
 1

Submitted November 19, 1989 to 2nd Conference Economics and
Artificial Intelligence, July 2-6, 1990, Paris

 DISCOVERING AN ECONOMETRIC MODEL BY
. GENETIC BREEDING OF A POPULATION OF
 MATHEMATICAL FUNCTIONS

 John R. Koza
 Computer Science Department
 Stanford University
 Stanford, California 94305
 USA
 Koza@Polya.Stanford.Edu
 415-94l-0336

 Keywords: 2.2 Macro- and Micro-Economic Models

 2

 DISCOVERING AN ECONOMETRIC MODEL BY .
GENETIC BREEDING MATHEMATICAL FUNCTIONS

 John R. Koza
 Computer Science Department
 Stanford University
 Stanford, California 94305 USA
 Koza@Polya.Stanford.Edu
 415-94l-0336

Abstract: This paper reports on a new “genetic computing”
paradigm for solving problems. In this new artificial
intelligence paradigm, populations of computer programs are
genetically bred using genetic operations patterned after
sexual reproduction and based on Darwinian principles of
reproduction and survival of the fittest. The paradigm is
illustrated by rediscovering the well-known multiplicative
(non-linear) “exchange equation” M=PQ/V.

Abstract: This paper reports on a new “genetic computing”
paradigm for solving problems. In this new artificial
intelligence paradigm, populations of computer programs are
genetically bred using genetic operations patterned after
sexual reproduction and based on Darwinian principles of
reproduction and survival of the fittest. The paradigm is
illustrated by rediscovering the well-known multiplicative
(non-linear) “exchange equation” M=PQ/V.

Keywords: 2.2 Macro- and Micro-Economic Models

1.0 THE “SYMBOLIC REGRESSION” PROBLEM
An important problem in many areas of science, including
economics, is finding the empirical relationship underlying
the observed numeric values of various variables measuring
a system. Langley and Zytkow (1989) discuss efforts to
apply artificial intelligence techniques to this problem.

In many conventional methods for modeling, one begins by
selecting the size and shape of the mathematical model.
Often this choice is a linear model. After making this
selection, one then tries to find the values of certain
constants and coefficients required by the particular model
so as to attain the best fit between the observed data and
the model. But, in many cases, the most important issue is
the size and shape of the mathematical model itself. Thus,
the real problem involves finding the entire functional
form for the model (i.e. both the functional form and the
numeric coefficients and constants) that best fits observed
empirical data. The new “genetic computing” (hierarchical
genetic algorithm) paradigm described in this paper

 3

searches a space of functional forms to solve this problem
of “symbolic regression” to find a functional form fitting
the observed data.

2.0 BACKGROUND ON GENETIC ALGORITHMS
Genetic algorithms are mathematical algorithms that
transform populations of individual mathematical objects
(typically fixed-length binary character strings) into new
populations using operations patterned after natural
genetic operations such as sexual recombination (crossover)
and fitness proportionate reproduction (Darwinian survival
of the fittest). Genetic algorithms begin with an initial
population of individuals (typically randomly generated)
and then iteratively (1) evaluate the individuals in the
population for fitness with respect to the problem
environment and (2) perform genetic operations on various
individuals in the population to produce a new population.
Professor John Holland of the University of Michigan
presented the pioneering formulation of genetic algorithms
for fixed-length character strings in Adaptation in Natural
and Artificial Systems (Holland 1975). Holland established,
among other things, that genetic algorithms operating on
strings are a mathematically near optimal approach to
adaptation when the adaptive process is viewed as a set of
simultaneous multi-armed slot machine problems requiring an
optimal allocation of future trials given currently
available information. Recent work on genetic algorithms
can be surveyed in Goldberg (1989).
3.0 THE “GENETIC COMPUTING” PARADIGM
In the recently developed new “genetic computing”
(hierarchical genetic algorithm) paradigm, the individuals
in the genetic population are hierarchical compositions of
functions (i.e. S-expressions in the LISP programming
language) rather than the fixed-length character strings.

