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Summary: Genetic programming is an automatic technique for producing a computer program 
that solves, or approximately solves, a problem. This chapter reviews several recent examples 
of human-competitive results produced by genetic programming. The examples all involve the 
automatic synthesis of a complex structure from a high-level statement of the requirements for 
the structure. The illustrative results include examples of automatic synthesis of both the 
topology and sizing (component values) for analog electrical circuits, automatic synthesis of 
placement and routing (as well as topology and sizing) for circuits, and automatic synthesis of 
both the topology and tuning (parameter values) of controllers.  

1 Introduction 

Genetic programming is an automatic technique for producing a computer program 
that solves, or approximately solves, a problem. Genetic programming addresses the 
challenge of getting a computer to solve a problem without explicitly programming 
it. This challenge calls for an automatic system whose input is a high-level statement 
of a problem’s requirements and whose output is a working program that solves the 
problem. Paraphrasing Arthur Samuel (1959), this challenge concerns, “How can 
computers be made to do what needs to be done, without being told exactly how to 
do it?” 

Since many problems can be easily recast as a search for a computer program, 
genetic programming can potentially solve a wide range of types of problems, 
including problems of control, classification, system identification, and design.  

The field of design is a good source of challenging problems that can be used for 
determining whether an automated technique can produce results that are competitive 
with human-produced results. Design is usually viewed as requiring creativity and 
human intelligence. The design process entails creation of a complex structure to 
satisfy user-defined high-level requirements. Design is a major activity of practicing 
engineers. Since the design process typically entails tradeoffs between competing 



considerations, the end product of the process is usually a satisfactory and compliant 
design as opposed to a perfect design.  

Section 2 describes genetic programming. Section 3 states what we mean when 
we say that an automatically created solution to a problem is competitive with the 
product of human creativity. Section 4 describes how genetic programming has been 
applied to problems of synthesis of both the topology and sizing (component values) 
for analog electrical circuits. Section 5 extends this process to include the automatic 
creation of the placement and routing of circuits (as well as the automatic creation of 
the topology and sizing). Section 6 describes the application of genetic programming 
to the problem of automatically synthesizing the design of both the topology and 
tuning (parameter values) for controllers.  

 

2 Genetic Programming 

Genetic programming progressively breeds a population of computer programs over 
a series of generations by starting with a primordial ooze of thousands of randomly 
created computer programs and using the Darwinian principle of natural selection, 
recombination (crossover), mutation, gene duplication, gene deletion, and certain 
mechanisms of developmental biology. Specifically, genetic programming starts with 
an initial population of randomly generated computer programs composed of the 
given primitive functions and terminals. The programs in the population are, in 
general, of different sizes and shapes. The creation of the initial random population is 
a blind random search of the space of computer programs composed of the problem’s 
available functions and terminals.  

On each generation of a run of genetic programming, each individual in the 
population of programs is evaluated as to its fitness in solving the problem at hand. 
The programs in generation 0 of a run almost always have exceedingly poor fitness 
for non-trivial problems of interest. Nonetheless, some individuals in a population 
will turn out to be somewhat more fit than others. These differences in performance 
are then exploited so as to direct the search into promising areas of the search space. 
The Darwinian principle of reproduction and survival of the fittest is used to 
probabilistically select, on the basis of fitness, individuals from the population to 
participate in various operations. A small percentage (e.g., 9%) of the selected 
individuals are reproduced (copied) from one generation to the next. A very small 
percentage (e.g., 1%) of the selected individuals are mutated in a random way. 
Mutation can be viewed as an undirected local search mechanism. The vast majority 
of the selected individuals participate in the genetic operation of crossover (sexual 
recombination) in which two offspring programs are created by recombining genetic 
material from two parents.  

The creation of the initial random population and the creation of offspring by the 
genetic operations are all performed so as to create syntactically valid, executable 
programs. After the genetic operations are performed on the current generation of the 
population, the population of offspring (i.e., the new generation) replaces the old 



generation. The tasks of measuring fitness, Darwinian selection, and genetic 
operations are then iteratively repeated over many generations.  

