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ABSTRACT 
This paper demonstrates that a technique of 
evolutionary computation can be used to 
automatically create the design for both the 
topology and parameter values (tuning) for a 
common controller (containing various 
parameters representing the overall 
characteristics of the plant) for two families 
of plants. The automatically designed 
controller is created by means of genetic 
programming using a fitness measure that 
attempts to optimize step response and 
disturbance rejection while simultaneously 
imposing constraints on maximum 
sensitivity and sensor noise attenuation. The 
automatically designed controller 
outperforms the controller designed with 
conventional techniques. In particular, the 
automatically designed controller is superior 
to the Astrom and Hagglund controller for 
all plants of both families for the integral of 
the time-weighted absolute error (ITAE) for 
a step input, the ITAE for disturbance 
rejection, and maximum sensitivity. 
Averaged over all plants of both families, the 
ITAE for the step input for the automatically 
designed controller is only 58% of the value 
for the conventional controller; the ITAE for 
disturbance rejection is 91% of the value for 
the conventional controller; and the 
maximum sensitivity, Ms. for the 
automatically designed controller is only 
85% of the value for the conventional 
controller. The automatically designed 
controller is "general" in the sense that it 
contains free variables and therefore 
provides a solution to an entire category of 
problems (i.e., all the plants in the two 
families)  not merely a single instance of 
the problem (i.e., a particular single plant).  

1 Introduction 
Genetic programming has recently been used to 
automatically create the design for both the topology 
and parameter values (tuning) for a controller for a 
particular two-lag plant and a particular three-lag plant 
from a high-level statement of the controller's desired 
behavior and characteristics (Koza, Keane, Yu, 
Bennett, and Mydlowec 2000). However, each of these 
two (different) automatically designed controllers 
applied only to one particular plant. Moreover, both 
plants belonged to the same family (the n-lag plants).  

The question arises as to whether it is possible to 
evolve a single "general" parameterized controller 
(containing parameters representing the overall 
characteristics of the plant) that can perform well for an 
entire family of plants (say, the n-lag plants) and also 
one or more additional families of plants.  

In their recent influential book, Astrom and 
Hagglund (1995) identified four families of plants "that 
are representative for the dynamics of typical industrial 
processes." Astrom and Hagglund (1995) then develop 
a common method for designing controllers and 
demonstrate improved performance for their common 
method over the Ziegler-Nichols rules (Ziegler and 
Nichols 1942) on all the plants in all four of their 
families of plants.  

One of the families of plants in Astrom and 
Hagglund 1995 consists of the n-lag plants represented 
by the transfer functions of the form 
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where n = 3, 4, and 8.  
Another family consists of plants represented by the 

transfer functions of the form 
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where α = 0.2, 0.5, and 0.7.  



The methods developed by Astrom and Hagglund 
use pairs of parameters representing the overall 
characteristics of a plant. These parameters are not, of 
course, a complete representation of the behavior of the 
plant; however, they offer the practical advantage of 
usually being obtainable for a given plant by means of 
relatively straight-forward testing. In one version of 
their method, Astrom and Hagglund use two frequency 
domain parameters. They are the ultimate gain, Ku (the 
minimum value of the gain that must be introduced into 
the feedback path to cause a system to oscillate) and the 
ultimate period, Tu (the period of this lowest frequency 
oscillation). In another version of their method, Astrom 
and Hagglund use the time constant, Tr, and the dead 
time, L. Astrom and Hagglund describe a procedure for 
estimating these two parameters from the plant's 
response to a step input. These two parameters are, in 
one instance, obtained by approximating the plant with 
a transfer function of the form  
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This paper shows that genetic programming can be 
used to automatically create the design for both the 
topology and tuning for a common parameterized 
controller for all plants belonging to the two families of 
plants described by equations (1) and (2). The 
automatically designed controller is created using a 
fitness measure that attempts to optimize step response 
and disturbance rejection while simultaneously 
imposing constraints on maximum sensitivity and 
sensor noise attenuation. The automatically designed 
controller outperforms the controller designed using the 
techniques of Astrom and Hagglund 1995.  

