
Automatic Programming of Robots using Genetic Programming

John R. Koza
Stanford University Computer Science Department

Stanford, CA 94305 USA
E-MAIL: Koza@Sunburn.Stanford.Edu

PHONE: 415-941-0336 FAX: 415-941-9430

James P. Rice
Stanford University Knowledge Systems Laboratory

701 Welch Road
Palo Alto, CA 94304 USA

Rice@Sumex-Aim.Stanford.Edu 415-723-8405

Abstract
The goal in automatic programming is to get a computer to
perform a task by telling it what needs to be done, rather
than by explicitly programming it. This paper considers the
task of automatically generating a computer program to
enable an autonomous mobile robot to perform the task of
moving a box from the middle of an irregular shaped room
to the wall. We compare the ability of the recently
developed genetic programming paradigm to produce such
a program to the reported ability of reinforcement learning
techniques, such as Q learning, to produce such a program
in the style of the subsumption architecture. The
computational requirements of reinforcement learning
necessitates considerable human knowledge and
intervention, whereas genetic programming comes much
closer to achieving the goal of getting the computer to
perform the task without explicitly programming it. The
solution produced by genetic programming emerges as a
result of Darwinian natural selection and genetic crossover
(sexual recombination) in a population of computer
programs. The process is driven by a fitness measure which
communicates the nature of the task to the computer and its
learning paradigm.

Introduction and Overview
In the 1950s, Arthur Samuel identified the goal of getting
a computer to perform a task without being explicitly
programmed as one of the central goals in the fields of
computer science and artificial intelligence. Such
automatic programming of a computer involves merely
telling the computer what is to be done, rather than
explicitly telling it, step-by-step, how to perform the
desired task.

In an AAAI-91 paper entitled "Automatic Programming
of Behavior-Based Robots using Reinforcement Learning"
Mahadevan and Connell (1991) reported on using
reinforcement learning techniques, such as Q learning
(Watkins 1989), in producing a program to control an
autonomous mobile robot in the style of the subsumption
architecture (Brooks 1986, Connell 1990, Mataric 1990).
In particular, the program produced by reinforcement
learning techniques enabled an autonomous mobile robot
to perform the task of moving a box from the middle of a
room to the wall. In this paper, we will show that the

onerous computational requirements imposed by
reinforcement learning techniques necessitated that a
considerable amount of human knowledge be supplied in
order to achieve the reported "automatic programming" of
the box moving task.

In this paper, we present an alternative method for
automatically generating a computer program to perform
the box moving task using the recently developed genetic
programming paradigm. In genetic programming,
populations of computer programs are genetically bred in
order to solve the problem. The solution produced by
genetic programming emerges as a result of Darwinian
natural selection and genetic crossover (sexual
recombination) in a population of computer programs.
The process is driven by a fitness measure which
communicates the nature of the task to the computer and
its learning paradigm.

We demonstrate that genetic programming comes much
closer than reinforcement learning techniques to achieving
the goal of getting the computer to perform the task
without explicitly programming it.

Background on Genetic Algorithms
John Holland's pioneering 1975 Adaptation in Natural and
Artificial Systems described how the evolutionary process
in nature can be applied to artificial systems using the
genetic algorithm operating on fixed length character
strings (Holland 1975). Holland demonstrated that a
population of fixed length character strings (each
representing a proposed solution to a problem) can be
genetically bred using the Darwinian operation of fitness
proportionate reproduction and the genetic operation of
recombination. The recombination operation combines
parts of two chromosome-like fixed length character
strings, each selected on the basis of their fitness, to
produce new offspring strings. Holland established,
among other things, that the genetic algorithm is a
mathematically near optimal approach to adaptation in that
it maximizes expected overall average payoff when the
adaptive process is viewed as a multi-armed slot machine
problem requiring an optimal allocation of future trials
given currently available information.

Recent work in genetic algorithms can be surveyed in
Goldberg 1989 and Davis (1987, 1991).