Genetic programming is an extension of the genetic algorithm (Holland 1975). 
Genetic programming is described in books such as Koza 1992; Koza 1994a; Koza, 
Bennett, Andre, and Keane 1999; Banzhaf, Nordin, Keller, and Francone 1998; 
Langdon 1998; Ryan 1999, Wong and Leung 2000; Langdon and Poli 2002; in 
edited collections of papers such as Kinnear 1994; Angeline and Kinnear 1996; and 
Spector, Langdon, O’Reilly, and Angeline 1999; in conference proceedings such as 
Koza, Goldberg, Fogel, and Riolo 1996; Koza, Deb, Dorigo, Fogel, Garzon, Iba, and 
Riolo 1997; Koza, Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon, Goldberg, Iba, 
and Riolo 1998; Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiela, and Smith 1999; 
Whitley, Goldberg, Cantu-Paz, Spector, Parmee, and Beyer 2000; Spector, 
Goodman, Wu, Langdon, Voigt, Gen, Sen, Dorigo, Pezeshk, Garzon, and Burke 
2001; Banzhaf, Poli, Schoenauer, and Fogarty 1998; Poli, Nordin, Langdon, and 
Fogarty 1999; Poli, Banzhaf, Langdon, Miller, Nordin, and Fogarty 2000; and Miller, 
Tomassini, Lanzi, Ryan, Tettamanzi, and Langdon 2001; in videotapes such as Koza 
and Rice 1992; Koza 1994b; and Koza, Bennett, Andre, Keane, and Brave 1999; in 
the new Genetic Programming and Evolvable Machines journal; and at web sites 
such as www.genetic-programming.org.  

 

3 Human-competitive Machine Intelligence 

What do we mean when we say that an automatically created solution to a problem is 
competitive with human-produced results?  

We are not referring to the fact that a computer can rapidly print ten thousand 
payroll checks or that a computer can compute π to a million decimal places. Instead, 
we think it is fair to say that an automatically created result is competitive with one 
produced by human engineers, designers, mathematicians, or programmers if it 
satisfies any one (or more) of the following eight criteria (or any other similarly 
stringent criterion):  

(A) The result was patented as an invention in the past, is an improvement over a 
patented invention, or would qualify today as a patentable new invention.  

(B) The result is equal to or better than a result that was accepted as a new 
scientific result at the time when it was published in a peer-reviewed 
scientific journal.  

(C) The result is equal to or better than a result that was placed into a database or 
archive of results maintained by an internationally recognized panel of 
scientific experts.  

(D) The result is publishable in its own right as a new scientific result  
independent of the fact that the result was mechanically created.  

(E) The result is equal to or better than the most recent human-created solution 
to a long-standing problem for which there has been a succession of 
increasingly better human-created solutions.  



(F) The result is equal to or better than a result that was considered an 
achievement in its field at the time it was first discovered.  

(G) The result solves a problem of indisputable difficulty in its field.  
(H) The result holds its own or wins a regulated competition involving human 

contestants (in the form of either live human players or human-written 
computer programs).  

Note that each of the above criteria are couched in terms of producing results and 
that the results are measured in terms of standards that are external to the fields of 
artificial intelligence and machine learning.  

Using the above criteria, there are now at least 25 instances where genetic 
programming has produced a result that is competitive with human performance. 
These examples come from fields such as quantum computing, the annual Robo Cup 
competition, cellular automata, computational molecular biology, sorting networks, 
the automatic synthesis of the design of analog electrical circuits, and the automatic 
synthesis of the design of controllers.  

Table 1 shows 25 instances of results where genetic programming has produced 
results that are competitive with the products of human creativity and inventiveness. 
Each claim is accompanied by the particular criterion (from the list above) that 
establishes the basis for the claim. As can be seen in the table, seven of these 
automatically created results infringe on previously issued patents. In addition, one 
of the genetically evolved results improves on a previously issued patent. Also, nine 
of the other genetically evolved results duplicate the functionality of previously 
patented inventions in a novel way. Since nature routinely uses evolution and natural 
selection to create designs for complex structures that are well adapted to their 
environments, it is not surprising that many of these examples involve the design of 
complex structures.  