Section 2 discusses how genetic programming can 
be used to automatically synthesize the design for both 
the topology and tuning of controllers. Section 3 
itemizes the preparatory steps necessary to apply 
genetic programming to the above two families of 
plants. Section 4 presents the results.  

2 Genetic Programming and Control 
Genetic programming is an automatic technique for 
generating computer programs to solve, or 
approximately solve, problems. In particular, genetic 
programming is capable of automatically creating the 
design of complex structures. Genetic programming 
approaches a program synthesis problem or a design 
problem in terms of "what needs to be done"  as 
opposed to "how to do it".  Genetic programming 
(Koza 1992; Koza and Rice 1992; Koza 1994a, 1994b) 
is an extension of the genetic algorithm (Holland 1975).  

Genetic programming starts with a primordial ooze 
of thousands of randomly created computer programs 
and uses the Darwinian principle of natural selection, 

recombination (crossover), mutation, gene duplication 
and deletion to breed a population of programs over a 
series of generations.   

Genetic programming breeds computer programs to 
solve problems by executing the following three steps:  

(1) Generate an initial population of compositions 
(typically random) of the problem's functions and 
terminals. 
(2) Iteratively perform the following substeps (a 
generation) on the population of programs until the 
termination criterion has been satisfied: 

(A) Execute each program in the population and 
assign it a value using the fitness measure. 
(B) Create a new population of programs by 
applying the following operations. The 
operations are applied to program(s) selected 
from the population with a probability based on 
fitness (with reselection allowed). 

(i) Reproduction: Copy the selected program 
to the new population. 
(ii) Crossover:  Create a new offspring 
program for the new population by 
recombining randomly chosen parts of two 
selected programs. 
(iii) Mutation:  Create one new offspring 
program for the new population by randomly 
mutating a randomly chosen part of the 
selected program. 
(iv) Architecture-altering operations: Select 
an architecture-altering operation from the 
repertoire of such operations and create one 
new offspring program for the new 
population by applying the selected 
operation to the selected program.  

(3) Designate the individual program that is 
identified by result designation (e.g., the best-so-far 
individual) as the result of the run of genetic 
programming.  This result may be a solution (or an 
approximate solution) to the problem.   
Genetic programming is capable of evolving 

reusable, parametrized, hierarchically-called 
automatically defined functions (subroutines). 
Architecture-altering operations (Koza, Bennett, Andre, 
and Keane 1999; Koza, Bennett, Andre, Keane, and 
Brave 1999) enable genetic programming to 
automatically determine the number of automatically 
defined functions, the number of arguments that each 
possesses, and the nature of the hierarchical references, 
if any, among such automatically defined functions.  

Genetic programming is capable of automatically 
synthesizing the design of both the topology and sizing 
for a wide variety of analog electrical circuits from a 
high-level statement of the circuit's desired behavior 
and characteristics (Koza, Bennett, Andre, and Keane 
1999). Nine of the automatically designed analog 
circuits in Koza, Bennett, Andre, and Keane 1999 were 



previously patented. Five of the automatically designed 
circuits infringe on previously issued patents. Genetic 
programming often creates novel designs because it is a 
probabilistic process that is not encumbered by the 
preconceptions that often channel human thinking 
down familiar paths. The fact that genetic programming 
can design both the topology and sizing of circuits 
suggests that it might also be capable of designing other 
types of complex topological structures containing 
parameterized components, such as controllers.  

In a closed-loop continuous-time feedback system 
consisting of a plant and its controller, the output of the 
controller is input to the plant and the output of the 
plant is, in turn, input to the controller.  

