Subm tted Novenber 19, 1989 to 2nd Conference Econom cs and
Artificial Intelligence, July 2-6, 1990, Paris

DISCOVERING AN ECONOMETRIC MODEL BY
GENETIC BREEDING OF A POPULATION OF
MATHEMATICAL FUNCTIONS

John R. Koza
Conput er Sci ence Depart nent
Stanford University

Stanford, California 94305
USA

Koza@ol ya. St anf ord. Edu
415- 94| - 0336

Keywords: 2.2 Macro- and Micro-Economic Models



DISCOVERING AN ECONOMETRIC MODEL BY
GENETIC BREEDING MATHEMATICAL FUNCTIONS

John R. Koza
Comput er Sci ence Depart nent
Stanford University
Stanford, California 94305 USA
Koza@ol ya. St anf or d. Edu
415- 94l - 0336

Abstract: This paper reports on a new “genetic conputing”
paradi gm for solving problens. In this new artificial

I ntelligence paradi gm popul ati ons of conputer prograns are
genetically bred using genetic operations patterned after
sexual reproduction and based on Darw ni an principles of
reproduction and survival of the fittest. The paradigmis
illustrated by redi scovering the well-known nultiplicative
(non-1linear) “exchange equation” M=PQ V.
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1.0 THE “SYMBOLIC REGRESSION” PROBLEM

An inportant problemin many areas of science, including
econom cs, is finding the enpirical relationship underlying
t he observed nuneric values of various variabl es nmeasuring
a system Langley and Zytkow (1989) discuss efforts to
apply artificial intelligence techniques to this problem

In many conventional methods for nodeling, one begins by
selecting the size and shape of the mathematical nodel.
Oten this choice is a linear nodel. After making this
sel ection, one then tries to find the values of certain
constants and coefficients required by the particul ar nodel
SO as to attain the best fit between the observed data and
the nodel. But, in many cases, the nobst inportant issue is
the size and shape of the mathematical nodel itself. Thus,
the real problem involves finding the entire functional
form for the nodel (i.e. both the functional form and the
numeric coefficients and constants) that best fits observed
enpirical data. The new “genetic conputing” (hierarchical
genetic algorithm paradigm described in this paper



searches a space of functional forns to solve this problem
of “synbolic regression” to find a functional form fitting
t he observed dat a.
2.0 BACKGROUND ON GENETIC ALGORITHMS
Genetic algorithns are mat hemati cal al gorithns that
transform popul ati ons of individual mathematical objects
(typically fixed-length binary character strings) into new
popul ati ons using operations patterned after natura
genetic operations such as sexual reconbination (crossover)
and fitness proportionate reproduction (Darw nian survival
of the fittest). Cenetic algorithnms begin with an initia
popul ati on of individuals (typically randomy generated)
and then iteratively (1) evaluate the individuals in the
popul ation for fitness with respect to the problem
envi ronment and (2) perform genetic operations on various
i ndividuals in the population to produce a new popul ation.
Prof essor John Holland of the University of M chigan
presented the pioneering formulation of genetic algorithns
for fixed-length character strings in Adaptation in Natura
and Artificial Systems (Holland 1975). Holland established,
anmong ot her things, that genetic algorithns operating on
strings are a mathematically near optinmal approach to
adaptati on when the adaptive process is viewed as a set of
si mul taneous nul ti-armed sl ot machine problens requiring an
optimal allocation of future trials given currently
avai l abl e informati on. Recent work on genetic al gorithns
can be surveyed in CGol dberg (1989).
3.0 THE “GENETIC COMPUTING” PARADIGM
In the recently devel oped new “genetic conputing”
(hi erarchical genetic algorithm paradigm the individuals
in the genetic population are hierarchical conpositions of
functions (i.e. S-expressions in the LISP progranm ng
| anguage) rather than the fixed-1ength character strings.

