
Automatic Design of Both Topology and Tuning of a Common Parameterized
Controller for Two Families of Plants using Genetic Programming

Jessen Yu

Genetic Programming Inc., Los Altos, California
jyu@cs.stanford.edu

Martin A. Keane

Econometrics Inc., Chicago, Illinois
makeane@ix.netcom.com

John R. Koza

Stanford University, Stanford, California
koza@stanford.edu

ABSTRACT
This paper demonstrates that a technique of
evolutionary computation can be used to
automatically create the design for both the
topology and parameter values (tuning) for a
common controller (containing various
parameters representing the overall
characteristics of the plant) for two families
of plants. The automatically designed
controller is created by means of genetic
programming using a fitness measure that
attempts to optimize step response and
disturbance rejection while simultaneously
imposing constraints on maximum
sensitivity and sensor noise attenuation. The
automatically designed controller
outperforms the controller designed with
conventional techniques. In particular, the
automatically designed controller is superior
to the Astrom and Hagglund controller for
all plants of both families for the integral of
the time-weighted absolute error (ITAE) for
a step input, the ITAE for disturbance
rejection, and maximum sensitivity.
Averaged over all plants of both families, the
ITAE for the step input for the automatically
designed controller is only 58% of the value
for the conventional controller; the ITAE for
disturbance rejection is 91% of the value for
the conventional controller; and the
maximum sensitivity, Ms. for the
automatically designed controller is only
85% of the value for the conventional
controller. The automatically designed
controller is "general" in the sense that it
contains free variables and therefore
provides a solution to an entire category of
problems (i.e., all the plants in the two
families)  not merely a single instance of
the problem (i.e., a particular single plant).

1 Introduction
Genetic programming has recently been used to
automatically create the design for both the topology
and parameter values (tuning) for a controller for a
particular two-lag plant and a particular three-lag plant
from a high-level statement of the controller's desired
behavior and characteristics (Koza, Keane, Yu,
Bennett, and Mydlowec 2000). However, each of these
two (different) automatically designed controllers
applied only to one particular plant. Moreover, both
plants belonged to the same family (the n-lag plants).

The question arises as to whether it is possible to
evolve a single "general" parameterized controller
(containing parameters representing the overall
characteristics of the plant) that can perform well for an
entire family of plants (say, the n-lag plants) and also
one or more additional families of plants.

In their recent influential book, Astrom and
Hagglund (1995) identified four families of plants "that
are representative for the dynamics of typical industrial
processes." Astrom and Hagglund (1995) then develop
a common method for designing controllers and
demonstrate improved performance for their common
method over the Ziegler-Nichols rules (Ziegler and
Nichols 1942) on all the plants in all four of their
families of plants.

One of the families of plants in Astrom and
Hagglund 1995 consists of the n-lag plants represented
by the transfer functions of the form

ns
sG

)1(
1)(
+

= (1)

where n = 3, 4, and 8.
Another family consists of plants represented by the

transfer functions of the form

)1)(1)(1)(1(
1)(32 ssss

sG
ααα ++++

=

(2)
where α = 0.2, 0.5, and 0.7.

The methods developed by Astrom and Hagglund
use pairs of parameters representing the overall
characteristics of a plant. These parameters are not, of
course, a complete representation of the behavior of the
plant; however, they offer the practical advantage of
usually being obtainable for a given plant by means of
relatively straight-forward testing. In one version of
their method, Astrom and Hagglund use two frequency
domain parameters. They are the ultimate gain, Ku (the
minimum value of the gain that must be introduced into
the feedback path to cause a system to oscillate) and the
ultimate period, Tu (the period of this lowest frequency
oscillation). In another version of their method, Astrom
and Hagglund use the time constant, Tr, and the dead
time, L. Astrom and Hagglund describe a procedure for
estimating these two parameters from the plant's
response to a step input. These two parameters are, in
one instance, obtained by approximating the plant with
a transfer function of the form

2)1(r

sL

sT
e
+

−

This paper shows that genetic programming can be
used to automatically create the design for both the
topology and tuning for a common parameterized
controller for all plants belonging to the two families of
plants described by equations (1) and (2). The
automatically designed controller is created using a
fitness measure that attempts to optimize step response
and disturbance rejection while simultaneously
imposing constraints on maximum sensitivity and
sensor noise attenuation. The automatically designed
controller outperforms the controller designed using the
techniques of Astrom and Hagglund 1995.

Section 2 discusses how genetic programming can
be used to automatically synthesize the design for both
the topology and tuning of controllers. Section 3
itemizes the preparatory steps necessary to apply
genetic programming to the above two families of
plants. Section 4 presents the results.