Background on Genetic Programming
For many problems, the most natural representation for
solutions are computer programs. The size, shape, and
contents of the computer program to solve the problem is
generally not known in advance. The computer program
that solves a given problem is typically a hierarchical
composition of various terminals and primitive function
appropriate to the problem domain. In robotics problems,
the computer program that solves a given problem
typically takes the sensor inputs or state variables of the
system as its input and produces an external action as its
output. It is unnatural and difficult to represent program
hierarchies of unknown (and possibly dynamically
varying) size and shape with the fixed length character
strings generally used in the conventional genetic
algorithm.

In genetic programming, one recasts the search for the
solution to the problem at hand as a search of the space of
all possible compositions of functions and terminals (i.e.
computer programs) that can be recursively composed
from the available functions and terminals. Depending on
the particular problem at hand, the set of functions used
may include arithmetic operations, primitive robotic
actions, conditional branching operations, mathematical
functions, or domain-specific functions. For robotic
problems, the primitive functions are typically the external
actions which the robot can execute; the terminals are
typically the sensor inputs or state variables of the system.

The symbolic expressions (S-expressions) of the LISP
programming language are an especially convenient way
to create and manipulate the compositions of functions
and terminals described above. These S-expressions in
LISP correspond directly to the parse tree that is internally
created by most compilers.

Genetic programming, like the conventional genetic
algorithm, is a domain independent method. It proceeds
by genetically breeding populations of computer programs
to solve problems by executing the following three steps:
(1) Generate an initial population of random

compositions of the functions and terminals of the
problem (computer programs).

(2) Iteratively perform the following sub-steps until the
termination criterion has been satisfied:
(a) Execute each program in the population and

assign it a fitness value according to how well
it solves the problem.

(b) Create a new population of computer programs
by applying the following two primary
operations. The operations are applied to
computer program(s) in the population chosen
with a probability based on fitness.
(i) Reproduction: Copy existing computer

programs to the new population.

(ii) Crossover: Create new computer
programs by genetically recombining
randomly chosen parts of two existing
programs.

(3) The single best computer program in the population
at the time of termination is designated as the result
of the run of genetic programming. This result may
be a solution (or approximate solution) to the
problem.

The basic genetic operations for genetic programming
are fitness proportionate reproduction and crossover
(recombination).

The reproduction operation copies individuals in the
genetic population into the next generation of the
population in proportion to their fitness in grappling with
the problem environment. This operation is the basic
engine of Darwinian survival and reproduction of the
fittest.

The crossover operation is a sexual operation that
operates on two parental LISP S-expressions and produces
two offspring S-expressions using parts of each parent.
The crossover operation creates new offspring S-
expressions by exchanging sub-trees (i.e. sub-lists)
between the two parents. Because entire sub-trees are
swapped, this crossover operation always produces
syntactically and semantically valid LISP S-expressions as
offspring regardless of the crossover points.

For example, consider the two parental S-expressions:
(OR (NOT D1) (AND D0 D1))

(OR (OR D1 (NOT D0))
 (AND (NOT D0) (NOT D1))

Figure 1 graphically depicts these two S-expressions as
rooted, point-labeled trees with ordered branches. The
numbers on the tree are for reference only.

Assume that the points of both trees are numbered in a
depth-first way starting at the left. Suppose that point 2
(out of 6 points of the first parent) is randomly selected as
the crossover point for the first parent and that point 6 (out
of 10 points of the second parent) is randomly selected as
the crossover point of the second parent. The crossover
points in the trees above are therefore the NOT in the first
parent and the AND in the second parent.

OR

NOT AND

D0 D1D1 D1

OR

ANDOR

NOT

D0

NOT NOT

D0 D1

2

3

4

5 6

1

2

3

1

4

5

6

7

8

9

10

Figure 1 Two parental computer programs shown as
trees with ordered branches. Internal points of the tree
correspond to functions (i.e. operations) and external
points correspond to terminals (i.e. input data).

Figure 2 shows the two crossover fragments are two
sub-trees. These two crossover fragments correspond to
the bold sub-expressions (sub-lists) in the two parental

LISP S-expressions shown above. Figure 3 shows the two
offspring.

NOT

D1

AND

NOT NOT

D0 D1

Figure 2 The two crossover fragments.
OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

Figure 3 Offspring resulting from crossover.

