GP-4 book
34 Synthesis of a tunable integrated active filter A Section 15.4.6 of GP-4 book
35 Creation of PID tuning rules that outperform

the Ziegler-Nichols and Åström-Hägglund
tuning rules

A, B, D, E, F, G Chapter 12 of GP-4 book

36 Creation of three non-PID controllers that
outperform a PID controller that uses the
Ziegler-Nichols or Åström-Hägglund tuning
rules

A, B, D, E, F, G Chapter 13 of GP-4 book

 127

PROMISING GP APPLICATION AREAS

• Problem areas involving many variables that are
interrelated in highly non-linear ways
• Inter-relationship of variables is not well understood
• A good approximate solution is satisfactory

• design
• control
• classification and pattern recognition
• data mining
• system identification and forecasting

• Discovery of the size and shape of the solution is a major
part of the problem
• Areas where humans find it difficult to write programs

• parallel computers
• cellular automata
• multi-agent strategies / distributed AI
• FPGAs

• "black art" problems
• synthesis of topology and sizing of analog circuits
• synthesis of topology and tuning of controllers
• quantum computing circuits
• synthesis of designs for antennas

• Areas where you simply have no idea how to program a
solution, but where the objective (fitness measure) is clear
• Problem areas where large computerized databases are
accumulating and computerized techniques are needed to
analyze the data

 128

TURING'S THREE APPROACHES TO
MACHINE INTELLIGENCE

• Turing made the connection between searches and the
challenge of getting a computer to solve a problem without
explicitly programming it in his 1948 essay "Intelligent
Machines" (in Mechanical Intelligence: Collected Works of A.
M. Turing, 1992, edited by D. C. Ince).

"Further research into intelligence of machinery will
probably be very greatly concerned with 'searches' ...
"

TURING'S THREE APPROACHES TO

MACHINE INTELLIGENCE 
CONTINUED

1. LOGIC-BASED SEARCH

One approach that Turing identified is a search through the
space of integers representing candidate computer
programs.

2. CULTURAL SEARCH

Another approach is the "cultural search" which relies on
knowledge and expertise acquired over a period of years
from others (akin to present-day knowledge-based systems).

 129

TURING'S THREE APPROACHES TO
MACHINE INTELLIGENCE 

CONTINUED

3. GENETICAL OR EVOLUTIONARY
SEARCH

"There is the genetical or evolutionary search by
which a combination of genes is looked for, the
criterion being the survival value."

• from Turing’s 1950 paper "Computing Machinery and
Intelligence" …

"We cannot expect to find a good child-machine at
the first attempt. One must experiment with
teaching one such machine and see how well it learns.
One can then try another and see if it is better or
worse. There is an obvious connection between this
process and evolution, by the identifications"

"Structure of the child machine = Hereditary
material"

"Changes of the child machine = Mutations"

"Natural selection = Judgment of the experimenter"

 130

16 AUTHORED BOOKS ON GP
Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D. 1998.

Genetic Programming - An Introduction. San Francisco, CA: Morgan Kaufman
Publishers and Heidelberg, Germany: dpunkt.verlag.

Babovic, Vladan. 1996b. Emergence, Evolution, Intelligence: Hydroinformatics. Rotterdam,
The Netherlands: Balkema Publishers.

Blickle, Tobias. 1997. Theory of Evolutionary Algorithms and Application to System
Synthesis. TIK-Schriftenreihe Nr. 17. Zurich, Switzerland: vdf Hochschul Verlag AG
and der ETH Zurich. ISBN 3-7281-2433-8.

Jacob, Christian. 1997. Principia Evolvica: Simulierte Evolution mit Mathematica.
Heidelberg, Germany: dpunkt.verlag. In German. English translation forthcoming in
2000 from Morgan Kaufman Publishers.

Jacob, Christian. 2001. Illustrating Evolutionary Computation with Mathematica. San
Francisco: Morgan Kaufmann.

Iba, Hitoshi. 1996. Genetic Programming. Tokyo: Tokyo Denki University Press. In
Japanese.

Koza, John R. 1992. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: The MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA: The MIT Press

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1999a. Genetic
Programming III: Darwinian Invention and Problem Solving. San Francisco, CA:
Morgan Kaufmann Publishers.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William, Yu, Jessen,
and Lanza, Guido. 2003. Genetic Programming IV. Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers.

Langdon, William B. 1998. Genetic Programming and Data Structures: Genetic Programming
+ Data Structures = Automatic Programming! Amsterdam: Kluwer Academic
Publishers.

Langdon, William B. and Poli, Riccardo. 2002. Foundations of Genetic Programming.
Berlin: Springer-Verlag.

Nordin, Peter. 1997. Evolutionary Program Induction of Binary Machine Code and its
Application. Munster, Germany: Krehl Verlag.

O’Neill, Michael and Ryan, Conor. 2003. Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Boston: Kluwer Academic Publishers.

Ryan, Conor. 1999. Automatic Re-engineering of Software Using Genetic Programming.
Amsterdam: Kluwer Academic Publishers.

Wong, Man Leung and Leung, Kwong Sak. 2000. Data Mining Using Grammar Based
Genetic Programming and Applications. Amsterdam: Kluwer Academic Publishers.

 131

CONFERENCE PROCEEDINGS
Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E., Garzon, Max H., Honavar, Vasant, Jakiela,

Mark, and Smith, Robert E. (editors). 1999. GECCO-99: Proceedings of the Genetic
and Evolutionary Computation Conference, July 13-17, 1999, Orlando, Florida USA.
San Francisco, CA: Morgan Kaufmann.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence C. 1998.
Genetic Programming: First European Workshop. EuroGP'98. Paris, France. Lecture
Notes in Computer Science. Volume 1391. Berlin, Germany: Springer-Verlag.

Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors).
1996. Genetic Programming 1996: Proceedings of the First Annual
Conference. Cambridge, MA: The MIT Press.

Foster, James A., Lutton, Evelyne, Miller, Julian, Ryan, Conor, and Tettamanzi,
Andrea G. B. (editors). 2002. Genetic Programming: 5th European
Conference, EuroGP 2002, Kinsale, Ireland, April 2002 Proceedings. Berlin:
Springer.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba,
Hitoshi, and Riolo, Rick L. (editors). 1997. Genetic Programming 1997: Proceedings of
the Second Annual Conference. San Francisco, CA: Morgan Kaufmann.

Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo, Marco,
Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and Riolo, Rick.
(editors). 1998. Genetic Programming 1998: Proceedings of the Third Annual
Conference. San Francisco, CA: Morgan Kaufmann.

Miller, Julian, Tomassini, Marco, Lanzi, Pier Luca, Ryan, Conor, Tettamanzi,
Andrea G. B., and Langdon, William B. (editors). 2001. Genetic
Programming: 4th European Conference, EuroGP 2001, Lake Como, Italy,
April 2001 Proceedings. Berlin: Springer.

Poli, Riccardo, Nordin, Peter, Langdon, William B., and Fogarty, Terence C. 1999. Genetic
Programming: Second European Workshop. EuroGP'99. Goteborg, Sweden, May 1999.
Lecture Notes in Computer Science. Volume 1598. Berlin, Germany: Springer-Verlag.

Poli, Riccardo, Banzhaf, Wolfgang, Langdon, William B., Miller, Julian, Nordin, Peter,
and Fogarty, Terence C. 2000. Genetic Programming: European Conference, EuroGP
2000, Edinburgh, Scotland, UK, April 2000, Proceedings. Lecture Notes in Computer
Science. Volume 1802. Berlin, Germany: Springer-Verlag. ISBN 3-540-67339-3.

Riolo, Rich and Worzel, William. 2003. Genetic Programming: Theory and
Practice. Boston: Kluwer Academic Publishers.

Spector, Lee, Goodman, E., Wu, A., Langdon, William B., Voigt, H.-M., Gen, M., Sen, S.,
Dorigo, Marco, Pezeshk, S., Garzon, Max, and Burke, E. (editors). 2001. Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO-2001. San
Francisco, CA: Morgan Kaufmann Publishers. Pages 57 - 65. Whitley, Darrell,
Goldberg, David, Cantu-Paz, Erick, Spector, Lee, Parmee, Ian, and Beyer, Hans-
Georg (editors). GECCO-2000: Proceedings of the Genetic and Evolutionary
Computation Conference, July 10 - 12, 2000, Las Vegas, Nevada. San Francisco:
Morgan Kaufmann Publishers.

 132

3 EDITED ADVANCES IN GENETIC
PROGRAMMING BOOKS

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in

Genetic Programming 2. Cambridge, MA: The MIT Press.
Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming.

Cambridge, MA: The MIT Press.
Spector, Lee, Langdon, William B., O'Reilly, Una-May, and Angeline, Peter

(editors). 1999. Advances in Genetic Programming 3. Cambridge, MA:
The MIT Press.

4 VIDEOTAPES ON GP

Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie.

Cambridge, MA: The MIT Press.
Koza, John R. 1994b. Genetic Programming II Videotape: The Next Generation.

Cambridge, MA: The MIT Press.
Koza, John R., Bennett III, Forrest H, Andre, David, Keane, Martin A., and

Brave, Scott. 1999. Genetic Programming III Videotape: Human-
Competitive Machine Intelligence. San Francisco, CA: Morgan Kaufmann
Publishers.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William,
Yu, Jessen, Lanza, Guido, and Fletcher, David. 2003. Genetic
Programming IV Video: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.

 133

WILLIAM LANGDON’S BIBLIOGRAPHY
ON GENETIC PROGRAMMING

This bibliography is the most extensive in the field and
contains over 3,034 papers (as of January 2003) by over 880
authors.

Visit
http://www.cs.bham.ac.uk/~wbl/biblio/
or
http://liinwww.ira.uka.de/bibliography/Ai/g
enetic.programming.html

GENETIC PROGRAMMING AND
EVOLVABLE MACHINES JOURNAL

FROM KLUWER ACADEMIC
PUBLISHERS

Editor: Wolfgang Banzhaf

GENETIC PROGRAMMING BOOK SERIES

FROM KLUWER ACADEMIC
PUBLISHERS

Editor: John Koza
koza@stanford.edu

 134

GP MAILING LIST
To subscribe to the Genetic Programming e-mail list,
• send e-mail message to:

genetic_programming-subscribe@yahoogroups.com

• visit the web page
http://groups.yahoo.com/group/genetic_programming/

INTERNATIONAL SOCIETY FOR
GENETIC AND EVOLUTIONARY

COMPUTATION (ISGEC)
For information on ISGEC, the annual GECCO conference,
or the bi-annual FOGA workshop, visit
www.isgec.org

FOR ADDITIONAL INFORMATION ON

THE GP FIELD
Visit
http://www.genetic-programming.org
for
• links computer code in various programming languages
(including C, C++, Java, Mathematica, LISP)
• partial list of people active in genetic programming
• list of known completed PhD theses on GP
• list of students known to be working on PhD theses on GP
• information for instructors of university courses on genetic
algorithms and genetic programming

