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Abstract 
The goal in automatic programming is to get a computer to 
perform a task by telling it what needs to be done, rather 
than by explicitly programming it.  This paper considers the 
task of automatically generating a computer program to 
enable an autonomous mobile robot to perform the task of 
moving a box from the middle of an irregular shaped room 
to the wall.   We compare the ability of the recently 
developed genetic programming paradigm to produce such 
a program to the reported ability of reinforcement learning 
techniques, such as Q learning, to produce such a program 
in the style of the subsumption architecture.  The 
computational requirements of reinforcement learning 
necessitates considerable human knowledge and 
intervention, whereas genetic programming comes much 
closer to achieving the goal of getting the computer to 
perform the task without explicitly programming it.  The 
solution produced by genetic programming emerges as a 
result of Darwinian natural selection and genetic crossover 
(sexual recombination) in a population of computer 
programs.  The process is driven by a fitness measure which 
communicates the nature of the task to the computer and its 
learning paradigm. 

Introduction and Overview 
In the 1950s, Arthur Samuel identified the goal of getting 
a computer to perform a task without being explicitly 
programmed as one of the central goals in the fields of 
computer science and artificial intelligence.  Such 
automatic programming of a computer involves merely 
telling the computer what is to be done, rather than 
explicitly telling it, step-by-step, how to perform the 
desired task.   

In an AAAI-91 paper entitled "Automatic Programming 
of Behavior-Based Robots using Reinforcement Learning" 
Mahadevan and Connell (1991) reported on using 
reinforcement learning techniques, such as Q learning 
(Watkins 1989), in producing a program to control an 
autonomous mobile robot in the style of the subsumption 
architecture (Brooks 1986, Connell 1990, Mataric 1990).  
In particular, the program produced by reinforcement 
learning techniques enabled an autonomous mobile robot 
to perform the task of moving a box from the middle of a 
room to the wall.  In this paper, we will show that the 

onerous computational requirements imposed by 
reinforcement learning techniques necessitated that a 
considerable amount of human knowledge be supplied in 
order to achieve the reported "automatic programming" of 
the box moving task. 

In this paper, we present an alternative method for 
automatically generating a computer program to perform 
the box moving task using the recently developed genetic 
programming paradigm.  In genetic programming, 
populations of computer programs are genetically bred in 
order to solve the problem.  The solution produced by 
genetic programming emerges as a result of Darwinian 
natural selection and genetic crossover (sexual 
recombination) in a population of computer programs.  
The process is driven by a fitness measure which 
communicates the nature of the task to the computer and 
its learning paradigm. 

We demonstrate that genetic programming comes much 
closer than reinforcement learning techniques to achieving 
the goal of getting the computer to perform the task 
without explicitly programming it. 

Background on Genetic Algorithms 
John Holland's pioneering 1975 Adaptation in Natural and 
Artificial Systems described how the evolutionary process 
in nature can be applied to artificial systems using the 
genetic algorithm operating on fixed length character 
strings (Holland 1975).  Holland demonstrated that a 
population of fixed length character strings (each 
representing a proposed solution to a problem) can be 
genetically bred using the Darwinian operation of fitness 
proportionate reproduction and the genetic operation of 
recombination.  The recombination operation combines 
parts of two chromosome-like fixed length character 
strings, each selected on the basis of their fitness, to 
produce new offspring strings.  Holland established, 
among other things, that the genetic algorithm is a 
mathematically near optimal approach to adaptation in that 
it maximizes expected overall average payoff when the 
adaptive process is viewed as a multi-armed slot machine 
problem requiring an optimal allocation of future trials 
given currently available information.   



Recent work in genetic algorithms can be surveyed in 
Goldberg 1989 and Davis (1987, 1991). 

Background on Genetic Programming 
For many problems, the most natural representation for 
solutions are computer programs.  The size, shape, and 
contents of the computer program to solve the problem is 
generally not known in advance.  The computer program 
that solves a given problem is typically a hierarchical 
composition of various terminals and primitive function 
appropriate to the problem domain.  In robotics problems, 
the computer program that solves a given problem 
typically takes the sensor inputs or state variables of the 
system as its input and produces an external action as its 
output.  It is unnatural and difficult to represent program 
hierarchies of unknown (and possibly dynamically 
varying) size and shape with the fixed length character 
strings generally used in the conventional genetic 
algorithm.   