2 Genetic Programming and Control
Genetic programming is an automatic technique for
generating computer programs to solve, or
approximately solve, problems. In particular, genetic
programming is capable of automatically creating the
design of complex structures. Genetic programming
approaches a program synthesis problem or a design
problem in terms of "what needs to be done"  as
opposed to "how to do it". Genetic programming
(Koza 1992; Koza and Rice 1992; Koza 1994a, 1994b)
is an extension of the genetic algorithm (Holland 1975).

Genetic programming starts with a primordial ooze
of thousands of randomly created computer programs
and uses the Darwinian principle of natural selection,

recombination (crossover), mutation, gene duplication
and deletion to breed a population of programs over a
series of generations.

Genetic programming breeds computer programs to
solve problems by executing the following three steps:

(1) Generate an initial population of compositions
(typically random) of the problem's functions and
terminals.
(2) Iteratively perform the following substeps (a
generation) on the population of programs until the
termination criterion has been satisfied:

(A) Execute each program in the population and
assign it a value using the fitness measure.
(B) Create a new population of programs by
applying the following operations. The
operations are applied to program(s) selected
from the population with a probability based on
fitness (with reselection allowed).

(i) Reproduction: Copy the selected program
to the new population.
(ii) Crossover: Create a new offspring
program for the new population by
recombining randomly chosen parts of two
selected programs.
(iii) Mutation: Create one new offspring
program for the new population by randomly
mutating a randomly chosen part of the
selected program.
(iv) Architecture-altering operations: Select
an architecture-altering operation from the
repertoire of such operations and create one
new offspring program for the new
population by applying the selected
operation to the selected program.

(3) Designate the individual program that is
identified by result designation (e.g., the best-so-far
individual) as the result of the run of genetic
programming. This result may be a solution (or an
approximate solution) to the problem.
Genetic programming is capable of evolving

reusable, parametrized, hierarchically-called
automatically defined functions (subroutines).
Architecture-altering operations (Koza, Bennett, Andre,
and Keane 1999; Koza, Bennett, Andre, Keane, and
Brave 1999) enable genetic programming to
automatically determine the number of automatically
defined functions, the number of arguments that each
possesses, and the nature of the hierarchical references,
if any, among such automatically defined functions.

Genetic programming is capable of automatically
synthesizing the design of both the topology and sizing
for a wide variety of analog electrical circuits from a
high-level statement of the circuit's desired behavior
and characteristics (Koza, Bennett, Andre, and Keane
1999). Nine of the automatically designed analog
circuits in Koza, Bennett, Andre, and Keane 1999 were

previously patented. Five of the automatically designed
circuits infringe on previously issued patents. Genetic
programming often creates novel designs because it is a
probabilistic process that is not encumbered by the
preconceptions that often channel human thinking
down familiar paths. The fact that genetic programming
can design both the topology and sizing of circuits
suggests that it might also be capable of designing other
types of complex topological structures containing
parameterized components, such as controllers.

In a closed-loop continuous-time feedback system
consisting of a plant and its controller, the output of the
controller is input to the plant and the output of the
plant is, in turn, input to the controller.

Both genetic algorithms and genetic programming
have been previously used for synthesizing controllers
having mutually interacting continuous-time variables
and continuous-time signal processing blocks (Koza,
Keane, Yu, Mydlowec, and Bennett 2000; Man, Tang,
Kwong, and Halang; 1997, 1999; Crawford, Cheng,
and Menon 1999; Dewell and Menon 1999; Menon,
Yousefpor; Lam, and Steinberg 1995; Sweriduk,
Menon, and Steinberg 1998, 1999).

550

552

+15.5

540

542

+1000.0

530

532

+214.0

558

548

s

570

1/s

560

568

578

538

524

522

526

580

+

+

+

Control
Variable

Plant

592

Plant
Output

512
510

-

+

Reference
Signal

596

Controller

520

508 590 594

500

Figure 1 Block diagram of a plant and a PID controller
composed of proportional, integrative, and derivative
blocks. The plant's output is fed back to the controller
where it is compared to the reference signal.

Figure 1 is a block diagram for an illustrative
control system containing a controller and a plant. The
directed lines in a block diagram represent time-domain
signals while the blocks represent signal processing
functions that operate in the time domain. The output of
the controller 500 is a control variable 590 which is, in
turn, the input to the plant 592. The plant has one
output (plant response) 594. The plant response is fed
back (externally as signal 596) and becomes one of the
controller's two inputs. The controller's second input is
the reference signal 508. The fed-back plant response
596 and the externally supplied reference signal 508 are
compared (by subtraction here). Notice that the takeoff
point 520 of figure 1 provides a way to disseminate a
particular result (of the subtraction 510) to three places
in the block diagram (522, 524, and 526).

