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Abstract:  This paper reports on a new “genetic computing”  
paradigm for solving problems. In this new artificial 
intelligence paradigm, populations of computer programs are 
genetically bred using genetic operations patterned after 
sexual reproduction and based on Darwinian principles of 
reproduction and survival of the fittest. The paradigm is 
illustrated by rediscovering the well-known multiplicative 
(non-linear) “exchange equation” M=PQ/V. 
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1.0  THE “SYMBOLIC REGRESSION” PROBLEM 
An important problem in many areas of science, including 
economics, is finding the empirical relationship underlying 
the observed numeric values of various variables measuring 
a system. Langley and Zytkow (1989) discuss efforts to 
apply artificial intelligence techniques to this problem. 
 
In many conventional methods for modeling, one begins by 
selecting the size and shape of the mathematical model. 
Often this choice is a linear model. After making this 
selection, one then tries to find the values of certain 
constants and coefficients required by the particular model 
so as to attain the best fit between the observed data and 
the model. But, in many cases, the most important issue is 
the size and shape of the mathematical model itself. Thus, 
the real problem  involves finding the entire functional 
form for the model (i.e. both the functional form and the 
numeric coefficients and constants) that best fits observed 
empirical data. The new “genetic computing” (hierarchical 
genetic algorithm) paradigm described in this paper 
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searches a space of functional forms to solve this problem 
of “symbolic regression” to find a functional form fitting 
the observed data. 

2.0  BACKGROUND ON GENETIC ALGORITHMS 
Genetic algorithms are mathematical algorithms that 
transform populations of individual mathematical objects 
(typically fixed-length binary character strings) into new 
populations using  operations patterned after natural 
genetic operations such as sexual recombination (crossover) 
and fitness proportionate reproduction (Darwinian survival 
of the fittest). Genetic algorithms begin with an initial 
population of individuals (typically randomly generated) 
and then iteratively (1) evaluate the individuals in the 
population for fitness with respect to the problem 
environment and (2) perform genetic operations on various 
individuals in the population to produce a new  population. 
Professor John Holland of the University of Michigan 
presented the pioneering formulation of genetic algorithms 
for fixed-length character strings in Adaptation in Natural 
and Artificial Systems (Holland 1975). Holland established, 
among other things, that genetic algorithms operating on 
strings are a mathematically near optimal approach to 
adaptation when the adaptive process is viewed as a set of 
simultaneous multi-armed slot machine problems requiring an 
optimal allocation of future trials given currently 
available information. Recent work on genetic algorithms  
can be surveyed in Goldberg (1989). 
3.0  THE “GENETIC COMPUTING” PARADIGM 
In the recently developed new “genetic computing”  
(hierarchical genetic algorithm) paradigm, the individuals 
in the genetic population are hierarchical compositions of 
functions (i.e. S-expressions in the LISP programming 
language) rather than the fixed-length character strings. 
 
Populations of LISP S-expressions (computer programs) can 
be genetically bred to solve a variety of different 
problems in several different areas of artificial 
intelligence and symbolic processing (Koza 1989, Koza 1990, 
Koza and Keane 1990), including (1) optimal control (e.g. 
finding a non-linear function that is a time-optimal 
control strategy for balancing a broom), (2) sequence 
induction (e.g. inducing a recursive computational 
procedure for the Fibonacci sequence),   (3) planning 
problems (e.g. a robotic action sequence for stacking 
blocks in order), (4) automatic programming (e.g. 
discovering a computational procedure for solving pairs of 
linear equations, solving quadratic equations for complex 
roots, and discovering trigonometric identities), (5) 
machine learning of functions (e.g. learning the exclusive-
or function, the parity function, and a Boolean multiplexer 
function),  (6) pattern recognition (e.g. translation-
invariant recognition of a simple one-dimensional shape in 
a linear retina),  and (7) various computational problems 
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(e.g. finding an infinite series for the exponential 
function and finding primes). 
 
Problems such as the above can be viewed as a search for a 
compositions of functions in the space of possible 
compositions of functions. In particular, the search space 
is the hyperspace of LISP S-expressions (i.e. composition 
of functions, computer programs, control strategies, 
robotic action plans) composed of various standard 
mathematical functions, various logical functions, various 
standard programming operations, and various domain 
specific functions and atoms appropriate for the given 
problem. 
 
In fact, problems such as the above can be expeditiously 
solved only if the flexibility found in computer programs 
is available. This flexibility includes the ability to 
perform iterations and recursions to achieve the desired 
result, to perform alternative computations conditioned on 
the outcome of intermediate calculations, to perform 
computations on variables of many different types, and to 
define and subsequently use computed values and sub-
programs. 
  
As will be seen, the composition of functions required to 
solve the problems described above will, in each case, 
emerge from a simulated evolutionary process using genetic 
operations patterned after sexual reproduction and based on 
Darwinian principles of reproduction and survival of the 
fittest.  
 
In each case, this process will start with an initial 
population of randomly generated LISP S-expressions 
composed of functions and atoms appropriate to the problem 
domain (and at least sufficient to solve the problem).  
 
The raw fitness of any such LISP S-expression in a given 
problem environment can be naturally measured by the sum of 
the distances (taken for all the environmental cases in the 
test suite) between the point in the solution space created 
by the S-expression and the correct point in the solution 
space. The closer this sum of differences is to zero, the 
better the  S-expression. Predictably, randomly generated 
initial S-expressions will have exceedingly poor fitness. 
Nonetheless, some individuals in the population will be 
somewhat more fit than others. And, in the valley of the 
blind, the one-eyed man is king. 
 