  
Table 1. Twenty-five instances where genetic programming has produced human-competitive 
results. 

 

 Claimed instance Basis 
for 
claim 

Reference Infringed 
patent 

1 Creation, using genetic 
programming, of a better-than-
classical quantum algorithm for the 
Deutsch-Jozsa “early promise” 
problem 

B, F (Spector, 
Barnum, and 
Bernstein 
1998) 

 

2 Creation, using genetic 
programming, of a better-than-
classical quantum algorithm for 
Grover’s database search problem 

B, F (Spector, 
Barnum, and 
Bernstein 
1999) 

 



3 Creation, using genetic 
programming, of a quantum 
algorithm for the depth-2 AND/OR 
query problem that is better than any 
previously published result 

B, D (Spector, 
Barnum, 
Bernstein, and 
Swamy 1999) 

 

4 Creation of soccer-playing program 
that ranked in the middle of the field 
of 34 human-written programs in the 
Robo Cup 1998 competition 

H (Andre and 
Teller 1999)  

5 Creation of four different algorithms 
for the transmembrane segment 
identification problem for proteins 

B, E (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

 

6 Creation of a sorting network 
(O'Connor, and Nelson 1962) for 
seven items using only 16 steps 

A, D (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

 

7 Rediscovery of the ladder topology 
for lowpass and highpass filters 

A, F (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

(Campbell 
1917) 

8 Rediscovery of “M-derived half 
section” and “constant K” filter 
sections 

A, F (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

(Zobel 
1925) 

9 Rediscovery of the Cauer (elliptic) 
topology for filters 

A, F (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

(Cauer 
1934, 1935, 
1936) 

10 Automatic decomposition of the 
problem of synthesizing a crossover 
filter 

A, F (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

(Zobel 
1925) 

11 Rediscovery of a recognizable 
voltage gain stage and a Darlington 
emitter-follower section of an 
amplifier and other circuits 

A, F (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

(Darlington 
1953) 

12 Synthesis of 60 and 96 decibel 
amplifiers 

A, F (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

 

13 Synthesis of analog computational 
circuits for squaring, cubing, square 
root, cube root, logarithm, and 
Gaussian functions 

A, D, 
G 

(Koza, 
Bennett, 
Andre, and 
Keane 1999) 

 



14 Synthesis of a real-time analog 
circuit for time-optimal control of a 
robot 

G (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

 

15 Synthesis of an electronic 
thermometer 

A, G (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

 

16 Synthesis of a voltage reference 
circuit 

A, G (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

 

17 Creation of a cellular automata rule 
for the majority classification 
problem that is better than the Gacs-
Kurdyumov-Levin (GKL) rule and 
all other known rules written by 
humans 

D, E (Andre, 
Bennett, and 
Koza 1996) 

 

18 Creation of motifs that detect the D-
E-A-D box family of proteins and 
the manganese superoxide dismutase 
family 

C (Koza, 
Bennett, 
Andre, and 
Keane 1999) 

 

19 Synthesis of analog circuit 
equivalent to Philbrick circuit 
(Philbrick 1956) 

A (Koza, 
Bennett, 
Keane, Yu, 
Mydlowec, 
and Stiffelman 
1999) 

 

20 Synthesis of NAND circuit A (Bennett, 
Koza, Keane, 
Yu, 
Mydlowec, 
and Stiffelman 
1999) 

 

21 Synthesis of digital-to-analog 
converter (DAC) circuit 

A (Bennett, 
Koza, Keane, 
Yu, 
Mydlowec, 
and Stiffelman 
1999) 

 

22 Synthesis of analog-to-digital (ADC) 
circuit 

A (Bennett, 
Koza, Keane, 
Yu, 
Mydlowec, 
and Stiffelman 
1999) 

 



23 Synthesis of topology, sizing, 
placement, and routing of analog 
electrical circuits 

G (Koza and 
Bennett 1999)  

24 Synthesis of topology for a PID type 
of controller 

A, F (Koza, Keane, 
Yu, Bennett, 
Mydlowec 
2000) 

(Callender 
and 
Stevenson 
1939) 

25 Synthesis of topology for a 
controller with a second derivative 

A, F (Koza, Keane, 
Yu, Bennett, 
Mydlowec 
2000) 

(Jones 
1942) 

 
The fact that genetic programming can evolve entities that infringe on previously 

patented inventions, improve on previously patented inventions, or duplicate the 
functionality of previously patented inventions suggests that genetic programming 
can potentially be used as an “invention machine” to create new and useful 
patentable inventions.  