When the crossover operation is applied to two
individual parental computer programs chosen from the
population in proportion to fitness, it effectively directs
the future population towards parts of the search space
containing computer programs that bear some resemblance
to their parents. If the parents exhibited relatively high
fitness because of certain structural features, their
offspring may exhibit even higher fitness after a
recombination of features.

Although one might think that computer programs are
so brittle and epistatic that they could only be genetically
bred in a few especially congenial problem domains, we
have shows that computer programs can be genetically
bred to solve a surprising variety of problems, including
• discovering inverse kinematic equations (e.g., to move a

robot arm to designated target points) [Koza 1992a],
• planning (e.g., navigating an artificial ant along a trail),
• optimal control (e.g., balancing a broom and backing up

a truck) [Koza and Keane 1990, Koza 1992d],
• Boolean function learning [Koza 1989, 1992c], and
• classification and pattern recognition (e.g., two

intertwined spirals) [Koza 1992e].
A videotape visualization of the application of genetic

programming to planning, emergent behavior, empirical
discovery, inverse kinematics, and game playing can be
found in the Artificial Life II Video Proceedings [Koza
and Rice 1991].

Box Moving Robot
In the box moving problem, an autonomous mobile robot
must find a box located in the middle of an irregularly
shaped room and move it to the edge of the room within a
reasonable amount of time.

The robot is able to move forward, turn right, and turn
left. After the robots finds the box, it can move the box by

pushing against it. However, this sub-task may prove
difficult because if the robot applies force not coaxial with
the center of gravity of the box, the box will start to rotate.
The robot will then lose contact with the box and will
probably then fail to push the box to the wall in a
reasonable amount of time.

The robot is considered successful if any part of the box
touches any wall within the allotted amount of time.

The robot has 12 sonar sensors which report the
distance to the the nearest object (whether wall or box) as
a floating point number in feet. The twelve sonar sensors
(each covering 30°) together provide 360° coverage
around the robot.

The robot is capable of executing three primitive motor
functions, namely, moving forward by a constant distance,
turning right by 30°, and turning left by 30°. The three
primitive motor functions MF, TR, and TL each take one
time step (i.e., 1.0 seconds) to execute. All sonar
distances are dynamically recomputed after each execution
of a move or turn. The function TR (Turn Right) turns the
robot 30° to the right (i.e., clockwise). The function TL
(Turn Left) turns the robot 30° to the left (i.e., counter-
clockwise). The function MF (Move Forward) causes the
robot to move 1.0 feet forward in the direction it is
currently facing in one time step. If the robot applies its
force orthogonally to the midpoint of an edge of the box, it
will move the box about 0.33 feet per time step.

The robot has a BUMP and a STUCK detector. We used a
2.5 foot wide box. The north (top) wall and west (left)
wall of the irregularly shaped room are each 27.6 feet
long.

The sonar sensors, the two binary sensors, and the three
primitive motor functions are not labeled, ordered, or
interpreted in any way. The robot does not know a priori
what the sensors mean nor what the primitive motor
functions do. Note that the robot does not operate on a
cellular grid; its state variables assume a continuum of
different values.

There are five major steps in preparing to use genetic
programming, namely, determining (1) the set of
terminals, (2) the set of functions, (3) the fitness measure,
(4) the parameters and variables for controlling the run,

and (5) the criteria for designating a result and for
terminating a run.

The first major step in preparing to use genetic
programming is to identify the set of terminals. We
include the 12 sonar sensors and the three primitive motor
functions (each taking no arguments) in the terminal set.
Thus, the terminal set T for this problem is T = {S00,
S01, S02, S03, ... , S11, SS, (MF), (TR), (TL)}.

The second major step in preparing to use genetic
programming is to identify a sufficient set of primitive
functions for the problem. The function set F consists of
F = {IFBMP, IFSTK, IFLTE, PROGN2}.

The functions IFBMP and IFSTK are based on the BUMP
detector and the STUCK detector defined by Mahadevan
and Connell. Both of these functions take two arguments
and evaluate their first argument if the detector is on and
otherwise evaluates their second argument.