Both genetic algorithms and genetic programming 
have been previously used for synthesizing controllers 
having mutually interacting continuous-time variables 
and continuous-time signal processing blocks (Koza, 
Keane, Yu, Mydlowec, and Bennett 2000; Man, Tang, 
Kwong, and Halang; 1997, 1999; Crawford, Cheng, 
and Menon 1999; Dewell and Menon 1999; Menon, 
Yousefpor; Lam, and Steinberg 1995; Sweriduk, 
Menon, and Steinberg 1998, 1999).  
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Figure 1  Block diagram of a plant and a PID controller 
composed of proportional, integrative, and derivative 
blocks. The plant's output is fed back to the controller 
where it is compared to the reference signal.  

Figure 1 is a block diagram for an illustrative 
control system containing a controller and a plant. The 
directed lines in a block diagram represent time-domain 
signals while the blocks represent signal processing 
functions that operate in the time domain. The output of 
the controller 500 is a control variable 590 which is, in 
turn, the input to the plant 592. The plant has one 
output (plant response) 594. The plant response is fed 
back (externally as signal 596) and becomes one of the 
controller's two inputs. The controller's second input is 
the reference signal 508. The fed-back plant response 
596 and the externally supplied reference signal 508 are 
compared (by subtraction here). Notice that the takeoff 
point 520 of figure 1 provides a way to disseminate a 
particular result (of the subtraction 510) to three places 
in the block diagram (522, 524, and 526).  

The output (i.e., control variable 590) of this 
controller is the sum of a proportional (P) term (the 
gain block 530 with an amplification factor of 214.0), 
an integrating (I) term (the integrator 560 preceded by 
the gain block 540 with an amplification factor of 
1,000.0), and a differentiating (D) term (the derivative 
block 570 preceded by the gain block 550 with an 
amplification factor of 15.5). This type of controller is 
called a PID controller and was invented and patented 
in 1939 by Albert Callender and Allan Stevenson of 
Imperial Chemical Limited of Northwich, England.  

In this paper, a computer program (i.e., program 
tree, LISP symbolic expression) will represent the 
block diagram of a controller. The block diagram 
consists of signal processing functions linked by 
directed lines representing the flow of information. 
There is no "order of evaluation" of the functions and 
terminals of a program tree representing a controller. 
Instead, the signal processing blocks of the controller 
and the to-be-controlled plant interact with one another 
other as part of a closed system in the manner specified 
by the topology of the block diagram.  
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Figure 2  Program tree representation of the PID 
controller of figure 1. The automatically defined function 
ADF0 (left) subtracts the plant output from the reference 
signal and makes the difference available to three points 
in the result-producing branch (right).  

Figure 2 presents the block diagram for the PID 
controller of figure 1 as a program tree. The internal 
points of this program tree represent the signal 
processing blocks contained in the block diagram of 
figure 1 (i.e., derivative, integrator, gain, subtraction, 
addition). The external points (leaves) of this program 
tree represent numerical constants and time-domain 
signals, such as the reference signal and plant output. 
Notice that automatically defined function (subroutine) 
ADF0 in the left branch produces a time-domain signal 
that equals the result of subtracting the plant output 
from the reference signal. The three references to ADF0 
in the result-producing (right) branch of this program 
tree disseminate the result of subtracting the plant 
output from the reference signal and correspond to the 
takeoff point 520 of figure 1.  

In the style of ordinary computer programming, a 
reference to a subroutine ADF0 from inside the 
function definition for itself would be considered to be 
a recursive reference. However, in the context of 
applying genetic programming to control systems, a 
subroutine that references itself corresponds to a loop 



in the block diagram of the controller (i.e., internal 
feedback inside the controller).  