4 Automatic Circuit Synthesis 

The topology of a circuit includes specifying the gross number of components in the 
circuit, the type of each component (e.g., a capacitor), and a netlist specifying where 
each lead of each component is to be connected. Sizing involves specifying the 
values (typically numerical) of each of the circuit’s components.  

The design process for analog electrical circuits begins with a high-level 
description of the circuit’s desired behavior and characteristics and includes creation 
of the topology and sizing of a satisfactory circuit.  

The field of design of analog and mixed analog/digital electrical circuits is 
especially challenging because (prior to genetic programming) there has been no 
previously known general technique for automatically creating the topology and 
sizing of an analog circuit from a high-level statement of the design goals of the 
circuit.  

Although considerable progress has been made in automating the synthesis of 
certain categories of purely digital circuits, the synthesis of analog circuits has not 
proved to be as amenable to automation. As O. Aaserud and I. Ring Nielsen (1995) 
observe,  

“Analog designers are few and far between. In contrast to digital design, most of 
the analog circuits are still handcrafted by the experts or so-called ‘zahs’ of analog 
design. The design process is characterized by a combination of experience and 
intuition and requires a thorough knowledge of the process characteristics and the 
detailed specifications of the actual product.” 

“Analog circuit design is known to be a knowledge-intensive, multiphase, iterative 
task, which usually stretches over a significant period of time and is performed by 



designers with a large portfolio of skills. It is therefore considered by many to be a 
form of art rather than a science.” 

We use a simple filter circuit to demonstrate the automatic synthesis of analog 
electrical circuits using genetic programming. A filter is a one-input, one-output 
circuit that receives a signal as its input and passes the frequency components of the 
incoming signal that lie in a specified range (called the passband) while suppressing 
the frequency components that lie in all other frequency ranges (the stopband). 
Specifically, the goal is to design a lowpass filter composed of capacitors and 
inductors that passes all frequencies below 1,000 Hertz (Hz) and suppresses all 
frequencies above 2,000 Hz. 

Genetic programming can be applied to the problem of synthesizing circuits if a 
mapping is established between the program trees (rooted, point-labeled trees with 
ordered branches) used in genetic programming and the labeled cyclic graphs 
germane to electrical circuits. The principles of developmental biology provide the 
motivation for mapping trees into circuits by means of a developmental process that 
begins with a simple embryo. For circuits, the initial circuit typically includes a test 
fixture consisting of certain fixed components (such as a source resistor, a load 
resistor, an input port, and an output port) as well as an embryo consisting of one or 
more modifiable wires. Until the modifiable wires are modified, the circuit does not 
produce interesting output. An electrical circuit is developed by progressively 
applying the functions in a circuit-constructing program tree to the modifiable wires 
of the embryo (and, during the developmental process, to succeeding modifiable 
wires and components). A single electrical circuit is created by executing the 
functions in an individual circuit-constructing program tree from the population. The 
functions are progressively applied in a developmental process to the embryo and its 
successors until all of the functions in the program tree are executed. That is, the 
functions in the circuit-constructing program tree progressively side-effect the 
embryo and its successors until a fully developed circuit eventually emerges. The 
functions are applied in a breadth-first order.  

The functions in the circuit-constructing program trees are divided into five 
categories:  

(1) topology-modifying functions that alter the topology of a developing circuit, 
(2) component-creating functions that insert components into a developing circuit,  
(3) development-controlling functions that control the development process by 

which the embryo and its successors become a fully developed circuit,  
(4) arithmetic-performing functions that appear in subtrees as argument(s) to the 

component-creating functions and specify the numerical value of the component, and  
(5) automatically defined functions that appear in the automatically defined 

functions and potentially enable certain substructures of the circuit to be reused (with 
parameterization). 