The IFLTE (If-Less-Than-or-Equal) function is a four-
argument comparative branching operator that executes its
third argument if its first argument is less than its second
(i.e., then) argument and, otherwise, executes the fourth
(i.e., else) argument. The operator IFLTE is implemented
as a macro in LISP so that only either the third or fourth
argument is evaluated depending on the outcome of the
test involving the first and second argument. Since the
terminals in this problem take on floating point values,
this function is used to compare values of the terminals.
IFLTE allows alternative actions to be executed based on
comparisons of observation from the robot's environment.
IFLTE allows, among other things, a particular action to
be executed if the robot's environment is applicable and
allows one action to suppress another. It also allows for
the computation of the minimum of a subset of two or
more sensors. IFBMP and IFSTK are similarly defined as
macros

The connective function PROGN2 taking two arguments
evaluates both of its arguments, in sequence, and returns
the value of its second argument.

Although the main functionality of the moving and
turning functions lies in their side effects on the state of
the robot, it is necessary, in order to have closure of the
function set and terminal set, that these functions return

Robot
Start

Box
Start

Robot
End

Robot
Start

Box
Start

Robot
End

Figure 5 Typical random robot trajectory from

generation 0.
Figure 6 Trajectory of the best-of-generation

individual for generation 0.

some numerical value. For Version 1 only, we decided
that each of the moving and turning functions would
return the minimum of the two distances reported by the
two sensors that look forward. Also, for Version 1 only,
we added one derived value, namely the terminal SS
(Shortest Sonar) which is the minimum of the 12 sonar
distances S0, S1, ... , S11, in the terminal set T.

The third major step in preparing to use genetic
programming is the identification of the fitness function
for evaluating how good a given computer program is at
solving the problem at hand. A human programmer, of
course, uses human intelligence to write a computer
program. Intelligence is the guiding force that creates the
program. In contrast, genetic programming is guided by
the pressure exerted by the fitness measure and natural
selection.

The fitness of an individual S-expression is computed
using fitness cases in which the robot starts at various
different positions in the room. The fitness measure for
this problem is the sum of the distances, taken over four
fitness cases, between the wall and the point on the box
that is closest to the nearest wall at the time of termination
of the fitness case.

A fitness case terminates upon execution of 350 time
steps or when any part of the box touches a wall. If, for
example, the box remains at its starting position for all
four fitness cases, the fitness is 26.5 feet. If, for all four
fitness cases, the box ends up touching the wall prior to
timing out for all four fitness cases, the raw fitness is zero
(and minimal).

The fourth major step in preparing to use genetic
programming is selecting the values of certain parameters.
The major parameters for controlling a run of genetic

programming is the population size and the number of
generations to be run. The population size is 500 here. A
maximum of 51 generations (i.e. an initial random
generation 0 plus 50 additional generations) is established
for a run. Our choice of population size reflected an
estimate on our part as to the likely complexity of the
solution to this problem; however, we have used a
population of 500 on about half of the numerous other
problems on which we have applied genetic programming
(Koza 1992a, 1992b, 1992c). In addition, each run is
controlled by a number of minor parameters. The values
of these minor parameters were chosen in the same way as
described in the above references and were not chosen
especially for this problem.

Finally, the fifth major step in preparing to use genetic
programming is the selection of the criteria for terminating
a run and accepting a result. We will terminate a given
run when either (i) genetic programming produces a
computer program which scores a fitness of zero, or (ii) 51
generations have been run. The best-so-far individual
obtained in any generation will be designated as the result
of the run.

Learning, in general, requires some experimentation in
order to obtain the information needed by the learning
algorithm to find the solution to the problem. Since
learning here would require that the robot perform the
overall task a certain large number of times, we planned to
simulate the activities of the robot, rather than use a
physical robot.
Version 1
Figure 5 shows the irregular room, the starting position of
the box, and the starting position of the robot for the

Robot
Start

Box
Start

Robot
Start

Box
Start

Figure 7 Trajectory of the best-of-run individual

with the robot starting in the southeast.
Figure 8 Trajectory of the best-of-run individual

 with the robot starting in the northwest .
Robot
Start

Box
Start

Box
Start

Robot
Start

Figure 9 Trajectory of the best-of-run individual

with the robot starting in the northeast.
Figure 10 Trajectory of the best-of-run individual

with the robot starting in the southwest.

particular fitness case in which the robot starts in the
southeast part of the room. The raw fitness of a majority
of the individual S-expressions from generation 0 is 26.5
(i.e., the sum, over the four fitness cases, of the distances
to the nearest wall) since they cause the robot to stand
still, to wander around aimlessly without ever finding the
box, or, in the case of the individual program shown in the
figure, to move toward the box without reaching it.