In genetic programming, one recasts the search for the 
solution to the problem at hand as a search of the space of 
all possible compositions of functions and terminals (i.e. 
computer programs) that can be recursively composed 
from the available functions and terminals.  Depending on 
the particular problem at hand, the set of functions used 
may include arithmetic operations, primitive robotic 
actions, conditional branching operations, mathematical 
functions, or domain-specific functions.  For robotic 
problems, the primitive functions are typically the external 
actions which the robot can execute; the terminals are 
typically the sensor inputs or state variables of the system. 

The symbolic expressions (S-expressions) of the LISP 
programming language are an especially convenient way 
to create and manipulate the compositions of functions 
and terminals described above.  These S-expressions in 
LISP correspond directly to the parse tree that is internally 
created by most compilers.   

Genetic programming, like the conventional genetic 
algorithm, is a domain independent method.  It proceeds 
by genetically breeding populations of computer programs 
to solve problems by executing the following three steps: 
(1) Generate an initial population of random 

compositions of the functions and terminals of the 
problem (computer programs). 

(2) Iteratively perform the following sub-steps until the 
termination criterion has been satisfied: 
(a) Execute each program in the population and 

assign it a fitness value according to how well 
it solves the problem. 

(b) Create a new population of computer programs 
by applying the following two primary 
operations.  The operations are applied to 
computer program(s) in the population chosen 
with a probability based on fitness. 
(i) Reproduction: Copy existing computer 

programs to the new population. 

(ii) Crossover: Create new computer 
programs by genetically recombining 
randomly chosen parts of two existing 
programs. 



(3) The single best computer program in the population 
at the time of termination is designated as the result 
of the run of genetic programming.  This result may 
be a solution (or approximate solution) to the 
problem. 

The basic genetic operations for genetic programming 
are fitness proportionate reproduction and crossover 
(recombination).   

The reproduction operation copies individuals in the 
genetic population into the next generation of the 
population in proportion to their fitness in grappling with 
the problem environment.  This operation is the basic 
engine of Darwinian survival and reproduction of the 
fittest. 

The crossover operation is a sexual operation that 
operates on two parental LISP S-expressions and produces 
two offspring S-expressions using parts of each parent.  
The crossover operation creates new offspring S-
expressions by exchanging sub-trees (i.e. sub-lists) 
between the two parents.  Because entire sub-trees are 
swapped, this crossover operation always produces 
syntactically and semantically valid LISP S-expressions as 
offspring regardless of the crossover points.  

For example, consider the two parental S-expressions:  
(OR (NOT D1) (AND D0 D1)) 
 
(OR (OR D1 (NOT D0)) 
    (AND (NOT D0) (NOT D1)) 

Figure 1 graphically depicts these two S-expressions as 
rooted, point-labeled trees with ordered branches.  The 
numbers on the tree are for reference only.  

Assume that the points of both trees are numbered in a 
depth-first way starting at the left.  Suppose that point 2 
(out of 6 points of the first parent) is randomly selected as 
the crossover point for the first parent and that point 6 (out 
of 10 points of the second parent) is randomly selected as 
the crossover point of the second parent.  The crossover 
points in the trees above are therefore the NOT in the first 
parent and the AND in the second parent.   
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Figure 1  Two parental computer programs shown as 
trees with ordered branches.  Internal points of the tree 
correspond to functions (i.e. operations) and external 
points correspond to terminals (i.e. input data). 

Figure 2 shows the two crossover fragments are two 
sub-trees.  These two crossover fragments correspond to 
the bold sub-expressions (sub-lists) in the two parental 

LISP S-expressions shown above.  Figure 3 shows the two 
offspring.    
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Figure 2  The two crossover fragments. 
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Figure 3  Offspring resulting from crossover. 

When the crossover operation is applied to two 
individual parental computer programs chosen from the 
population in proportion to fitness, it effectively directs 
the future population towards parts of the search space 
containing computer programs that bear some resemblance 
to their parents.  If the parents exhibited relatively high 
fitness because of certain structural features, their 
offspring may exhibit even higher fitness after a 
recombination of features. 