Before applying genetic programming to a problem of circuit design, seven major 
preparatory steps are required: (1) identify the embryonic circuit, (2) determine the 
architecture of the circuit-constructing program trees, (3) identify the primitive 
functions of the program trees, (4) identify the terminals of the program trees, (5) 
create the fitness measure, (6) choose control parameters for the run, and (7) 



determine the termination criterion and method of result designation. A detailed 
discussion concerning how to apply these seven preparatory steps to a particular 
problem of circuit synthesis (such as a lowpass filter) is found in Koza, Bennett, 
Andre, and Keane 1999 (chapter 25).  

4.1 Campbell 1917 Ladder Filter Patent 

The best circuit (Fig. 1) of generation 49 of one run of genetic programming (Koza, 
Bennett, Andre, and Keane 1996) on the problem of synthesizing a lowpass filter is a 
100% compliant circuit (i.e., it complies with all requirements for attenuation, 
passband ripple, and stopband ripple).  
 

 
Fig. 1. Evolved Campbell filter  

 
The evolved circuit is what is now called a cascade (ladder) of identical π sections 

and is shown and analyzed in Koza, Bennett, Andre, and Keane 1999 (chapter 25). 
The evolved circuit has the recognizable topology of the circuit for which George 
Campbell of American Telephone and Telegraph received U.S. patent 1,227,113 in 
1917. Claim 2 of Campbell’s patent covered,  

“An electric wave filter consisting of a connecting line of negligible attenuation 
composed of a plurality of sections, each section including a capacity element and an 
inductance element, one of said elements of each section being in series with the line 
and the other in shunt across the line, said capacity and inductance elements having 
precomputed values dependent upon the upper limiting frequency and the lower 
limiting frequency of a range of frequencies it is desired to transmit without 
attenuation, the values of said capacity and inductance elements being so 
proportioned that the structure transmits with practically negligible attenuation 
sinusoidal currents of all frequencies lying between said two limiting frequencies, 
while attenuating and approximately extinguishing currents of neighboring 
frequencies lying outside of said limiting frequencies.” 

In addition to possessing the topology of the Campbell filter, the numerical values 
of all the components in the evolved circuit closely approximate the numerical values 
specified in Campbell’s 1917 patent. But for the fact that this 1917 patent has 
expired, the evolved circuit would infringe on the Campbell patent.  

The legal criteria for obtaining a U.S. patent are that the proposed invention be 
"new” and “useful” and  

“... the differences between the subject matter sought to be patented and the prior 
art are such that the subject matter as a whole would [not] have been obvious at the 



time the invention was made to a person having ordinary skill in the art to which said 
subject matter pertains.” (35 United States Code 103a).  

Since filing for a patent entails the expenditure of a considerable amount of time 
and money, patents are generally sought, in the first place, only if an individual or 
business believes the inventions are likely to be useful in the real world and 
economically rewarding. Patents are only issued if an arm’s-length examiner is 
convinced that the proposed invention is novel, useful, and satisfies the statutory test 
for unobviousness.  

The fact that genetic programming rediscovered both the topology and sizing of 
an electrical circuit that was unobvious “to a person having ordinary skill in the art” 
establishes that this evolved result satisfies Arthur Samuel’s criterion (1983) for 
artificial intelligence and machine learning, namely 

“The aim [is] ... to get machines to exhibit behavior, which if done by humans, 
would be assumed to involve the use of intelligence.” 

4.2 Zobel 1925 “M-Derived Half Section” Patent 

Since the genetic programming is a probabilistic algorithm, different runs produce 
different results. In another run of this same problem of synthesizing a lowpass filter, 
a 100%-compliant circuit (Fig. 2) was evolved in generation 34.  
 

 
Fig. 2. Evolved Zobel filter 

 
This evolved circuit (presented in Koza, Bennett, Andre, and Keane 1999, chapter 

25) is equivalent to a cascade of three symmetric T-sections and an M-derived half 
section. Otto Zobel of American Telephone and Telegraph Company invented and 
received a patent for an “M-derived half section” used in conjunction with one or 
more “constant K” sections. Again, the numerical values of all the components in the 
evolved circuit closely approximate the numerical values specified in Zobel’s 1925 
patent.  