3 Preparatory Steps 
Six major preparatory steps are required before 
applying genetic programming to a problem involving 
the synthesis of a controller: (1) determine the 
architecture of the program trees, (2) identify the 
terminals, (3) identify the functions, (4) define the 
fitness measure, (5) choose control parameters for the 
run, and (6) choose the termination criterion and 
method of result designation.  
3.1 Program Architecture 
Since the to-be-synthesized controller has one output 
(control variable), each program tree in the population 
has one result-producing branch. Each program tree in 
the initial random population (generation 0) has no 
automatically defined functions. However, after 
generation 0, the architecture-altering operations may 
insert (and delete) automatically defined functions. 
Automatically defined functions may be used for 
takeoff points, internal feedback within the controller, 
and reuse of portions of the block diagram. The 
permitted maximum of five automatically defined 
functions is more than sufficient for this problem.  
3.2 Terminal Set 
The numerical parameter value for each signal 
processing block possessing a parameter is established 
by an arithmetic-performing subtree containing 
perturbable numerical terminals, arithmetic operations, 
and the four parameters for representing the overall 
characteristics of a plant. Arithmetic-performing 
subtrees may appear in both result-producing branches 
and any automatically defined functions that may be 
created during the run by the architecture-altering 
operations. The value returned by an entire arithmetic-
performing subtree is interpreted as a component value 
lying in a range of (positive values) between 10-3 and 
103. The terminal set for the arithmetic-performing 
subtrees is 
Taps = {ℜ, KU, TU, L, TR}.  
Here ℜ denotes a perturbable numerical value. In the 
initial random generation (generation 0) of a run, each 
perturbable numerical value is set, individually and 
separately, to a random value in a chosen range (from -
3.0 and +3.0 here). In later generations, a perturbable 
numerical value may be changed by adding or 
subtracting a relatively small number determined 
probabilistically by a Gaussian probability distribution. 
The standard deviation of the Gaussian distribution is 
1.0 here (i.e., one order of magnitude after the value 
returned by an entire arithmetic-performing subtree is 
interpreted). The perturbations are implemented by a 
genetic operation for mutating the perturbable 

numerical values. The perturbable numerical values are 
coded by 30 bits in our system. A constrained syntactic 
structure maintains one function and terminal set for the 
arithmetic-performing subtrees and a different function 
and terminal set (below) for all other parts of the 
program tree.  

The remaining terminals are time-domain signals. 
The terminal set, T, for the result-producing branch and 
any automatically defined functions (except the 
arithmetic-performing subtrees described above) is 
T = {REFERENCE_SIGNAL, 

CONTROLLER_OUTPUT, PLANT_OUTPUT}.  
Space does not permit a detailed description of the 

various terminals used herein (although the meaning of 
the above terminals should be clear from their names). 
See Koza, Keane, Yu, Bennett, and Mydlowec 2000.  
3.3 Function Set 
The function set, Faps, for the arithmetic-performing 
subtrees is 
Faps = {ADD_NUMERIC, SUB_NUMERIC, 

MUL_NUMERIC, DIV_NUMERIC, REXP, 
RLOG}.  

The two-argument DIV_NUMERIC function divides 
the first argument by the second argument, except that 
the quotient is never allowed to exceed 105. The one-
argument REXP function is the exponential function 
and the one-argument RLOG function is the natural 
logarithm of the absolute value.  

The function set, F, for the result-producing branch 
and any automatically defined functions (except the 
arithmetic-performing subtrees described above) 
consists of continuous-time signal processing functions 
and automatically defined functions.  
F = {GAIN, INVERTER, LEAD, LAG, LAG2, 

DIFFERENTIAL_INPUT_INTEGRATOR, 
DIFFERENTIATOR, ADD_SIGNAL, 
SUB_SIGNAL, ADD_3_SIGNAL, 
MUL_SIGNAL, DIV_SIGNAL, ULIMIT, 
ADF0, ADF1, ADF2, ADF3, ADF4}.  