Although one might think that computer programs are 
so brittle and epistatic that they could only be genetically 
bred in a few especially congenial problem domains, we 
have shows that computer programs can be genetically 
bred to solve a surprising variety of problems, including 
• discovering inverse kinematic equations (e.g., to move a 

robot arm to designated target points) [Koza 1992a], 
• planning (e.g., navigating an artificial ant along a trail),  
• optimal control (e.g., balancing a broom and backing up 

a truck) [Koza and Keane 1990, Koza 1992d], 
• Boolean function learning [Koza 1989, 1992c], and 
• classification and pattern recognition (e.g., two 

intertwined spirals) [Koza 1992e]. 
A videotape visualization of the application of genetic 

programming to planning, emergent behavior, empirical 
discovery, inverse kinematics, and game playing can be 
found in the Artificial Life II Video Proceedings  [Koza 
and Rice 1991]. 

Box Moving Robot 
In the box moving problem, an autonomous mobile robot 
must find a box located in the middle of an irregularly 
shaped room and move it to the edge of the room within a 
reasonable amount of time.   

The robot is able to move forward, turn right, and turn 
left.  After the robots finds the box, it can move the box by 



pushing against it.  However, this sub-task may prove 
difficult because if the robot applies force not coaxial with 
the center of gravity of the box, the box will start to rotate.  
The robot will then lose contact with the box and will 
probably then fail to push the box to the wall in a 
reasonable amount of time.   

The robot is considered successful if any part of the box 
touches any wall within the allotted amount of time.  

The robot has 12 sonar sensors which report the 
distance to the the nearest object (whether wall or box) as 
a floating point number in feet.  The twelve sonar sensors 
(each covering 30°) together provide 360° coverage 
around the robot.   

The robot is capable of executing three primitive motor 
functions, namely, moving forward by a constant distance, 
turning right by 30°, and turning left by 30°.  The three 
primitive motor functions MF, TR, and TL each take one 
time step (i.e., 1.0 seconds) to execute.  All sonar 
distances are dynamically recomputed after each execution 
of a move or turn.  The function TR (Turn Right) turns the 
robot 30° to the right (i.e., clockwise).  The function TL 
(Turn Left) turns the robot 30° to the left (i.e., counter-
clockwise).  The function MF (Move Forward) causes the 
robot to move 1.0 feet forward in the direction it is 
currently facing in one time step.  If the robot applies its 
force orthogonally to the midpoint of an edge of the box, it 
will move the box about 0.33 feet per time step. 

The robot has a BUMP and a STUCK detector.  We used a 
2.5 foot wide box.  The north (top) wall and west (left) 
wall of the irregularly shaped room are each 27.6 feet 
long.   

The sonar sensors, the two binary sensors, and the three 
primitive motor functions are not labeled, ordered, or 
interpreted in any way.  The robot does not know a priori 
what the sensors mean nor what the primitive motor 
functions do.  Note that the robot does not operate on a 
cellular grid; its state variables assume a continuum of 
different values.   

There are five major steps in preparing to use genetic 
programming, namely, determining (1) the set of 
terminals, (2) the set of functions, (3) the fitness measure, 
(4) the parameters and variables for controlling the run, 

and (5) the criteria for designating a result and for 
terminating a run.   

The first major step in preparing to use genetic 
programming is to identify the set of terminals.  We 
include the 12 sonar sensors and the three primitive motor 
functions (each taking no arguments) in the terminal set.  
Thus, the terminal set T for this problem is  T = {S00, 
S01, S02, S03, ... , S11, SS, (MF), (TR), (TL)}. 

The second major step in preparing to use genetic 
programming is to identify a sufficient set of primitive 
functions for the problem.  The function set F consists of  
F = {IFBMP, IFSTK, IFLTE, PROGN2}. 

The functions IFBMP and IFSTK are based on the BUMP 
detector and the STUCK detector defined by Mahadevan 
and Connell.  Both of these functions take two arguments 
and evaluate their first argument if the detector is on and 
otherwise evaluates their second argument. 

The IFLTE (If-Less-Than-or-Equal) function is a four-
argument comparative branching operator that executes its 
third argument if its first argument is less than its second 
(i.e., then) argument and, otherwise, executes the fourth 
(i.e., else) argument.  The operator IFLTE is implemented 
as a macro in LISP so that only either the third or fourth 
argument is evaluated depending on the outcome of the 
test involving the first and second argument.  Since the 
terminals in this problem take on floating point values, 
this function is used to compare values of the terminals.  
IFLTE allows alternative actions to be executed based on 
comparisons of observation from the robot's environment.  
IFLTE allows, among other things, a particular action to 
be executed if the robot's environment is applicable and 
allows one action to suppress another.  It also allows for 
the computation of the minimum of a subset of two or 
more sensors. IFBMP and IFSTK are similarly defined as 
macros 

The connective function PROGN2 taking two arguments 
evaluates both of its arguments, in sequence, and returns 
the value of its second argument. 