The output (i.e., control variable 590) of this
controller is the sum of a proportional (P) term (the
gain block 530 with an amplification factor of 214.0),
an integrating (I) term (the integrator 560 preceded by
the gain block 540 with an amplification factor of
1,000.0), and a differentiating (D) term (the derivative
block 570 preceded by the gain block 550 with an
amplification factor of 15.5). This type of controller is
called a PID controller and was invented and patented
in 1939 by Albert Callender and Allan Stevenson of
Imperial Chemical Limited of Northwich, England.

In this paper, a computer program (i.e., program
tree, LISP symbolic expression) will represent the
block diagram of a controller. The block diagram
consists of signal processing functions linked by
directed lines representing the flow of information.
There is no "order of evaluation" of the functions and
terminals of a program tree representing a controller.
Instead, the signal processing blocks of the controller
and the to-be-controlled plant interact with one another
other as part of a closed system in the manner specified
by the topology of the block diagram.

PROGN 700

DEFUN 702 VALUES 790

+ 780VALUES 712LIST

706

ADF0

704

- 710

REF

708

PLANT
OUTPUT

794

+214.0

732

ADF0

734

GAIN 730

+1000.0

742

ADF0

744

GAIN 740

1/s 760

+15.5

752

ADF0

754

750

770

GAIN

s

Figure 2 Program tree representation of the PID
controller of figure 1. The automatically defined function
ADF0 (left) subtracts the plant output from the reference
signal and makes the difference available to three points
in the result-producing branch (right).

Figure 2 presents the block diagram for the PID
controller of figure 1 as a program tree. The internal
points of this program tree represent the signal
processing blocks contained in the block diagram of
figure 1 (i.e., derivative, integrator, gain, subtraction,
addition). The external points (leaves) of this program
tree represent numerical constants and time-domain
signals, such as the reference signal and plant output.
Notice that automatically defined function (subroutine)
ADF0 in the left branch produces a time-domain signal
that equals the result of subtracting the plant output
from the reference signal. The three references to ADF0
in the result-producing (right) branch of this program
tree disseminate the result of subtracting the plant
output from the reference signal and correspond to the
takeoff point 520 of figure 1.

In the style of ordinary computer programming, a
reference to a subroutine ADF0 from inside the
function definition for itself would be considered to be
a recursive reference. However, in the context of
applying genetic programming to control systems, a
subroutine that references itself corresponds to a loop

in the block diagram of the controller (i.e., internal
feedback inside the controller).

3 Preparatory Steps
Six major preparatory steps are required before
applying genetic programming to a problem involving
the synthesis of a controller: (1) determine the
architecture of the program trees, (2) identify the
terminals, (3) identify the functions, (4) define the
fitness measure, (5) choose control parameters for the
run, and (6) choose the termination criterion and
method of result designation.
3.1 Program Architecture
Since the to-be-synthesized controller has one output
(control variable), each program tree in the population
has one result-producing branch. Each program tree in
the initial random population (generation 0) has no
automatically defined functions. However, after
generation 0, the architecture-altering operations may
insert (and delete) automatically defined functions.
Automatically defined functions may be used for
takeoff points, internal feedback within the controller,
and reuse of portions of the block diagram. The
permitted maximum of five automatically defined
functions is more than sufficient for this problem.
3.2 Terminal Set
The numerical parameter value for each signal
processing block possessing a parameter is established
by an arithmetic-performing subtree containing
perturbable numerical terminals, arithmetic operations,
and the four parameters for representing the overall
characteristics of a plant. Arithmetic-performing
subtrees may appear in both result-producing branches
and any automatically defined functions that may be
created during the run by the architecture-altering
operations. The value returned by an entire arithmetic-
performing subtree is interpreted as a component value
lying in a range of (positive values) between 10-3 and
103. The terminal set for the arithmetic-performing
subtrees is
Taps = {ℜ, KU, TU, L, TR}.
Here ℜ denotes a perturbable numerical value. In the
initial random generation (generation 0) of a run, each
perturbable numerical value is set, individually and
separately, to a random value in a chosen range (from -
3.0 and +3.0 here). In later generations, a perturbable
numerical value may be changed by adding or
subtracting a relatively small number determined
probabilistically by a Gaussian probability distribution.
The standard deviation of the Gaussian distribution is
1.0 here (i.e., one order of magnitude after the value
returned by an entire arithmetic-performing subtree is
interpreted). The perturbations are implemented by a
genetic operation for mutating the perturbable

numerical values. The perturbable numerical values are
coded by 30 bits in our system. A constrained syntactic
structure maintains one function and terminal set for the
arithmetic-performing subtrees and a different function
and terminal set (below) for all other parts of the
program tree.