4.3 Cauer 1934–1936 Elliptic Filter Patents 

In yet another run of this same problem of synthesizing a lowpass filter, a 100%-
compliant circuit (Fig. 3) emerged in generation 31 (Koza, Bennett, Andre, and 
Keane 1999, chapter 27).  



This circuit has the recognizable elliptic topology that was invented and patented 
by Wilhelm Cauer in 1934, 1935, and 1936. The Cauer filter was a significant 
advance (both theoretically and commercially) over the earlier filter designs of 
Campbell, Zobel, Johnson, Butterworth, and Chebychev. For example, for one 
commercially important set of specifications for telephones, a fifth-order elliptic 
filter matches the behavior of a 17th-order Butterworth filter or an eighth-order 
Chebychev filter. The fifth-order elliptic filter has one less component than the 
eighth-order Chebychev filter. As Van Valkenburg 1982 relates in connection with 
the history of the elliptic filter:  

“Cauer first used his new theory in solving a filter problem for the German 
telephone industry. His new design achieved specifications with one less inductor 
than had ever been done before. The world first learned of the Cauer method not 
through scholarly publication but through a patent disclosure, which eventually 
reached the Bell Laboratories. Legend has it that the entire Mathematics Department 
of Bell Laboratories spent the next two weeks at the New York Public library 
studying elliptic functions. Cauer had studied mathematics under Hilbert at 
Goettingen, and so elliptic functions and their applications were familiar to him.”  

Genetic programming did not, of course, study mathematics under Hilbert or 
anybody else. Instead, the elliptic topology emerged from a run of genetic 
programming as a natural consequence of the problem’s fitness measure and natural 
selection. The elliptic topology did not emerge as a consequence of priming the run 
with domain knowledge about elliptic functions or filters or electrical circuitry. 
Genetic programming opportunistically reinvented the elliptic topology because 
necessity (fitness) is the mother of invention.  

 

 
Fig. 3. Evolved Cauer (elliptic) filter topology 

4.4 Other Circuits 

In addition, genetic programming has also been successfully used to synthesize the 
design for many other types of filters, including highpass, bandpass, bandstop, 
crossover, comb, and asymmetric filters (Koza, Bennett, Andre, and Keane 1999; 
Koza, Bennett, Andre, Keane, and Brave 1999). Also, genetic programming has been 
applied to the problem of automatic synthesis of both the topology and sizing of 



many analog electrical circuits composed of transistors. These include amplifiers 
(evolved using multiobjective fitness measures that consider gain, distortion, 
bandwidth, parts count, power consumption, and power supply rejection ratio), 
computational circuits (square root, squaring, cube root, cubing, logarithmic, and 
Gaussian), time-optimal controller circuits, source identification circuits, 
temperature-sensing circuits, and voltage reference circuits (Koza, Bennett, Andre, 
and Keane 1999; Koza, Bennett, Andre, Keane, and Brave 1999).  

The amplifiers, computational circuits, electronic thermometers, and voltage 
reference circuits were all covered by one or more patents when they were first 
invented. Many of these circuit include previously patented subcircuits, such as 
Darlington emitter-follower sections (Darlington 1953).  

5 Topology, Sizing, Placement, and Routing of Circuits 

Circuit placement involves the assignment of each of the circuit’s components to a 
particular physical location on a printed circuit board or silicon wafer. Routing 
involves the assignment of a particular physical location to the wires between the 
leads of the circuit’s components.  

Genetic programming can simultaneously create a circuit’s topology and sizing 
along with the placement and routing of all components as part of an integrated 
overall design process (Koza and Bennett 1999). It can do this while also optimizing 
additional other considerations (such as minimizing the circuit’s area).  