Although the main functionality of the moving and 
turning functions lies in their side effects on the state of 
the robot, it is necessary, in order to have closure of the 
function set and terminal set, that these functions return 
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Figure 5  Typical random robot trajectory from 

generation 0. 
Figure 6  Trajectory of the best-of-generation 

individual for generation 0. 



some numerical value.  For Version 1 only, we decided 
that each of the moving and turning functions would 
return the minimum of the two distances reported by the 
two sensors that look forward.  Also, for Version 1 only, 
we added one derived value, namely the terminal SS 
(Shortest Sonar) which is the minimum of the 12 sonar 
distances S0, S1, ... , S11, in the terminal set T.   

The third major step in preparing to use genetic 
programming is the identification of the fitness function 
for evaluating how good a given computer program is at 
solving the problem at hand.  A human programmer, of 
course, uses human intelligence to write a computer 
program.  Intelligence is the guiding force that creates the 
program.  In contrast, genetic programming is guided by 
the pressure exerted by the fitness measure and natural 
selection.    

The fitness of an individual S-expression is computed 
using fitness cases in which the robot starts at various 
different positions in the room.  The fitness measure for 
this problem is the sum of the distances, taken over four 
fitness cases, between the wall and the point on the box 
that is closest to the nearest wall at the time of termination 
of the fitness case. 

A fitness case terminates upon execution of 350 time 
steps or when any part of the box touches a wall.  If, for 
example, the box remains at its starting position for all 
four fitness cases, the fitness is 26.5 feet.  If, for all four 
fitness cases, the box ends up touching the wall prior to 
timing out for all four fitness cases, the raw fitness is zero 
(and minimal).   

The fourth major step in preparing to use genetic 
programming is selecting the values of certain parameters.   
The major parameters for controlling a run of genetic 

programming is the population size and the number of 
generations to be run.  The population size is 500 here.  A 
maximum of 51 generations (i.e. an initial random 
generation 0 plus 50 additional generations) is established 
for a run.  Our choice of population size reflected an 
estimate on our part as to the likely complexity of the 
solution to this problem; however, we have used a 
population of 500 on about half of the numerous other 
problems  on which we have applied genetic programming 
(Koza 1992a, 1992b, 1992c).  In addition, each run is 
controlled by a number of minor parameters.  The values 
of these minor parameters were chosen in the same way as 
described in the above references and were not chosen 
especially for this problem. 

Finally, the fifth major step in preparing to use genetic 
programming is the selection of the criteria for terminating 
a run and accepting a result.  We will terminate a given 
run when either (i) genetic programming produces a 
computer program which scores a fitness of zero, or (ii) 51 
generations have been run.  The best-so-far individual 
obtained in any generation will be designated as the result 
of the run. 

Learning, in general, requires some experimentation in 
order to obtain the information needed by the learning 
algorithm to find the solution to the problem.  Since 
learning here would require that the robot perform the 
overall task a certain large number of times, we planned to 
simulate the activities of the robot, rather than use a 
physical robot. 
Version 1 
Figure 5 shows the irregular room, the starting position of 
the box, and the starting position of the robot for the 
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Figure  7  Trajectory of the best-of-run individual 

with the robot starting in the southeast. 
Figure  8  Trajectory of the best-of-run individual 

 with the robot starting in the northwest . 
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Figure 9   Trajectory of the best-of-run individual 

with the robot starting in the northeast. 
Figure 10  Trajectory of the best-of-run individual 

with the robot starting in the southwest. 



particular fitness case in which the robot starts in the 
southeast part of the room.  The raw fitness of a majority 
of the individual S-expressions from generation 0 is 26.5 
(i.e., the sum, over the four fitness cases, of the distances 
to the nearest wall) since they cause the robot to stand 
still, to wander around aimlessly without ever finding the 
box, or, in the case of the individual program shown in the 
figure, to move toward the box without reaching it.  

Even in generation 0, some individuals are better than 
others.  Figure 6 shows the trajectory of the best-of-
generation individual from generation 0 from one run.  
This individual containing 213 points finds the box and 
moves it a short distance for one of the four fitness cases, 
thereby scoring a raw fitness of 24.5.  