The remaining terminals are time-domain signals.
The terminal set, T, for the result-producing branch and
any automatically defined functions (except the
arithmetic-performing subtrees described above) is
T = {REFERENCE_SIGNAL,

CONTROLLER_OUTPUT, PLANT_OUTPUT}.
Space does not permit a detailed description of the

various terminals used herein (although the meaning of
the above terminals should be clear from their names).
See Koza, Keane, Yu, Bennett, and Mydlowec 2000.
3.3 Function Set
The function set, Faps, for the arithmetic-performing
subtrees is
Faps = {ADD_NUMERIC, SUB_NUMERIC,

MUL_NUMERIC, DIV_NUMERIC, REXP,
RLOG}.

The two-argument DIV_NUMERIC function divides
the first argument by the second argument, except that
the quotient is never allowed to exceed 105. The one-
argument REXP function is the exponential function
and the one-argument RLOG function is the natural
logarithm of the absolute value.

The function set, F, for the result-producing branch
and any automatically defined functions (except the
arithmetic-performing subtrees described above)
consists of continuous-time signal processing functions
and automatically defined functions.
F = {GAIN, INVERTER, LEAD, LAG, LAG2,

DIFFERENTIAL_INPUT_INTEGRATOR,
DIFFERENTIATOR, ADD_SIGNAL,
SUB_SIGNAL, ADD_3_SIGNAL,
MUL_SIGNAL, DIV_SIGNAL, ULIMIT,
ADF0, ADF1, ADF2, ADF3, ADF4}.

The one-argument ULIMIT function limits a signal
by constraining it between an upper and lower bound.
This function returns the value of its argument (the
incoming signal) when its argument lies between -1.0
and +1.0. If the argument is greater than +1.0, the
function returns +1.0. If the argument is less than -1.0,
the function returns -1.0. ADF0, …, ADF4 denote
automatically defined functions added during the run
by the architecture-altering operations. The definitions
of the other functions above are suggested by their
names. See Koza, Keane, Yu, Bennett, and Mydlowec
2000.
3.4 Fitness Measure
Genetic programming is a probabilistic algorithm that
searches the space of compositions of the available
functions and terminals under the guidance of a fitness

measure. The fitness measure is a mathematical
implementation of the problem's high-level
requirements. It is couched in terms of “what needs to
be done”  not “how to do it.” The fitness measure for
most problems of controller design is multi-objective in
the sense that there are several different (usually
conflicting) requirements for the controller.

The fitness of each individual in the population is
determined by executing the program tree (i.e., the
result-producing branch plus any automatically defined
functions that may have been created during the run by
the architecture-altering operations). The execution of
the program tree produces an interconnected sequence
of signal processing blocks  that is, a block diagram
for the individual controller. The controller is
embedded into a framework containing the (fixed) plant
and the (fixed) external feedback loop. A SPICE netlist
is then constructed to represent the block diagram of
the controller, the (fixed) plant, and the (fixed) external
feedback loop. This SPICE netlist is wrapped inside an
appropriate set of SPICE commands to carry out
various SPICE analyses in the time domain (described
below). We also provide SPICE with subcircuit
definitions to implement all the signal processing
functions in the function set (described above) and all
the signal processing functions necessary to represent
the plant. The controller is then simulated using our
modified version of the original 217,000-line SPICE3
simulator (Quarles, Newton, Pederson, and
Sangiovanni-Vincentelli 1994). Our modified version
of SPICE is run as a submodule within our genetic
programming system. The SPICE simulator returns
tabular output (representing the plant output in the time
domain). An interface communicates this information
to our genetic programming code. See Koza, Keane,
Yu, Bennett, and Mydlowec 2000 for details.

The fitness of each controller in the population is
measured by means of 48 separate invocations of the
SPICE simulator. This 48-part fitness measure attempts
to optimize step response and disturbance rejection
while simultaneously imposing constraints on
maximum sensitivity and sensor noise attenuation. The
fitness of an individual controller is the sum of the
detrimental contributions of these 48 elements of the
fitness measure. The smaller the sum, the better.
 Table 1 Six combinations
 Reference signal Disturbance signal
 1.0 1.0
 10-3 10-3
 -10-6 10-6
 1.0 -0.6
 -1.0 0.0
 0.0 1.0

The first 36 elements of this 48-part fitness measure
are time-domain-based elements that together represent
the six plants from the two families (i.e., n = 3, 4, and 8

and α = 0.2, 0.5, and 0.7), in conjunction with six
choices of values for the height of the reference signal
and disturbance signal (shown in table 1) that sample a
range of values. The reference signal is step function
that rises from 0 at time t = 0 to the specified height at t
= 1 millisecond. The disturbance signal is a step
function that rises from 0 at time t = 10Tu to the
specified height at t = 10Tu + 1 millisecond. The
disturbance signal is added to the controller's output.