This is accomplished by using an initial circuit that contains information about the 
geographic (physical) location of components and wires and using component-
inserting and topology-modifying operations that appropriately adjust the geographic 
(physical) location of components and associated wires. For example, the initial 
circuit in the developmental process complies with the requirements that wires must 
not cross on a particular layer of a silicon chip or on a particular side of a printed 
circuit board, that there must be a wire connecting 100% of the leads of all the 
circuit’s components, and that minimum clearance distances between wires, between 
components, and between wires and components must be maintained. Similarly, each 
of the circuit-constructing functions used in preserves compliance with these 
requirements. Thus, every fully laid-out circuit complies with these requirements.  

For example, in one run, a lowpass filter circuit was first evolved in generation 25 
for a discrete-component printed circuit board. The topology and component sizing 
for this circuit complied with all requirements (for passband ripple, stopband ripple, 
and attenuation); however, this circuit contained five capacitors and 11 inductors and 
occupied an area of 1775.2. Later, a 100%-compliant lowpass filter was created in 
generation 30 containing 10 inductors and five capacitors occupying an area of 
950.3. Then, in generation 138, a physically compact lowpass filter circuit (Fig. 4) 
containing four inductors and four capacitors and occupying an area of only 359.4 
was created. As can be seen, this circuit has the Campbell topology (Campbell 1917).  
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Fig. 4. Topology, sizing, placement, and routing of a lowpass filter for a printed 
circuit board 

6 Automatic Synthesis of Controllers 

The design of controllers is another area where there has been (prior to genetic 
programming) no previously known general technique for automatically creating the 
topology and tuning for a controller from a high-level statement of the design goals 
for the controller.  

The purpose of a controller is to force, in a meritorious way, the actual response of 
a system (conventionally called the plant) to match a desired response (called the 
reference signal) (Astrom and Hagglund 1995; Boyd and Barratt 1991; Dorf and 
Bishop 1998).  

In the PID type of controller, the controller’s output is the sum of proportional (P), 
integrative (I), and derivative (D) terms based on the difference between the plant’s 
output and the reference signal. The PID controller was patented in 1939 by Albert 
Callender and Allan Stevenson of Imperial Chemical Limited of Northwich, 
England.  

Claim 1 of Callender and Stevenson (1939) covers what is now called the PI 
controller,  

“A system for the automatic control of a variable characteristic comprising means 
proportionally responsive to deviations of the characteristic from a desired value, 
compensating means for adjusting the value of the characteristic, and electrical 
means associated with and actuated by responsive variations in said responsive 
means, for operating the compensating means to correct such deviations in 
conformity with the sum of the extent of the deviation and the summation of the 
deviation.”  

Claim 3 of Callender and Stevenson (1939) covers what is now called the PID 
controller, 

“A system as set forth in claim 1 in which said operation is additionally controlled 
in conformity with the rate of such deviation.” 

The vast majority of automatic controllers used by industry are of the PID type. 
As Astrom and Hagglund (1995) observe,  



“Several studies … indicate the state of the art of industrial practice of control. 
The Japan Electric Measuring Instrument Manufacturing Association conducted a 
survey of the state of process control systems in 1989 … According to the survey, 
more than 90% of the control loops were of the PID type.” 

However, it is generally recognized by leading practitioners in the field of control 
that PID controllers are not ideal and that there are significant limitations on 
analytical techniques in designing controllers. As Boyd and Barratt stated in Linear 
Controller Design: Limits of Performance (Boyd and Barratt 1991),  

“The challenge for controller design is to productively use the enormous 
computing power available. Many current methods of computer-aided controller 
design simply automate procedures developed in the 1930’s through the 1950’s …”  

There is no preexisting general-purpose analytic method for automatically 
creating a controller for arbitrary linear and non-linear plants that can simultaneously 
optimize prespecified performance metrics (such as minimizing the time required to 
bring the plant output to the desired value as measured by, say, the integral of the 
time-weighted absolute error), satisfy time-domain constraints (involving, say, 
overshoot and disturbance rejection), satisfy frequency domain constraints (e.g., 
bandwidth), and satisfy additional constraints, such as constraints on the magnitude 
of the control variable and the plant’s internal state variables.  