The Darwinian operation of fitness proportionate 
reproduction and genetic crossover (sexual recombination) 
is now applied to the population, and a new generation of 
500 S-expressions is produced.  Fitness progressively 
improved between generations 1 and 6.   

In generation 7, the best-of-generation individual 
succeeded in moving the box to the wall for one of the 
four fitness cases (i.e., it scored one hit).  Its fitness was 
21.52 and it had 59 points (i.e. functions and terminals) in 
its program tree. 

By generation 22, the fitness of the best-of-generation 
individual improved to 17.55. Curiously, this individual, 
unlike many earlier individuals, did not succeed in 
actually moving the box to a wall for any of the fitness 
cases. 

By generation 35, the best-of-generation individual had 
259 points and a fitness of 10.77. 

By generation 45 of the run, the best-of-generation 
individual computer program was successful, for all four 
fitness cases, in finding the box and pushing it to the wall 
within the available amount of time.  Its fitness was zero.  
This best-of-run individual had 305 points. 

Note that we did not pre-specify the size and shape of 
the solution to the problem.  As we proceeded from 
generation to generation, the size and shape of the best-of-
generation individuals changed.  The number of points in 
the best-of-generation individual was 213 in generation 0, 
59 in generation 7, 259 in generation 35, and 305 in 
generation 45.   The structure of the S-expression emerged 
as a result of the selective pressure exerted by the fitness 
measure.  

Figure 7 shows the trajectory of the robot and the box 
for the 305-point best-of-run individual from generation 
45 for the fitness case where the robot starts in the 
southeast part of the room.  For this fitness case, the robot 
moves more or less directly toward the box and then 
pushes the box almost flush to the wall.   

Figure 8 shows the trajectory of the robot and the box 
for the fitness case where the robot starts in the northwest 
part of the room.  Note that the robot clips the southwest 
corner of the box and thereby causes it to rotate in a 

counter clockwise direction until the box is moving almost 
north and the robot is at the midpoint of the south edge of 
the box. 

Figure 9 shows the trajectory of the robot and the box 
for the fitness case where the robot starts in the northeast 
part of the room.  For this fitness case, the robot's 
trajectory to reach the box is somewhat inefficient.  
However, once the robot reaches the box, the robot pushes 
the box more of less directly toward the west wall.   

Figure 10 shows the trajectory of the robot and the box 
for the fitness case where the robot starts in the southwest 
part of the room.  
Version 2 
In the foregoing discussion of the box moving problem, 
the solution was facilitated by the presence of the sensor 
SS in the terminal set and the fact that the functions MF, 
TL, and TR returned a numerical value equal to the 
minimum of several designated sensors.  This is in fact the 
way we solved it the first time. 

This problem can, however, also be solved without the 
terminal SS being in the terminal set and with the three 
functions each returning a constant value of zero.  We call 
these three new functions MF0, TL0, and TR0.  The new 
function set is F0 = {MF0, TR0, TL0, IFLTE, PROGN2}.  
We raised the population size from 500 to 2,000 in the 
belief that version 2 of this problem would be much more 
difficult to solve.   

In our first (and only) run of Version 2 of this problem, 
an 100%-correct S-expression containing 207 points with 
a fitness of 0.0 emerged on generation 20: 
(IFSTK (IFLTE (IFBMP (IFSTK (PROGN2 S02 
S09) (IFSTK S10 S07)) (IFBMP (IFSTK (IFLTE 
(MF0) (TR0) S05 S09) (IFBMP S09 S08)) 
(IFSTK S07 S11))) (IFBMP (IFBMP (PROGN2 S07 
(TL0)) (PROGN2 (TL0) S03)) (IFBMP (PROGN2 
(TL0) S03) (IFLTE S05 (TR0) (MF0) S00))) 
(IFLTE (IFBMP S04 S00) (PROGN2 (IFLTE S08 
S06 S07 S11) (IFLTE S07 S09 S10 S02)) 
(IFBMP (IFLTE (TL0) S08 S07 S02) (IFLTE S10 
S00 (MF0) S08)) (IFBMP (PROGN2 S02 S09) 
(IFBMP S08 S02))) (IFSTK (PROGN2 (PROGN2 
S04 S06) (IFBMP (MF0) S03)) (PROGN2 (IFSTK 
S05 (MF0)) (IFBMP (IFLTE (TR0) S08 (IFBMP 
S07 S06) S02) (IFLTE S10 (IFBMP S10 S08) 
(MF0) S08))))) (IFLTE (PROGN2 S04 S06) 
(PROGN2 (IFSTK (IFBMP (MF0) S09) (IFLTE S10 
S03 S03 S06)) (IFSTK (IFSTK S05 S01) (IFBMP 
(MF0) S07))) (PROGN2 (IFLTE (IFSTK S01 
(TR0)) (PROGN2 S06 (MF0)) (IFLTE S05 S00 
(MF0) S08) (PROGN2 S11 S09)) (IFBMP (MF0) 
(IFSTK S05 (IFBMP (PROGN2 (IFSTK (PROGN2 
S07 S04) (IFLTE S00 S07 S06 S07)) (PROGN2 
S04 S06)) (IFSTK (IFSTK (IFBMP S00 (PROGN2 
S06 S10)) (IFSTK (MF0) S10)) (IFBMP (PROGN2 
S08 S02) (IFSTK S09 S09))))))) (IFLTE 
(IFBMP (PROGN2 S11 S09) (IFBMP S08 S11)) 
(PROGN2 (PROGN2 S06 S03) (IFBMP (IFBMP S08 
S02) (MF0))) (IFSTK (IFLTE (MF0) (TR0) S05 
S09) (IFBMP (PROGN2 (TL0) S02) S08)) (IFSTK 
(PROGN2 S02 S03) (PROGN2 S01 S04))))) 