For each of these first 36 elements of the 48-part
fitness measure, a transient analysis is performed in the
time domain using the SPICE simulator. e(t) is the
difference (error) at time t between the plant output and
the reference signal. The contribution to fitness for each
of these 36 elements is based on the sum of two
integrals of time-weighted absolute error (ITAE). The
first term of the integral accounts for the controller's
step response while the second term accounts for
disturbance rejection.

22

20

10

10

0
)()10()(

u

u

u

u

u

T

T

Tt
u

T

T

t
CdtteTtBdttet ∫ −

+
∫

== .

The factor B in the first term of the integral
multiplies each value of e(t) by the reciprocal of the
amplitude of the reference signal (so that all reference
signals are equally influential). The factor C in the
second term of the integral multiplies value of e(t) by
the reciprocal of the amplitude of the disturbance
signals. When the amplitude of either the reference
signal or the disturbance signal is zero, the appropriate
factor (B or C) is set to zero. The ITAE component of
fitness is such that, all other things being equal,
changing the time scale by a factor of F changes the
ITAE by F2. The division of the integral by Tu

2 is an
attempt to eliminate this artifact of the time scale and
equalize the influence of each of the plants in the
overall fitness measure. For these 36 elements of the
fitness measure, the contribution to fitness is multiplied
by 20 if the element is greater than for the Astrom and
Hagglund (1995).

The 37th through 42nd elements of the 48-part fitness
measure are frequency-domain-based elements that
measure stability margin. Figure 3 presents a model for
the entire system containing the given plant and the to-
be-evolved controller. In this figure, R(s) is the
reference signal; Y(s) is the plant output; and U(s) is the
controller's output (control variable). Disturbance D(s)
may be added to the controller's output U(s). Sensor
noise N(s) may be added to the plant's output Y(s)
yielding Q(s). Here N(s) is an AC signal. For each of
these six elements of the fitness measure, an AC sweep
is performed using the SPICE simulator from
1/(1000Tu) to 1000/Tu while holding the reference
signal R(s) and the disturbance signal D(s) at zero. The
maximum sensitivity, Ms, is a measure of the stability
margin. It is desirable to minimize the maximum

sensitivity (and therefore maximize the stability
margin). The quantity 1/Ms is the minimum distance
between the Nyquist plot and the point (-1,0) and is the
stability margin incorporating both gain and phase
margin. The maximum sensitivity is the maximum
amplitude of Q(s). The contribution to fitness is 0 if Ms
< 1.5; 2(Ms - 1.5) for 1.5 ≤ Ms ≤ 2.0; and 20(Ms - 2.0) +
1 for Ms > 2.0. For these six elements of the fitness
measure (as well as the six elements below), the
contribution to fitness is multiplied by 10 if the element
is greater than for the Astrom and Hagglund controller.

R(s)
Y(s)

+
Controller Plant

U(s)

D(s)

N(s)

+

+
+

Q(s)

Figure 3 Overall model.

The 43rd through 48th elements of this 48-part
fitness measure are frequency-domain-based elements
measuring the sensor noise attenuation. Achieving
favorable sensor noise attenuation is often in direct
conflict with the goal of achieving a rapid response to
setpoint changes and rejection of plant disturbances.
For each of these six elements of the fitness measure,
an AC sweep is performed using the SPICE simulator
from 10/Tu to 1000/Tu while holding the reference
signal R(s) and the disturbance signal, D(s) at zero. The
attenuation of the sensor noise is measured at plant
output at Y(s). Amin is the minimum attenuation in
decibels within this frequency range. It is desirable to
maximize the minimum attenuation. The contribution to
fitness for sensor noise attenuation is 0 if Amin > 40 dB;
(40 - Amin)/10 if 20 dB ≤ Amin ≤ 40 dB; and 2 + (20 -
Amin) if Amin < 20 dB.