The one-argument ULIMIT function limits a signal 
by constraining it between an upper and lower bound. 
This function returns the value of its argument (the 
incoming signal) when its argument lies between -1.0 
and +1.0. If the argument is greater than +1.0, the 
function returns +1.0. If the argument is less than -1.0, 
the function returns -1.0. ADF0, …, ADF4 denote 
automatically defined functions added during the run 
by the architecture-altering operations. The definitions 
of the other functions above are suggested by their 
names. See Koza, Keane, Yu, Bennett, and Mydlowec 
2000.  
3.4 Fitness Measure 
Genetic programming is a probabilistic algorithm that 
searches the space of compositions of the available 
functions and terminals under the guidance of a fitness 



measure. The fitness measure is a mathematical 
implementation of the problem's high-level 
requirements. It is couched in terms of “what needs to 
be done”  not “how to do it.” The fitness measure for 
most problems of controller design is multi-objective in 
the sense that there are several different (usually 
conflicting) requirements for the controller. 

The fitness of each individual in the population is 
determined by executing the program tree (i.e., the 
result-producing branch plus any automatically defined 
functions that may have been created during the run by 
the architecture-altering operations). The execution of 
the program tree produces an interconnected sequence 
of signal processing blocks  that is, a block diagram 
for the individual controller. The controller is 
embedded into a framework containing the (fixed) plant 
and the (fixed) external feedback loop. A SPICE netlist 
is then constructed to represent the block diagram of 
the controller, the (fixed) plant, and the (fixed) external 
feedback loop. This SPICE netlist is wrapped inside an 
appropriate set of SPICE commands to carry out 
various SPICE analyses in the time domain (described 
below). We also provide SPICE with subcircuit 
definitions to implement all the signal processing 
functions in the function set (described above) and all 
the signal processing functions necessary to represent 
the plant. The controller is then simulated using our 
modified version of the original 217,000-line SPICE3 
simulator (Quarles, Newton, Pederson, and 
Sangiovanni-Vincentelli 1994). Our modified version 
of SPICE is run as a submodule within our genetic 
programming system. The SPICE simulator returns 
tabular output (representing the plant output in the time 
domain). An interface communicates this information 
to our genetic programming code. See Koza, Keane, 
Yu, Bennett, and Mydlowec 2000 for details.  

The fitness of each controller in the population is 
measured by means of 48 separate invocations of the 
SPICE simulator. This 48-part fitness measure attempts 
to optimize step response and disturbance rejection 
while simultaneously imposing constraints on 
maximum sensitivity and sensor noise attenuation. The 
fitness of an individual controller is the sum of the 
detrimental contributions of these 48 elements of the 
fitness measure. The smaller the sum, the better.  
                    Table 1 Six combinations 
 Reference signal Disturbance signal 
 1.0 1.0 
 10-3 10-3 
 -10-6 10-6 
 1.0 -0.6 
 -1.0 0.0 
 0.0 1.0 

The first 36 elements of this 48-part fitness measure 
are time-domain-based elements that together represent 
the six plants from the two families (i.e., n = 3, 4, and 8 

and α = 0.2, 0.5, and 0.7), in conjunction with six 
choices of values for the height of the reference signal 
and disturbance signal (shown in table 1) that sample a 
range of values. The reference signal is step function 
that rises from 0 at time t = 0 to the specified height at t 
= 1 millisecond. The disturbance signal is a step 
function that rises from 0 at time t = 10Tu to the 
specified height at t = 10Tu + 1 millisecond. The 
disturbance signal is added to the controller's output. 

For each of these first 36 elements of the 48-part 
fitness measure, a transient analysis is performed in the 
time domain using the SPICE simulator. e(t) is the 
difference (error) at time t between the plant output and 
the reference signal. The contribution to fitness for each 
of these 36 elements is based on the sum of two 
integrals of time-weighted absolute error (ITAE). The 
first term of the integral accounts for the controller's 
step response while the second term accounts for 
disturbance rejection.  
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The factor B in the first term of the integral 
multiplies each value of e(t) by the reciprocal of the 
amplitude of the reference signal (so that all reference 
signals are equally influential). The factor C in the 
second term of the integral multiplies value of e(t) by 
the reciprocal of the amplitude of the disturbance 
signals. When the amplitude of either the reference 
signal or the disturbance signal is zero, the appropriate 
factor (B or C) is set to zero. The ITAE component of 
fitness is such that, all other things being equal, 
changing the time scale by a factor of F changes the 
ITAE by F2. The division of the integral by Tu