Even in generation 0, some individuals are better than
others. Figure 6 shows the trajectory of the best-of-
generation individual from generation 0 from one run.
This individual containing 213 points finds the box and
moves it a short distance for one of the four fitness cases,
thereby scoring a raw fitness of 24.5.

The Darwinian operation of fitness proportionate
reproduction and genetic crossover (sexual recombination)
is now applied to the population, and a new generation of
500 S-expressions is produced. Fitness progressively
improved between generations 1 and 6.

In generation 7, the best-of-generation individual
succeeded in moving the box to the wall for one of the
four fitness cases (i.e., it scored one hit). Its fitness was
21.52 and it had 59 points (i.e. functions and terminals) in
its program tree.

By generation 22, the fitness of the best-of-generation
individual improved to 17.55. Curiously, this individual,
unlike many earlier individuals, did not succeed in
actually moving the box to a wall for any of the fitness
cases.

By generation 35, the best-of-generation individual had
259 points and a fitness of 10.77.

By generation 45 of the run, the best-of-generation
individual computer program was successful, for all four
fitness cases, in finding the box and pushing it to the wall
within the available amount of time. Its fitness was zero.
This best-of-run individual had 305 points.

Note that we did not pre-specify the size and shape of
the solution to the problem. As we proceeded from
generation to generation, the size and shape of the best-of-
generation individuals changed. The number of points in
the best-of-generation individual was 213 in generation 0,
59 in generation 7, 259 in generation 35, and 305 in
generation 45. The structure of the S-expression emerged
as a result of the selective pressure exerted by the fitness
measure.

Figure 7 shows the trajectory of the robot and the box
for the 305-point best-of-run individual from generation
45 for the fitness case where the robot starts in the
southeast part of the room. For this fitness case, the robot
moves more or less directly toward the box and then
pushes the box almost flush to the wall.

Figure 8 shows the trajectory of the robot and the box
for the fitness case where the robot starts in the northwest
part of the room. Note that the robot clips the southwest
corner of the box and thereby causes it to rotate in a

counter clockwise direction until the box is moving almost
north and the robot is at the midpoint of the south edge of
the box.

Figure 9 shows the trajectory of the robot and the box
for the fitness case where the robot starts in the northeast
part of the room. For this fitness case, the robot's
trajectory to reach the box is somewhat inefficient.
However, once the robot reaches the box, the robot pushes
the box more of less directly toward the west wall.

Figure 10 shows the trajectory of the robot and the box
for the fitness case where the robot starts in the southwest
part of the room.
Version 2
In the foregoing discussion of the box moving problem,
the solution was facilitated by the presence of the sensor
SS in the terminal set and the fact that the functions MF,
TL, and TR returned a numerical value equal to the
minimum of several designated sensors. This is in fact the
way we solved it the first time.

This problem can, however, also be solved without the
terminal SS being in the terminal set and with the three
functions each returning a constant value of zero. We call
these three new functions MF0, TL0, and TR0. The new
function set is F0 = {MF0, TR0, TL0, IFLTE, PROGN2}.
We raised the population size from 500 to 2,000 in the
belief that version 2 of this problem would be much more
difficult to solve.