Figure 11 shows the hits histogram for generations 0, 
15, and 20.  Note the left-to-right undulating movement of 
the center of mass of the histogram and the high point of 
the histogram.  This “slinky” movement reflects the 
improvement of the population as a whole.   

We have also employed genetic programming to evolve 
a computer program to control a wall following robot 
using the subsumption architecture (Koza 1992b) based on 
impressive work successfully done by Mataric (1990) in 
programming an autonomous mobile robot called TOTO.   

Comparison with Reinforcement Learning 
We now analyze the amount of preparation involved in 
what Mahadevan and Connell describe as "automatic 
programming" of an autonomous mobile robot to do box 
moving using reinforcement learning techniques, such as 
the Q learning technique developed by Watkins (1989).   

Reinforcement learning techniques, in general, require 
that a discounted estimate of the expected future payoffs 
be calculated for each state.  Q learning, in particular, 
requires that an expected payoff be calculated for each 
combination of state and action.  These expected payoffs 
then guide the choices that are to be made by the system.  
Any calculation of expected payoff requires a statistically 
significant number of trials.  Thus, reinforcement learning 
requires a large number of trials to be made over a large 
number of combinations of possibilities.   

Before any reinforcement learning and "automatic 
programming" can take place, Mahadevan and Connell 
make the following 13 decisions: 

First, Mahadevan and Connell began by deciding that 
the solution to this problem in the subsumption 
architecture requires precisely three task-achieving 
behaviors.   

Second, they decided that the three task-achieving 
behaviors are finding the box, pushing the box across the 
room, and recovering from stalls where the robot has 
wedged itself or the box into a corner.  

Third, they decided that the behavior of finding the box 
has the lowest priority, that the behavior of pushing the 
box across the room is of intermediate importance, and 
that the unwedging behavior has highest priority.  That is, 
they decide upon the conflict-resolution procedure.   

Fourth, they decided on the applicability predicate of 
each of the three task-achieving behaviors.   

Fifth, they decided upon an unequal concentration of the 
sonar sensors around the periphery of the robot.  In 
particular, they decided that half of the sensors will look 
forward, and, after a gap in sonar coverage, an additional 
quarter will look to the left and the remaining quarter will 
look to the right.  They decided that none of the sonar 
sensors will look back.  

Sixth, they decided to preprocess the real-valued 
distance information reported by the sonar sensors in a 
highly nonlinear problem-specific way.  In particular, they 
condensed the real-valued distance information from each 
of the eight sensors into only two bits per sensor.  The first 
bit associated with a given sensor (called the "NEAR" bit) 
is on if any object appears within 9 – 18 inches.  The 
second bit (called the "FAR" bit) is on if any object appears 
within 18 – 30 inches.  The sonar is an echo sonar that 
independently and simultaneously reports on both the  
9 – 18 inch region and the 18 – 30 region.  Thus, it is 
possible for both bits to be on at once.  Note that the sizes 
of the two regions are unequal and that inputs in the range 
of less than 9 inches and greater than 30 inches are 
ignored.  This massive state reduction and nonlinear 
preprocessing are apparently necessary because 
reinforcement learning requires calculation of a large 
number of trials for a large number of state-action 
combinations.  In any event, eight real-valued variables 
are mapped into 16 bits in a highly nonlinear and problem-
specific way.  This reduces the input space from 12 
floating-point values and two binary values to a relatively 
modest 218 = 262,144 possible states.  An indirect effect 
of ignoring inputs in the range of less than 9 inches and 
greater than 30 inches is that the robot must resort to blind 
random search if it is started from a point that is not within 
between 9 and 30 inches a box (i.e., the vast majority of 
potential starting points in the room). 