Then, a process of sexual reproduction among two parental 
S-expressions will be used to create offspring S-
expressions. At least one of two parental S-expressions is 
selected in proportion to fitness using Darwinian 
principles of reproduction and survival of the fittest. The 
offspring S-expressions resulting from the process of 
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sexual reproduction are composed of sub-expressions 
("building blocks") from their parents. In particular, the 
crossover (recombination) operation  creates new offspring 
S-expressions by exchanging sub-trees (i.e. sub-lists) 
between the two parents at randomly selected points. Then, 
the new population of offspring (i.e. a new generation) 
replaces the current population (i.e. parents). 
  
This process using the operations of Darwinian fitness 
proportionate reproduction and genetic crossover 
(recombination) tends to produce populations which, over a 
period of generations, exhibit increasing average fitness 
in dealing with their environment and which can robustly 
(i.e. rapidly and effectively) adapt to changes in their 
environment.  
 
The dynamic variability of the size and shape of the 
computer programs that are incrementally developed along 
the way towards a solution is also an essential aspect of 
the paradigm. In each case, it would be difficult and 
unnatural to try to specify the size and shape of the 
eventual solution in advance. Moreover,  the specification  
in advance of the size and shape of the solution to the 
problem narrows the window by which the system views the 
world and might well preclude finding the solution to the 
problem. The results of the genetic computing paradigm 
process are inherently hierarchical. 

  
4.0   AN EXAMPLE --- THE “EXCHANGE EQUATION”  
The problem of discovering such empirical relationships can 
be illustrated by the well-known econometric “exchange 
equation” M=PQ/V, which relates the money supply M, price 
level P, gross national product Q, and the velocity of 
money V of an economy. Suppose that our goal is to find the 
relationship between quarterly values of the money supply 
M2 and the three other elements of the equation. 
  
In particular, suppose we are given the 112 quarterly 
values (from 1961:1 to 1988:4) of four econometric time 
series. The first time series is “GNP82” (i.e. the annual 
rate for the United States gross national product in 
billions of 1982 dollars). The second time series is “GD” 
(i.e.the gross national product deflator normalized to 1.0 
for 1982). The third series is “FYGM3” (i.e. the monthly 
interest rate yields of 3-month Treasury bills, averaged 
for each quarter). The fourth series is “M2” (i.e. the 
monthly values of the seasonally adjusted money stock M2 in 
billions of dollars, averaged for each quarter). The time 
series used here were obtained from the CITIBASE data base 
of machine-readable econometric time series (Citybank 1989) 
and were entered into an Apple Micro-Explorer computer 
(i.e. a Macintosh II computer with a Texas Instruments LISP 
board) and then ported into an Explorer LISP machine using 
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an Ethernet. 
 
The actual long-term historic postwar value of the M2 
velocity of money in the United States is 1.6527 (Hallman 
et. al. 1989) so that the “correct” solution is the 
multiplicative (non-linear) relationship 
 
M2 =   GD* GNP82 
         1.6527 
   
However, we are not told a priori whether the functional 
relationship between the given observed data (the three 
independent variables) and the target function (the 
dependent variable M2) is linear, multiplicative, 
polynomial, exponential, logarithmic, or otherwise. The set 
of available functions for this problem is F = {+, -, *, %, 
EXP, RLOG}. The set of available atoms for this problem is 
A = {GNP82, GD, FYGM3}. They provide access to the values 
of the 28-year time series for particular quarters. We are 
not told that the addition, subtraction, exponential, and 
logarithmic functions and the time series for the 3-month 
Treasury bill yields (FYGM3) are irrelevant to the problem.  
 
Note that the restricted logarithm function RLOG used here 
is the logarithm of the absolute value and returns 0 for an 
argument of 0. Note also that the restricted division 
function % returns a value of 0 if division by 0 is 
attempted. 
 
A population size of 300 LISP S-expressions was used. In 
generating the initial random population (generation 0), 
various random real-valued constants were inserted at 
random as atoms amongst the initial random LISP S-
expressions. The initial random population was, 
predictably, highly unfit. In one fairly typical run, none 
of the 300 individual S-expressions in the initial random 
population came within 3% of any of the 112 environmental 
data points in the time series for M2. The sum of errors 
between that best S-expression and the actual time series 
was very large (88448). Similarly, the best individuals in 
generations 1 through 4 came close to the actual time 
series in only a small number of cases (i.e. 7, 2, 3, and 5 
of the 112 cases, respectively) and also had large sum of 
errors (72342, 70298, 26537, 23627). However, by generation 
6, the best individual came close to the actual time series 
in 41 of the 112 environmental cases and had an sum of 
errors of 6528. 
 
In generation 9, the following S-expression for M2 emerged: 
(* GD (% GNP82 (% (% -.587 0.681) (RLOG -0.587)))). 
Note that this S-expression for M2 is equivalent to 
(% (* GD GNP82) 1.618), 
or, more familiarly, 
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M2 =   GD* GNP82 
         1.618 
 
The S-expression discovered in the 9th generation comes 
within 3% of the actual values of M2 for 82 of the 112 
points in the 28-year time series. The sum of the absolute 
errors between the S-expression discovered and the 112 
points of the 28-year time series is 3765.2. The S-
expression discovered here compares favorably to the 
“correct” “exchange equation” M=PQ/V (with a value of V of 
1.6527) which had a sum of errors of 3920.7  and which came 
within 3% of the actual time series data for  73 of 112 
points in the 28-year time period studied. 
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