6.1 Robust Controller for a Two-lag Plant 

We employ a problem involving control of a two-lag plant to illustrate the automatic 
synthesis of controllers by means of genetic programming. The problem here 
(described by Dorf and Bishop 1998, page 707) is to create both the topology and 
parameter values for a controller for a two-lag plant such that plant output reaches 
the level of the reference signal so as to minimize the integral of the time-weighted 
absolute error (ITAE), such that the overshoot in response to a step input is less than 
2%, and such that the controller is robust in the face of significant variation in the 
plant’s internal gain, K, and the plant’s time constant, τ.  

Genetic programming routinely creates PI and PID controllers infringing on the 
1942 Callender and Stevenson patent during intermediate generations of runs of 
genetic programming on controller problems. However, the PID controller is not the 
best controller for this (and many) problems.  

Fig. 5 shows the block diagram for the best-of-run controller evolved on 
generation 32 of one run of the two-lag plant problem. In this figure, R(s) is the 
reference signal; Y(s) is the plant output; and U(s) is the controller’s output (control 
variable).  



s0837.01+

s168.01

1

+
1−

s156.01
1

+
1−

R(s)

Y(s)
s515.01+

8.15 s0385.01+

U(s)

1
s

1− 918.8

 
 

Fig. 5. Best-of-run genetically evolved controller 
The controller evolved by genetic programming differs from a conventional PID 

controller in that the genetically evolved controller employs a second-derivative 
processing block. As will be seen, this evolved controller is 2.42 times better than the 
Dorf and Bishop (1998) controller as measured by the criterion used by Dorf and 
Bishop (namely, the integral of the time-weighted absolute error). In addition, this 
evolved controller has only 56% of the rise time in response to the reference input, 
has only 32% of the settling time, and is 8.97 times better in terms of suppressing the 
effects of disturbance at the plant input.  

After applying standard manipulations to the block diagram of this evolved 
controller, the transfer function for the best-of-run controller from generation 32 for 
the two-lag plant can be expressed as a transfer function for a pre-filter and a transfer 
function for a compensator. The transfer function for the pre-filter, Gp32(s), for the 
best-of-run individual from generation 32 is 
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The s3 term (in conjunction with the s in the denominator) indicates a second 
derivative. Thus, the compensator consists of a second derivative in addition to 
proportional, integrative, and derivative functions. Harry Jones of The Brown 
Instrument Company of Philadelphia patented this same kind of controller topology 
in 1942.  

Claim 38 of the Jones 1942 patent (Jones 1942) states,  
“In a control system, an electrical network, means to adjust said network in 

response to changes in a variable condition to be controlled, control means 
responsive to network adjustments to control said condition, reset means including a 
reactance in said network adapted following an adjustment of said network by said 
first means to initiate an additional network adjustment in the same sense, and rate 
control means included in said network adapted to control the effect of the first 



mentioned adjustment in accordance with the second or higher derivative of the 
magnitude of the condition with respect to time.” 

Note that the user of genetic programming did not preordain, prior to the run (as 
part of the preparatory steps for genetic programming), that a second derivative 
should be used in the controller (or, for that matter, that a P, I, or D block should be 
used). The evolutionary process discovered that these elements were helpful in 
producing a good controller for this problem. That is, necessity was the mother of 
invention. Similarly, the user did not preordain any particular topological 
arrangement of proportional, integrative, derivative, second derivative, or other 
functions within the automatically created controller. Instead, genetic programming 
automatically created a robust controller for the given plant without the benefit of 
user-supplied information concerning the total number of processing blocks to be 
employed in the controller, the type of each processing block, the topological 
interconnections between the blocks, the values of parameters for the blocks, or the 
existence of internal feedback (none in this instance) within the controller.  

7 Conclusion 

This chapter has demonstrated that genetic programming can produce human-
competitive designs from complex structures. The results in this chapter (and the 
other recently produced human-competitive results in Table 1) suggest that genetic 
programming is on the threshold of routinely producing such human-competitive 
results. We expect that the rapidly decreasing cost of computing power will enable 
genetic programming to deliver additional human-competitive results on increasingly 
difficult problems and, in particular, that genetic programming will be routinely used 
as an “invention machine” for producing patentable new inventions.  
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