The SPICE simulator cannot simulate many of the
controllers that are randomly created during a run of
genetic programming. A controller that cannot be
simulated by SPICE is assigned a high penalty value of
fitness (108).
3.5 Control Parameters
The population size, M, was 100,000. A (generous)
maximum size of 150 points (for functions and
terminals) was established for each result-producing
branch and a (generous) maximum size of 100 points
was established for each automatically defined
function. The percentages of the genetic operations for
each generation are 46% one-offspring crossover on
internal points of the program tree other than numerical
constant terminals, 9% one-offspring crossover on
points of the program tree other than numerical
constant terminals, 9% one-offspring crossover on
numerical constant terminals, 1% mutation on points of

the program tree other than numerical constant
terminals, 20% mutation on numerical constant
terminals, 9% reproduction, 2% subroutine creation,
2% subroutine duplication, and 2% subroutine deletion.
The other parameters are the same default values that
we have used on many other problems (Koza, Bennett,
Andre, Keane 1999).
3.6 Termination
The run was manually monitored and manually
terminated when the fitness of many successive best-of-
generation individuals appeared to have reached a
plateau. The best-so-far individual was harvested and
designated as the result of the run.
3.7 Parallel Implementation
This problem was run on a home-built Beowulf-style
(Sterling, Salmon, Becker, and Savarese 1999; Bennett,
Koza, Shipman, and Stiffelman 1999) parallel cluster
computer system consisting of 1,000 350 MHz Pentium
II processors (each accompanied by 64 megabytes of
RAM). The system has a 350 MHz Pentium II
computer as host. The processing nodes are connected
with a 100 megabit-per-second Ethernet. The
processing nodes and the host use the Linux operating
system. The distributed genetic algorithm with
unsynchronized generations and semi-isolated
subpopulations was used with a subpopulation size of
Q = 100 at each of D = 1,000 demes. As each processor
(asynchronously) completes a generation, four
boatloads of emigrants from each subpopulation are
dispatched to each of the four toroidally adjacent
processors. The 1,000 processors are hierarchically
organized. There are 5 × 5 = 25 high-level groups (each
containing 40 processors). If the adjacent node belongs
to a different group, the migration rate is 2% and
emigrants are selected based on fitness. If the adjacent
node belongs to the same group, the migration rate is
5% (10% if in the same physical box) and emigrants are
selected randomly.

4 Results
The initial random generation is a blind random search
of the search space of the problem. The best-of-
generation circuit from generation 0 has a fitness of
14,530.8.

The best-of-run controller (figure 4) appears in
generation 217. This genetically evolved controller has
an overall fitness of 14.996. The program tree has one
result-producing branch with 10 points and five
automatically defined functions (with 22, 38, 3, 19, and
3 points, respectively). The result-producing branch
refers to ADF0. Also, ADF0 hierarchically refers to
ADF1. The other three automatically defined functions
are not referenced. Note that the controller's output is
fed back internally into the controller.

Table 2 presents the control signal, U(s), for the
best-of-run controller from generation 217. Note that
all four parameters (Ku, Tu, Tr, and L) appear.

When simplified, it can be seen that the best-of-run
controller from generation 217 is a PID controller
whose three coefficients are as shown in table 3.

Reference
Signal

Control
Variable

Plant
Output

+

-

+

-

()LKu 334419.1ln + +

-

()ur KT
uu eKK −+ln

+

+

()uKln sTr+1 ()uKln

+

+
sTu+1

1+
+

+

()uKln sTr+1

Figure 4 Block diagram of best-of-run controller from generation 217.

Table 2 Control signal, U(s), for the best-of-run controller from generation 217
()() () () ()() ()() ()()

sT
LKeKKsTKsTsT

sU
u

u
KT

uuruur
ur 1334419.1ln1lnln1ln11

)(
2 −+++++++

=
−

Table 3 Three coefficients of PID controller equivalent to the best-of-run controller from generation 217
() ()()()

u

uruu

T
KTTKK ln1ln ++

=

() rud TKK ln=

() ()() () ()() ()()
u

u
KT

uuu
i T

LKeKKKK
ur 133419.1ln1lnlnln1ln −+++++

=
−

Table 4 Comparison of characteristics of the controller and the Astrom and Hagglund controller for all six
plants
Plant Plant Genetically evolved Controller Astrom and Hagglund