Popul ati ons of LISP S-expressions (conmputer prograns) can
be genetically bred to solve a variety of different
problenms in several different areas of artificia
intelligence and synbolic processing (Koza 1989, Koza 1990,
Koza and Keane 1990), including (1) optimal control (e.g.
finding a non-linear function that is a tinme-optinal

control strategy for balancing a broom, (2) sequence

i nduction (e.g. inducing a recursive conputationa
procedure for the Fibonacci sequence), (3) planning
problens (e.g. a robotic action sequence for stacking

bl ocks in order), (4) automatic programmng (e.g.

di scovering a conputational procedure for solving pairs of
| i near equations, solving quadratic equations for conplex
roots, and discovering trigononetric identities), (5)
machi ne | earning of functions (e.g. |learning the exclusive-
or function, the parity function, and a Bool ean nultipl exer
function), (6) pattern recognition (e.g. translation-

i nvariant recognition of a sinple one-dinensional shape in
a linear retina), and (7) various conputational problens



(e.g. finding an infinite series for the exponentia
function and finding prines).

Probl ens such as the above can be viewed as a search for a
conpositions of functions in the space of possible
conpositions of functions. In particular, the search space
is the hyperspace of LISP S-expressions (i.e. conposition
of functions, conputer prograns, control strategies,
robotic action plans) conposed of various standard

mat hemati cal functions, various |ogical functions, various
standard programm ng operations, and various donain
specific functions and atons appropriate for the given
probl em

In fact, problens such as the above can be expeditiously
solved only if the flexibility found in conputer prograns
is available. This flexibility includes the ability to
performiterations and recursions to achieve the desired
result, to performalternative conputations conditioned on
t he outconme of internediate cal culations, to perform
conmput ations on variables of many different types, and to
define and subsequently use conputed val ues and sub-

progr amns.

As wll be seen, the conposition of functions required to
solve the problens described above wll, in each case,
energe from a sinulated evolutionary process using genetic
operations patterned after sexual reproduction and based on
Darwi ni an principles of reproduction and survival of the
fittest.

In each case, this process wll start with an initial
popul ation  of randomy generated LISP S-expressions
conposed of functions and atons appropriate to the problem
domain (and at |east sufficient to solve the problem

The raw fitness of any such LISP S-expression in a given
probl em environnent can be naturally neasured by the sum of
the di stances (taken for all the environnental cases in the
test suite) between the point in the solution space created
by the S-expression and the correct point in the solution
space. The closer this sum of differences is to zero, the
better the S-expression. Predictably, randomy generated
initial S-expressions wll have exceedingly poor fitness.
Nonet hel ess, sone individuals in the population wll be
somewhat nore fit than others. And, in the valley of the
blind, the one-eyed man is King.

Then, a process of sexual reproduction anong two parental

S-expressions wll be used to «create offspring S
expressions. At |east one of two parental S-expressions is
selected in proportion to fitness using Darw nian

principles of reproduction and survival of the fittest. The
offspring S-expressions resulting from the process of



sexual reproduction are conposed of sub- expr essi ons
("building blocks") from their parents. In particular, the
crossover (reconbination) operation creates new offspring
S-expressions by exchanging sub-trees (i.e. sub-lists)
between the two parents at randomy selected points. Then

the new population of offspring (i.e. a new generation)
repl aces the current population (i.e. parents).

This process using the operations of Darw nian fitness
proportionate repr oducti on and genetic crossover
(reconbi nation) tends to produce popul ations which, over a
period of generations, exhibit increasing average fitness
in dealing with their environment and which can robustly
(i1.e. rapidly and effectively) adapt to changes in their
envi ronment .

The dynamic variability of the size and shape of the
conputer prograns that are increnentally developed along
the way towards a solution is also an essential aspect of

the paradigm |In each case, it wuld be difficult and
unnatural to try to specify the size and shape of the
eventual solution in advance. Mreover, the specification

in advance of the size and shape of the solution to the
probl em narrows the w ndow by which the system views the
world and mght well preclude finding the solution to the
problem The results of the genetic conputing paradigm
process are inherently hierarchical.