2 is an 
attempt to eliminate this artifact of the time scale and 
equalize the influence of each of the plants in the 
overall fitness measure. For these 36 elements of the 
fitness measure, the contribution to fitness is multiplied 
by 20 if the element is greater than for the Astrom and 
Hagglund (1995).  

The 37th through 42nd elements of the 48-part fitness 
measure are frequency-domain-based elements that 
measure stability margin. Figure 3 presents a model for 
the entire system containing the given plant and the to-
be-evolved controller. In this figure, R(s) is the 
reference signal; Y(s) is the plant output; and U(s) is the 
controller's output (control variable). Disturbance D(s) 
may be added to the controller's output U(s). Sensor 
noise N(s) may be added to the plant's output Y(s) 
yielding Q(s). Here N(s) is an AC signal. For each of 
these six elements of the fitness measure, an AC sweep 
is performed using the SPICE simulator from 
1/(1000Tu) to 1000/Tu while holding the reference 
signal R(s) and the disturbance signal D(s) at zero. The 
maximum sensitivity, Ms, is a measure of the stability 
margin. It is desirable to minimize the maximum 



sensitivity (and therefore maximize the stability 
margin). The quantity 1/Ms is the minimum distance 
between the Nyquist plot and the point (-1,0) and is the 
stability margin incorporating both gain and phase 
margin. The maximum sensitivity is the maximum 
amplitude of Q(s). The contribution to fitness is 0 if Ms 
< 1.5; 2(Ms - 1.5) for 1.5 ≤ Ms ≤ 2.0; and 20(Ms - 2.0) + 
1 for Ms > 2.0. For these six elements of the fitness 
measure (as well as the six elements below), the 
contribution to fitness is multiplied by 10 if the element 
is greater than for the Astrom and Hagglund controller.  
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+
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N(s)

+
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Figure 3 Overall model.  

The 43rd through 48th elements of this 48-part 
fitness measure are frequency-domain-based elements 
measuring the sensor noise attenuation. Achieving 
favorable sensor noise attenuation is often in direct 
conflict with the goal of achieving a rapid response to 
setpoint changes and rejection of plant disturbances. 
For each of these six elements of the fitness measure, 
an AC sweep is performed using the SPICE simulator 
from 10/Tu to 1000/Tu while holding the reference 
signal R(s) and the disturbance signal, D(s) at zero. The 
attenuation of the sensor noise is measured at plant 
output at Y(s). Amin is the minimum attenuation in 
decibels within this frequency range. It is desirable to 
maximize the minimum attenuation. The contribution to 
fitness for sensor noise attenuation is 0 if Amin > 40 dB; 
(40 - Amin)/10 if 20 dB ≤ Amin ≤ 40 dB; and 2 + (20 - 
Amin) if Amin < 20 dB.  

The SPICE simulator cannot simulate many of the 
controllers that are randomly created during a run of 
genetic programming. A controller that cannot be 
simulated by SPICE is assigned a high penalty value of 
fitness (108).  
3.5 Control Parameters 
The population size, M, was 100,000. A (generous) 
maximum size of 150 points (for functions and 
terminals) was established for each result-producing 
branch and a (generous) maximum size of 100 points 
was established for each automatically defined 
function. The percentages of the genetic operations for 
each generation are 46% one-offspring crossover on 
internal points of the program tree other than numerical 
constant terminals, 9% one-offspring crossover on 
points of the program tree other than numerical 
constant terminals, 9% one-offspring crossover on 
numerical constant terminals, 1% mutation on points of 