Controller
 ITAE

Step
ITAE
Disturb

Ms Amin ITAE
Step

ITAE
Disturb

Ms Amin

1
3)1(

1
s+

1.93 1.15 1.66 41.26 2.75 1.28 2.11 43

2
4)1(

1
s+

4.60 6.64 1.80 54.17 8.5 7.6 2.08 58

3
8)1(

1
s+

27.43 74.20 1.69 85.8 49.7 78 1.87 90

4

()()()ssss 32 2.012.012.01)1(
1

++++

0.037 0.0055 1.59 35.23 0.051 0.006 1.9 40

5

()()()ssss 32 5.015.015.01)1(
1

++++

0.436 0.498 1.72 47.5 0.945 0.522 2.07 50

6

()()()ssss 32 7.017.017.01)1(
1

++++

1.40 1.99 1.77 52.2 2.9 2.23 2.07 55

Table 4 compares the characteristics of the best-of-
run controller from generation 217 with those of the
Astrom and Hagglund (1995) controller for all six
plants. As can be seen, the genetically evolved
controller is superior to the Astrom and Hagglund
controller for all six plants for the integral of the time-
weighted absolute error (ITAE) for the step input, the
ITAE for disturbance rejection, and the maximum
sensitivity, Ms. All values of Amin are above the
required minimum 40 (except for plant 4). Averaged
over the six plants, the ITAE for the step input for the
genetically evolved controller is only 58% of the value
for the Astrom and Hagglund controller; the ITAE for
disturbance rejection is 91% of the value for the
Astrom and Hagglund controller; and the maximum
sensitivity, Ms. for the genetically evolved controller is
only 85% of the value for the Astrom and Hagglund
controller.

The values of the PID coefficients of the controller
created by genetic programming are very close to those
of the Astrom and Hagglund (1995) controller.

The best-of-run controller from generation 217 is
similarly superior for other reference signals, other
disturbance signals, and other plants from the two
families (but are not shown for reasons of space).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8

Time

P
la

n
t

O
u

tp
u

t

Figure 5 Comparison of time-domain responses.

Figure 5 compares the time-domain response of the
best-of-run controller (triangles) from generation 217
and the Astrom and Hagglund controller (squares) to a
1-volt reference signal for the three-lag plant. Note that
the genetically evolved controller (triangles) is superior
based on the fitness measure used and the measures
contained in table 4.

Figure 6 compares the time-domain response of the
best-of-run controller (triangles) from generation 217
and the Astrom and Hagglund controller (squares) to a
1-volt disturbance signal for the three-lag plant.

Most of the computer time in runs of genetic
programming involving complex simulations is
consumed by the fitness evaluation of candidate

individuals in the population. The fitness evaluation for
each individual in the population of 100,000 on each of
the 218 generations (generation 0 plus 217 additional
generations) in this run entailed 36 very time-
consuming time-domain SPICE simulations and 12
relatively fast frequency-domain SPICE simulations.
The fitness evaluation for each individual averaged
about 6.7 seconds per individual (using a 350 MHz
Pentium II processor). The best-of-run individual from
generation 217 was produced after evaluating 2.18 ×
107 individuals. This required 40.58 hours on our
1,000-node parallel computer system  that is, the
expenditure of 5.11 × 1016 computer cycles (about 51
peta-cycles of computer time).

-0.05

0

0.05

0.1

0.15

0.2

0 2 4 6 8

Time

P
la

n
t

O
u

tp
u

t

Figure 6 Comparison of the disturbance responses.

5 Conclusion
This paper demonstrated that genetic programming can
be used to automatically create the design for both the
topology and parameter values (tuning) for a common
parameterized controller (containing various
parameters representing the overall characteristics of
the plant) for two families of plants. The automatically
designed controller outperforms the controller
designed with conventional techniques.

A mathematical formula containing one or more
free variables is "general" in the sense that it provides a
solution to an entire category of problems. For
example, the familiar formula for solving a quadratic
equation contains free variables representing the
coefficients of the equation.

The above result created by genetic programming
contains four free variables (Ku, Tu, Tr, and L). That is,
genetic programming automatically created a "general"
solution to an entire category of problems (i.e., all the
plants in the two families)  not merely a solution to
single instance of the problem (i.e., a particular single
plant).

Moreover, genetic programming did not just
automatically create formulae for the controller's
parameter values (tuning)  it automatically created
the topology of the controller.

Thus, genetic programming can be viewed as a new
kind of mathematics in which the result consists of not
just general formulae, but, instead, a combination of a
graphical structure (i.e., the controller's topology) and
general formulae for the parameter values of each
block of the controller.

References
Andersson, Bjorn, Svensson, Per, Nordin, Peter, and

Nordahl, Mats. 1999. Reactive and memory-based genetic
programming for robot control. In Poli, Riccardo, Nordin,
Peter, Langdon, William B., and Fogarty, Terence C.
1999. Genetic Programming: Second European
Workshop. EuroGP'99. Proceedings. Lecture Notes in
Computer Science. Volume 1598. Berlin, Germany:
Springer-Verlag. Pages 161 - 172.

Astrom, Karl J. and Hagglund, Tore. 1995. PID Controllers:
Theory, Design, and Tuning. Second Edition. Research
Triangle Park, NC: Instrument Society of America.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Richard, and
Olmer, Markus. 1997. Generating adaptive behavior for a
real robot using function regression with genetic
programming. In Koza, John R., Deb, Kalyanmoy,
Dorigo, Marco, Fogel, David B., Garzon, Max, Iba,
Hitoshi, and Riolo, Rick L. (editors). Genetic
Programming 1997: Proceedings of the Second Annual
Conference, July 13–16, 1997, Stanford University. San
Francisco, CA: Morgan Kaufmann. Pages 35 - 43.