4.0 AN EXAMPLE --- THE “EXCHANGE EQUATION”

The problem of discovering such enpirical relationships can
be illustrated by the well-know econonetric “exchange
equation” M-PQV, which relates the noney supply M price
level P, gross national product Q and the velocity of
nmoney V of an econony. Suppose that our goal is to find the
rel ati onship between quarterly values of the noney supply
M2 and the three other elenents of the equation.

In particular, suppose we are given the 112 quarterly
values (from 1961:1 to 1988:4) of four econonetric tine
series. The first tine series is “G\NP82" (i.e. the annual
rate for the United States gross national product in
billions of 1982 dollars). The second tine series is “"QD
(i.e.the gross national product deflator normalized to 1.0
for 1982). The third series is “FYGw” (i.e. the nonthly
interest rate yields of 3-nmonth Treasury bills, averaged
for each quarter). The fourth series is “M” (i.e. the
nmont hly val ues of the seasonally adjusted noney stock M in
billions of dollars, averaged for each quarter). The tine
series used here were obtained from the ClTlIBASE data base
of machi ne-readabl e econonetric tinme series (C tybank 1989)
and were entered into an Apple Mcro-Explorer conputer
(i.e. a Macintosh Il conputer with a Texas Instruments LISP
board) and then ported into an Explorer LISP machine using



an Et her net.

The actual Jlong-term historic postwar value of the M
velocity of nmoney in the United States is 1.6527 (Hallnman
et. al. 1989) so that the *“correct” solution is the
mul tiplicative (non-linear) relationship
M = G G\P82

1. 6527

However, we are not told a priori whether the functional
relati onship between the given observed data (the three
i ndependent variables) and the target function (the

dependent vari abl e M) IS l'i near, mul tiplicative,
pol ynom al, exponential, logarithmc, or otherw se. The set
of available functions for this problemis F = {+, -, *, %

EXP, RLOG}. The set of available atons for this problemis
A = {G\P82, @D, FYGWB}. They provide access to the val ues
of the 28-year tinme series for particular quarters. W are
not told that the addition, subtraction, exponential, and
logarithmc functions and the tinme series for the 3-nonth
Treasury bill yields (FYGWB) are irrelevant to the problem

Note that the restricted logarithm function RLOG used here
is the logarithm of the absolute value and returns 0 for an
argunment of 0. Note also that the restricted division
function % returns a value of O if division by 0 is
att enpt ed.

A popul ation size of 300 LISP S-expressions was used. In
generating the initial random population (generation O0),
various random real-valued constants were inserted at
random as atons anongst the initial random LISP S
expr essi ons. The initial random popul ati on was,
predi ctably, highly unfit. In one fairly typical run, none
of the 300 individual S-expressions in the initial random
popul ation came within 3% of any of the 112 environnental
data points in the tine series for M. The sum of errors
between that best S-expression and the actual tine series
was very large (88448). Simlarly, the best individuals in
generations 1 through 4 cane close to the actual tine
series in only a small nunber of cases (i.e. 7, 2, 3, and 5
of the 112 cases, respectively) and also had |arge sum of
errors (72342, 70298, 26537, 23627). However, by generation
6, the best individual canme close to the actual tine series
in 41 of the 112 environmental cases and had an sum of
errors of 6528.

In generation 9, the follow ng S-expression for M energed:
(* GD (% G\NP82 (% (% -.587 0.681) (RLOG -0.587)))).

Note that this S-expression for M2 is equivalent to

(% (* GD G\P82) 1.618),

or, nore famliarly,



M = G _G\P82
1.618

The S-expression discovered in the 9th generation cones
within 3% of the actual values of M2 for 82 of the 112
points in the 28-year tine series. The sum of the absolute
errors between the S-expression discovered and the 112
points of the 28-year tinme series is 3765.2. The S
expression discovered here conpares favorably to the
“correct” "“exchange equation” MPQV (with a value of V of
1.6527) which had a sum of errors of 3920.7 and which cane
within 3% of the actual tinme series data for 73 of 112
points in the 28-year tinme period studied.
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