the program tree other than numerical constant 
terminals, 20% mutation on numerical constant 
terminals, 9% reproduction, 2% subroutine creation, 
2% subroutine duplication, and 2% subroutine deletion. 
The other parameters are the same default values that 
we have used on many other problems (Koza, Bennett, 
Andre, Keane 1999).  
3.6 Termination 
The run was manually monitored and manually 
terminated when the fitness of many successive best-of-
generation individuals appeared to have reached a 
plateau. The best-so-far individual was harvested and 
designated as the result of the run.  
3.7 Parallel Implementation 
This problem was run on a home-built Beowulf-style 
(Sterling, Salmon, Becker, and Savarese 1999; Bennett, 
Koza, Shipman, and Stiffelman 1999) parallel cluster 
computer system consisting of 1,000 350 MHz Pentium 
II processors (each accompanied by 64 megabytes of 
RAM). The system has a 350 MHz Pentium II 
computer as host. The processing nodes are connected 
with a 100 megabit-per-second Ethernet. The 
processing nodes and the host use the Linux operating 
system. The distributed genetic algorithm with 
unsynchronized generations and semi-isolated 
subpopulations was used with a subpopulation size of 
Q = 100 at each of D = 1,000 demes. As each processor 
(asynchronously) completes a generation, four 
boatloads of emigrants from each subpopulation are 
dispatched to each of the four toroidally adjacent 
processors. The 1,000 processors are hierarchically 
organized. There are 5 × 5 = 25 high-level groups (each 
containing 40 processors). If the adjacent node belongs 
to a different group, the migration rate is 2% and 
emigrants are selected based on fitness. If the adjacent 
node belongs to the same group, the migration rate is 
5% (10% if in the same physical box) and emigrants are 
selected randomly.  

4 Results 
The initial random generation is a blind random search 
of the search space of the problem. The best-of-
generation circuit from generation 0 has a fitness of 
14,530.8.  

The best-of-run controller (figure 4) appears in 
generation 217. This genetically evolved controller has 
an overall fitness of 14.996. The program tree has one 
result-producing branch with 10 points and five 
automatically defined functions (with 22, 38, 3, 19, and 
3 points, respectively). The result-producing branch 
refers to ADF0. Also, ADF0 hierarchically refers to 
ADF1. The other three automatically defined functions 
are not referenced. Note that the controller's output is 
fed back internally into the controller.  



Table 2 presents the control signal, U(s), for the 
best-of-run controller from generation 217. Note that 
all four parameters (Ku, Tu, Tr, and L) appear.  

When simplified, it can be seen that the best-of-run 
controller from generation 217 is a PID controller 
whose three coefficients are as shown in table 3.  
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Figure 4 Block diagram of best-of-run controller from generation 217.  

 
 

Table 2 Control signal, U(s), for the best-of-run controller from generation 217 
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Table 3 Three coefficients of PID controller equivalent to the best-of-run controller from generation 217 
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Table 4 Comparison of characteristics of the controller and the Astrom and Hagglund controller for all six 
plants 
Plant Plant Genetically evolved Controller Astrom and Hagglund 