Bennett, Forrest H III, Koza, John R., Shipman, James, and
Stiffelman, Oscar. 1999. Building a parallel computer
system for $18,000 that performs a half peta-flop per day.
In Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E.,
Garzon, Max H., Honavar, Vasant, Jakiela, Mark, and
Smith, Robert E. (editors). 1999. GECCO-99:
Proceedings of the Genetic and Evolutionary
Computation Conference, July 13-17, 1999, Orlando,
Florida USA. San Francisco, CA: Morgan Kaufmann.
Pages 1484 - 1490.

Callender, Albert and Stevenson, Allan Brown. 1939.
Automatic Control of Variable Physical Characteristics.
United States Patent 2,175,985. Filed February 17, 1936
in United States. Filed February 13, 1935 in Great Britain.
Issued October 10, 1939 in United States.

Crawford, L. S., Cheng, V. H. L., and Menon, P. K. 1999.
Synthesis of flight vehicle guidance and control laws
using genetic search methods. Proceedings of 1999
Conference on Guidance, Navigation, and Control.
Reston, VA: American Institute of Aeronautics and
Astronautics. Paper AIAA-99-4153.

Dewell, Larry D. and Menon, P. K. 1999. Low-thrust orbit
transfer optimization using genetic search. Proceedings of
1999 Conference on Guidance, Navigation, and Control.
Reston, VA: American Institute of Aeronautics and
Astronautics. Paper AIAA-99-4151.

Holland, John H. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic
Programming. Cambridge, MA: The MIT Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1999. Genetic Programming III:
Darwinian Invention and Problem Solving. San Francisco,
CA: Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David, Keane,
Martin A., and Brave, Scott. 1999. Genetic Programming
III Videotape: Human-Competitive Machine Intelligence.
San Francisco, CA: Morgan Kaufmann.

Koza, John R., Keane, Martin A., Yu, Jessen, Bennett,
Forrest H III, and Mydlowec, William. 2000. Automatic
creation of human-competitive programs and controllers
by means of genetic programming. Genetic Programming
and Evolvable Machines. 1 (1 -2) 121 - 164.

Koza, John R., Keane, Martin A., Yu, Jessen, Mydlowec,
William, and Bennett, Forrest H III. 2000. Automatic
synthesis of both the topology and parameters for a
controller for a three-lag plant with a five-second delay
using genetic programming. In Cagnoni, Stafano et al.
(editors). Real-World Applications of Evolutionary
Computing. EvoWorkshops 2000. EvoIASP, Evo SCONDI,
EvoTel, EvoSTIM, EvoRob, and EvoFlight, Edinburgh,
Scotland, UK, April 2000, Proceedings. Lecture Notes in
Computer Science. Volume 1803. Berlin, Germany:
Springer-Verlag. Pages 168 - 177.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

Man, K. F., Tang, K. S., Kwong, S., and Halang, W. A. 1997.
Genetic Algorithms for Control and Signal Processing.
London: Springer-Verlag.

Man, K. F., Tang, K. S., Kwong, S., and Halang, W. A. 1999.
Genetic Algorithms: Concepts and Designs. London:
Springer-Verlag.

Menon, P. K., Yousefpor, M., Lam, T., and Steinberg, M. L.
1995. Nonlinear flight control system synthesis using
genetic programming. Proceedings of 1995 Conference on
Guidance, Navigation, and Control. Reston, VA:
American Institute of Aeronautics and Astronautics. Pages
461 - 470.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and
Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version 3F5
User's Manual. Department of Electrical Engineering and
Computer Science, University of California. Berkeley,
CA. March 1994.

Sterling, Thomas L., Salmon, John, Becker, Donald J., and
Savarese, Daniel F. 1999. How to Build a Beowulf: A
Guide to Implementation and Application of PC Clusters.
Cambridge, MA: MIT Press.

Sweriduk, G. D., Menon, P. K., and Steinberg, M. L. 1998.
Robust command augmentation system design using
genetic search methods. Proceedings of 1998 Conference
on Guidance, Navigation, and Control. Reston, VA:
American Institute of Aeronautics and Astronautics. Pages
286 - 294.

Sweriduk, G. D., Menon, P. K., and Steinberg, M. L. 1999.
Design of a pilot-activated recovery system using genetic
search methods. Proceedings of 1998 Conference on
Guidance, Navigation, and Control. Reston, VA:
American Institute of Aeronautics and Astronautics.

Ziegler, J. G. and Nichols, N. B. 1942. Optimum settings for
automatic controllers. Transactions of ASME. (64) 759-
768.