In our first (and only) run of Version 2 of this problem,
an 100%-correct S-expression containing 207 points with
a fitness of 0.0 emerged on generation 20:
(IFSTK (IFLTE (IFBMP (IFSTK (PROGN2 S02
S09) (IFSTK S10 S07)) (IFBMP (IFSTK (IFLTE
(MF0) (TR0) S05 S09) (IFBMP S09 S08))
(IFSTK S07 S11))) (IFBMP (IFBMP (PROGN2 S07
(TL0)) (PROGN2 (TL0) S03)) (IFBMP (PROGN2
(TL0) S03) (IFLTE S05 (TR0) (MF0) S00)))
(IFLTE (IFBMP S04 S00) (PROGN2 (IFLTE S08
S06 S07 S11) (IFLTE S07 S09 S10 S02))
(IFBMP (IFLTE (TL0) S08 S07 S02) (IFLTE S10
S00 (MF0) S08)) (IFBMP (PROGN2 S02 S09)
(IFBMP S08 S02))) (IFSTK (PROGN2 (PROGN2
S04 S06) (IFBMP (MF0) S03)) (PROGN2 (IFSTK
S05 (MF0)) (IFBMP (IFLTE (TR0) S08 (IFBMP
S07 S06) S02) (IFLTE S10 (IFBMP S10 S08)
(MF0) S08))))) (IFLTE (PROGN2 S04 S06)
(PROGN2 (IFSTK (IFBMP (MF0) S09) (IFLTE S10
S03 S03 S06)) (IFSTK (IFSTK S05 S01) (IFBMP
(MF0) S07))) (PROGN2 (IFLTE (IFSTK S01
(TR0)) (PROGN2 S06 (MF0)) (IFLTE S05 S00
(MF0) S08) (PROGN2 S11 S09)) (IFBMP (MF0)
(IFSTK S05 (IFBMP (PROGN2 (IFSTK (PROGN2
S07 S04) (IFLTE S00 S07 S06 S07)) (PROGN2
S04 S06)) (IFSTK (IFSTK (IFBMP S00 (PROGN2
S06 S10)) (IFSTK (MF0) S10)) (IFBMP (PROGN2
S08 S02) (IFSTK S09 S09))))))) (IFLTE
(IFBMP (PROGN2 S11 S09) (IFBMP S08 S11))
(PROGN2 (PROGN2 S06 S03) (IFBMP (IFBMP S08
S02) (MF0))) (IFSTK (IFLTE (MF0) (TR0) S05
S09) (IFBMP (PROGN2 (TL0) S02) S08)) (IFSTK
(PROGN2 S02 S03) (PROGN2 S01 S04)))))

Figure 11 shows the hits histogram for generations 0,
15, and 20. Note the left-to-right undulating movement of
the center of mass of the histogram and the high point of
the histogram. This “slinky” movement reflects the
improvement of the population as a whole.

We have also employed genetic programming to evolve
a computer program to control a wall following robot
using the subsumption architecture (Koza 1992b) based on
impressive work successfully done by Mataric (1990) in
programming an autonomous mobile robot called TOTO.

Comparison with Reinforcement Learning
We now analyze the amount of preparation involved in
what Mahadevan and Connell describe as "automatic
programming" of an autonomous mobile robot to do box
moving using reinforcement learning techniques, such as
the Q learning technique developed by Watkins (1989).

Reinforcement learning techniques, in general, require
that a discounted estimate of the expected future payoffs
be calculated for each state. Q learning, in particular,
requires that an expected payoff be calculated for each
combination of state and action. These expected payoffs
then guide the choices that are to be made by the system.
Any calculation of expected payoff requires a statistically
significant number of trials. Thus, reinforcement learning
requires a large number of trials to be made over a large
number of combinations of possibilities.

Before any reinforcement learning and "automatic
programming" can take place, Mahadevan and Connell
make the following 13 decisions:

First, Mahadevan and Connell began by deciding that
the solution to this problem in the subsumption
architecture requires precisely three task-achieving
behaviors.

Second, they decided that the three task-achieving
behaviors are finding the box, pushing the box across the
room, and recovering from stalls where the robot has
wedged itself or the box into a corner.

Third, they decided that the behavior of finding the box
has the lowest priority, that the behavior of pushing the
box across the room is of intermediate importance, and
that the unwedging behavior has highest priority. That is,
they decide upon the conflict-resolution procedure.

Fourth, they decided on the applicability predicate of
each of the three task-achieving behaviors.

Fifth, they decided upon an unequal concentration of the
sonar sensors around the periphery of the robot. In
particular, they decided that half of the sensors will look
forward, and, after a gap in sonar coverage, an additional
quarter will look to the left and the remaining quarter will
look to the right. They decided that none of the sonar
sensors will look back.