Controller 
  ITAE 

Step 
ITAE 
Disturb

Ms Amin ITAE 
Step 

ITAE 
Disturb 

Ms Amin 

1 
3)1(

1
s+

 
1.93 1.15 1.66 41.26 2.75 1.28 2.11 43 

2 
4)1(

1
s+

 
4.60 6.64 1.80 54.17 8.5 7.6 2.08 58 

3 
8)1(

1
s+

 
27.43 74.20 1.69 85.8 49.7 78 1.87 90 

4 

( )( )( )ssss 32 2.012.012.01)1(
1

++++
 

0.037 0.0055 1.59 35.23 0.051 0.006 1.9 40 

5 

( )( )( )ssss 32 5.015.015.01)1(
1

++++
 

0.436 0.498 1.72 47.5 0.945 0.522 2.07 50 



6 

( )( )( )ssss 32 7.017.017.01)1(
1

++++
 

1.40 1.99 1.77 52.2 2.9 2.23 2.07 55 

Table 4 compares the characteristics of the best-of-
run controller from generation 217 with those of the 
Astrom and Hagglund (1995) controller for all six 
plants. As can be seen, the genetically evolved 
controller is superior to the Astrom and Hagglund 
controller for all six plants for the integral of the time-
weighted absolute error (ITAE) for the step input, the 
ITAE for disturbance rejection, and the maximum 
sensitivity, Ms. All values of Amin are above the 
required minimum 40 (except for plant 4). Averaged 
over the six plants, the ITAE for the step input for the 
genetically evolved controller is only 58% of the value 
for the Astrom and Hagglund controller; the ITAE for 
disturbance rejection is 91% of the value for the 
Astrom and Hagglund controller; and the maximum 
sensitivity, Ms. for the genetically evolved controller is 
only 85% of the value for the Astrom and Hagglund 
controller.  

The values of the PID coefficients of the controller 
created by genetic programming are very close to those 
of the Astrom and Hagglund (1995) controller.  

The best-of-run controller from generation 217 is 
similarly superior for other reference signals, other 
disturbance signals, and other plants from the two 
families (but are not shown for reasons of space). 
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Figure 5 Comparison of time-domain responses.  

Figure 5 compares the time-domain response of the 
best-of-run controller (triangles) from generation 217 
and the Astrom and Hagglund controller (squares) to a 
1-volt reference signal for the three-lag plant. Note that 
the genetically evolved controller (triangles) is superior 
based on the fitness measure used and the measures 
contained in table 4.  

Figure 6 compares the time-domain response of the 
best-of-run controller (triangles) from generation 217 
and the Astrom and Hagglund controller (squares) to a 
1-volt disturbance signal for the three-lag plant.  

Most of the computer time in runs of genetic 
programming involving complex simulations is 
consumed by the fitness evaluation of candidate 

individuals in the population. The fitness evaluation for 
each individual in the population of 100,000 on each of 
the 218 generations (generation 0 plus 217 additional 
generations) in this run entailed 36 very time-
consuming time-domain SPICE simulations and 12 
relatively fast frequency-domain SPICE simulations. 
The fitness evaluation for each individual averaged 
about 6.7 seconds per individual (using a 350 MHz 
Pentium II processor). The best-of-run individual from 
generation 217 was produced after evaluating 2.18 × 
107 individuals. This required 40.58 hours on our 
1,000-node parallel computer system  that is, the 
expenditure of 5.11 × 1016 computer cycles (about 51 
peta-cycles of computer time).  
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Figure 6 Comparison of the disturbance responses.  

5 Conclusion 
This paper demonstrated that genetic programming can 
be used to automatically create the design for both the 
topology and parameter values (tuning) for a common 
parameterized controller (containing various 
parameters representing the overall characteristics of 
the plant) for two families of plants. The automatically 
designed controller outperforms the controller 
designed with conventional techniques.  

A mathematical formula containing one or more 
free variables is "general" in the sense that it provides a 
solution to an entire category of problems. For 
example, the familiar formula for solving a quadratic 
equation contains free variables representing the 
coefficients of the equation.  

The above result created by genetic programming 
contains four free variables (Ku, Tu, Tr, and L). That is, 
genetic programming automatically created a "general" 
solution to an entire category of problems (i.e., all the 
plants in the two families)  not merely a solution to 
single instance of the problem (i.e., a particular single 
plant).  



Moreover, genetic programming did not just 
automatically create formulae for the controller's 
parameter values (tuning)  it automatically created 
the topology of the controller.   

Thus, genetic programming can be viewed as a new 
kind of mathematics in which the result consists of not 
just general formulae, but, instead, a combination of a 
graphical structure (i.e., the controller's topology) and 
general formulae for the parameter values of each 
block of the controller.   
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