Seventh, as a result of having destroyed the information 
contained in the eight real-valued sonar sensor inputs by 
condensing it into only 16 bits, they now decided to 
explicitly create a particular problem-specific matched 
filter to restore the robot's ability to move in the direction 
of an object.  The filter senses (i) if the robot has just 
moved forward, and (ii) if any of four particular sonar 
sensors were off on the previous time step but any of these 
sensors are now on.  The real-valued values reported by 
the sonar sensors contained sufficient information to 
locate the box.  This especially tailored temporal filter is 
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Figure 11  Hits histogram for generations 0, 15, and 20 
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required only because of the earlier decision to condense 
the information contained in the eight real-valued sonar 
sensor inputs into only 16 bits. 

Eighth, they then decided upon a particular non-linear 
scale (–1, 0, +3) of three reinforcements based on the 
output of the matched filter just described. 

Ninth, they then decided upon a different scale (+1 and  
–3) of two reinforcements based on an especially-defined 
composite event, namely the robot "continu[ing] to be 
bumped and going forward" versus "loses contact with the 
box." 

Tenth, they defined a particular timer for the 
applicability predicate for the pushing behavior and the 
unwedging behavior (but not the finding behavior) lasting 
precisely five time steps.  This timer keeps the behavior on 
for five time steps even if the applicability predicate is no 
longer satisfied by the state of the world, provided the 
behavior involved was once turned on.   

Eleventh, they decided upon the scale (+1 and –3) for 
reinforcement of another especially defined composite 
event connected with the unwedging behavior involving 
"no longer [being] stalled and is able to go forward once 
again." 

Twelfth, after reducing the total input space to 218 = 
262,144 possible states, they then further reduce the input 
space by consolidating input states that are within a 
specified Hamming distance.  The Hamming distance is 
applied in a particular nonlinear way (i.e., weighting the 
NEAR bits by 5, the FAR bits by 2, the BUMPED bit by 1, and 
the STUCK bit by 1).  This consolidation of the input space 
reduces it from size 218 = 262,144 to size 29 = 512.  This 
final consolidation to only 512 is again apparently 
necessitated because the reinforcement learning technique 
requires calculation of a large number of trials for a large 
number of state-action combinations.  

Thirteenth, they then perform the reinforcement on each 
of the three behaviors separately.   

The first four of the above 13 decisions constitute the 
bulk of the difficult definitional problem associated with 
the subsumption architecture.  After these decisions are 
made, only the content of the three behavioral actions 
remains to be learned.  The last nine of the decisions 
constitute the bulk of the difficulty associated with the 
reinforcement learning and executing the task.  It is 
difficult to discern what "automatic programming" or 
"learning" remains to be done after these 13 decisions 
have been made.  It is probably fair to say that the 13 
preparatory decisions, taken together, probably require 
more analysis, intelligence, cleverness, and effort than 
programming the robot by hand.  

In contrast, in preparing to use genetic programming on 
this problem, the five preparatory steps included 
determining the terminal set, determining the set of 
primitive functions, determining the fitness measure, 
determining the control parameters, and determining 
termination criterion and method of result designation.  
The terminal set and function set were obtained directly 

from the definition of the problem as stated by Mahadevan 
and Connell (with the minor changes already noted).  Our 
effort in this area was no greater or less than that of 
Mahadevan and Connell.  Defining the domain-specific 
fitness measure for this problem required a little thought, 
but, in fact, flows directly from the nature of the problem.  
Our choice of population size required the exercise of 
some judgment, but we used our usual default values for 
the minor control parameters. We used our usual 
termination criterion, and method of result designation.   

In fact, determination of the fitness measure was the 
critical step in applying genetic programming to the 
problem.  Genetic programming allows us to generate a 
complex structures (i.e., a computer program) from a 
fitness measure.  As in nature, fitness begets structure. 
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