Sixth, they decided to preprocess the real-valued
distance information reported by the sonar sensors in a
highly nonlinear problem-specific way. In particular, they
condensed the real-valued distance information from each
of the eight sensors into only two bits per sensor. The first
bit associated with a given sensor (called the "NEAR" bit)
is on if any object appears within 9 – 18 inches. The
second bit (called the "FAR" bit) is on if any object appears
within 18 – 30 inches. The sonar is an echo sonar that
independently and simultaneously reports on both the
9 – 18 inch region and the 18 – 30 region. Thus, it is
possible for both bits to be on at once. Note that the sizes
of the two regions are unequal and that inputs in the range
of less than 9 inches and greater than 30 inches are
ignored. This massive state reduction and nonlinear
preprocessing are apparently necessary because
reinforcement learning requires calculation of a large
number of trials for a large number of state-action
combinations. In any event, eight real-valued variables
are mapped into 16 bits in a highly nonlinear and problem-
specific way. This reduces the input space from 12
floating-point values and two binary values to a relatively
modest 218 = 262,144 possible states. An indirect effect
of ignoring inputs in the range of less than 9 inches and
greater than 30 inches is that the robot must resort to blind
random search if it is started from a point that is not within
between 9 and 30 inches a box (i.e., the vast majority of
potential starting points in the room).

Seventh, as a result of having destroyed the information
contained in the eight real-valued sonar sensor inputs by
condensing it into only 16 bits, they now decided to
explicitly create a particular problem-specific matched
filter to restore the robot's ability to move in the direction
of an object. The filter senses (i) if the robot has just
moved forward, and (ii) if any of four particular sonar
sensors were off on the previous time step but any of these
sensors are now on. The real-valued values reported by
the sonar sensors contained sufficient information to
locate the box. This especially tailored temporal filter is

0 1 2 3 4
0

1000

2000
Generation 0

Hits

Fr
eq

ue
nc

y

0 1 2 3 4
0

1000

2000
Generation 15

Hits

Fr
eq

ue
nc

y

0 1 2 3 4
0

1000

2000
Generation 20

Hits

Fr
eq

ue
nc

y

3

Figure 11 Hits histogram for generations 0, 15, and 20

for Version 2.

required only because of the earlier decision to condense
the information contained in the eight real-valued sonar
sensor inputs into only 16 bits.

Eighth, they then decided upon a particular non-linear
scale (–1, 0, +3) of three reinforcements based on the
output of the matched filter just described.

Ninth, they then decided upon a different scale (+1 and
–3) of two reinforcements based on an especially-defined
composite event, namely the robot "continu[ing] to be
bumped and going forward" versus "loses contact with the
box."

Tenth, they defined a particular timer for the
applicability predicate for the pushing behavior and the
unwedging behavior (but not the finding behavior) lasting
precisely five time steps. This timer keeps the behavior on
for five time steps even if the applicability predicate is no
longer satisfied by the state of the world, provided the
behavior involved was once turned on.

Eleventh, they decided upon the scale (+1 and –3) for
reinforcement of another especially defined composite
event connected with the unwedging behavior involving
"no longer [being] stalled and is able to go forward once
again."

Twelfth, after reducing the total input space to 218 =
262,144 possible states, they then further reduce the input
space by consolidating input states that are within a
specified Hamming distance. The Hamming distance is
applied in a particular nonlinear way (i.e., weighting the
NEAR bits by 5, the FAR bits by 2, the BUMPED bit by 1, and
the STUCK bit by 1). This consolidation of the input space
reduces it from size 218 = 262,144 to size 29 = 512. This
final consolidation to only 512 is again apparently
necessitated because the reinforcement learning technique
requires calculation of a large number of trials for a large
number of state-action combinations.

Thirteenth, they then perform the reinforcement on each
of the three behaviors separately.

The first four of the above 13 decisions constitute the
bulk of the difficult definitional problem associated with
the subsumption architecture. After these decisions are
made, only the content of the three behavioral actions
remains to be learned. The last nine of the decisions
constitute the bulk of the difficulty associated with the
reinforcement learning and executing the task. It is
difficult to discern what "automatic programming" or
"learning" remains to be done after these 13 decisions
have been made. It is probably fair to say that the 13
preparatory decisions, taken together, probably require
more analysis, intelligence, cleverness, and effort than
programming the robot by hand.

In contrast, in preparing to use genetic programming on
this problem, the five preparatory steps included
determining the terminal set, determining the set of
primitive functions, determining the fitness measure,
determining the control parameters, and determining
termination criterion and method of result designation.
The terminal set and function set were obtained directly

from the definition of the problem as stated by Mahadevan
and Connell (with the minor changes already noted). Our
effort in this area was no greater or less than that of
Mahadevan and Connell. Defining the domain-specific
fitness measure for this problem required a little thought,
but, in fact, flows directly from the nature of the problem.
Our choice of population size required the exercise of
some judgment, but we used our usual default values for
the minor control parameters. We used our usual
termination criterion, and method of result designation.

In fact, determination of the fitness measure was the
critical step in applying genetic programming to the
problem. Genetic programming allows us to generate a
complex structures (i.e., a computer program) from a
fitness measure. As in nature, fitness begets structure.

References
Brooks, Rodney. 1986. A robust layered control system
for a mobile robot. IEEE Journal of Robotics and
Automation. 2(1) March 1986.
Connell, Jonanthan. 1990. Minimalist Mobile Robotics.
Boston, MA: Academic Press 1990.
Davis, Lawrence (editor). 1987. Genetic Algorithms and
Simulated Annealing. London: Pittman l987.
Davis, Lawrence. 1991. Handbook of Genetic Algorithms.
New York: Van Nostrand Reinhold.1991.
Goldberg, David E. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley l989.
Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of Michigan
Press 1975.
Koza, John R. 1989. Hierarchical genetic algorithms
operating on populations of computer programs. In
Proceedings of the 11th International Joint Conference on
Artificial Intelligence. 768-774. San Mateo, CA: Morgan
Kaufman 1989.
Koza, John R. 1992a. Genetic Programming: On
Programming Computers by Means of Natural Selection
and Genetics. MIT Press, Cambridge, MA, 1992.
Forthcoming.
Koza, John R. 1992b. Evolution of subsumption using
genetic programming. In Bourgine, Paul and Varela,
Francisco (editors). Proceedings of European Conference
on Artificial Life. Cambridge, MA: MIT Press 1992.
Koza, John R. 1992c. The genetic programming paradigm:
Genetically breeding populations of computer programs to
solve problems. In Soucek, Branko and the IRIS Group
(editors). Dynamic, Genetic, and Chaotic Programming.
New York: John Wiley 1992.
Koza, John R. 1992d. A genetic approach to finding a
controller to back up a tractor-trailer truck. In Proceedings
of the 1992 American Control Conference. American
Automatic Control Council 1992.
Koza, John R. 1992e. A genetic approach to the truck
backer upper problem and the inter-twined spirals
problem. In Proceedings of International Joint

Conference on Neural Networks, Washington, June 1992.
IEEE Press.
Koza, John R. and Keane, Martin A. 1990. Genetic
breeding of non-linear optimal control strategies for
broom balancing. In Proceedings of the Ninth
International Conference on Analysis and Optimization of
Systems. Antibes,France, June, 1990. 47-56. Berlin:
Springer-Verlag, 1990.
Koza, John R. and Rice, James P. 1991. A genetic
approach to artificial intelligence. In Langton, C. G.
(editor). Artificial Life II Video Proceedings. Redwood
City, CA: Addison-Wesley 1991.
Mahadevan, Sridhar and Connell, Jonanthan. 1990.
Automatic Programming of Behavior-based Robots using
Reinforcement Learning. IBM Technical Report RC
16359. IBM Research Division 1990.
Mahadevan, Sridhar and Connell, Jonanthan. 1991.
Automatic programming of behavior-based robots using
reinforcement learning. In Proceedings of Ninth National
Conference on Artificial Intelligence. 768-773. Volume 2.
Menlo Park, CA: AAAI Press / MIT Press 1991.
Mataric, Maja J. 1990. A Distributed Model for Mobile
Robot Environment-Learning and Navigation. MIT
Artificial Intelligence Lab report AI-TR-1228. May 1990.
Watkins, Christopher. 1989. Learning from Delayed
Rewards. PhD Thesis. King's College, Cambridge 1989.