Populations of LISP S-expressions (computer programs) can
be genetically bred to solve a variety of different
problems in several different areas of artificial
intelligence and symbolic processing (Koza 1989, Koza 1990,
Koza and Keane 1990), including (1) optimal control (e.g.
finding a non-linear function that is a time-optimal
control strategy for balancing a broom), (2) sequence
induction (e.g. inducing a recursive computational
procedure for the Fibonacci sequence), (3) planning
problems (e.g. a robotic action sequence for stacking
blocks in order), (4) automatic programming (e.g.
discovering a computational procedure for solving pairs of
linear equations, solving quadratic equations for complex
roots, and discovering trigonometric identities), (5)
machine learning of functions (e.g. learning the exclusive-
or function, the parity function, and a Boolean multiplexer
function), (6) pattern recognition (e.g. translation-
invariant recognition of a simple one-dimensional shape in
a linear retina), and (7) various computational problems

 4

(e.g. finding an infinite series for the exponential
function and finding primes).

Problems such as the above can be viewed as a search for a
compositions of functions in the space of possible
compositions of functions. In particular, the search space
is the hyperspace of LISP S-expressions (i.e. composition
of functions, computer programs, control strategies,
robotic action plans) composed of various standard
mathematical functions, various logical functions, various
standard programming operations, and various domain
specific functions and atoms appropriate for the given
problem.

In fact, problems such as the above can be expeditiously
solved only if the flexibility found in computer programs
is available. This flexibility includes the ability to
perform iterations and recursions to achieve the desired
result, to perform alternative computations conditioned on
the outcome of intermediate calculations, to perform
computations on variables of many different types, and to
define and subsequently use computed values and sub-
programs.

As will be seen, the composition of functions required to
solve the problems described above will, in each case,
emerge from a simulated evolutionary process using genetic
operations patterned after sexual reproduction and based on
Darwinian principles of reproduction and survival of the
fittest.

In each case, this process will start with an initial
population of randomly generated LISP S-expressions
composed of functions and atoms appropriate to the problem
domain (and at least sufficient to solve the problem).

The raw fitness of any such LISP S-expression in a given
problem environment can be naturally measured by the sum of
the distances (taken for all the environmental cases in the
test suite) between the point in the solution space created
by the S-expression and the correct point in the solution
space. The closer this sum of differences is to zero, the
better the S-expression. Predictably, randomly generated
initial S-expressions will have exceedingly poor fitness.
Nonetheless, some individuals in the population will be
somewhat more fit than others. And, in the valley of the
blind, the one-eyed man is king.

Then, a process of sexual reproduction among two parental
S-expressions will be used to create offspring S-
expressions. At least one of two parental S-expressions is
selected in proportion to fitness using Darwinian
principles of reproduction and survival of the fittest. The
offspring S-expressions resulting from the process of

 5

sexual reproduction are composed of sub-expressions
("building blocks") from their parents. In particular, the
crossover (recombination) operation creates new offspring
S-expressions by exchanging sub-trees (i.e. sub-lists)
between the two parents at randomly selected points. Then,
the new population of offspring (i.e. a new generation)
replaces the current population (i.e. parents).

This process using the operations of Darwinian fitness
proportionate reproduction and genetic crossover
(recombination) tends to produce populations which, over a
period of generations, exhibit increasing average fitness
in dealing with their environment and which can robustly
(i.e. rapidly and effectively) adapt to changes in their
environment.

The dynamic variability of the size and shape of the
computer programs that are incrementally developed along
the way towards a solution is also an essential aspect of
the paradigm. In each case, it would be difficult and
unnatural to try to specify the size and shape of the
eventual solution in advance. Moreover, the specification
in advance of the size and shape of the solution to the
problem narrows the window by which the system views the
world and might well preclude finding the solution to the
problem. The results of the genetic computing paradigm
process are inherently hierarchical.

4.0 AN EXAMPLE --- THE “EXCHANGE EQUATION”
The problem of discovering such empirical relationships can
be illustrated by the well-known econometric “exchange
equation” M=PQ/V, which relates the money supply M, price
level P, gross national product Q, and the velocity of
money V of an economy. Suppose that our goal is to find the
relationship between quarterly values of the money supply
M2 and the three other elements of the equation.

In particular, suppose we are given the 112 quarterly
values (from 1961:1 to 1988:4) of four econometric time
series. The first time series is “GNP82” (i.e. the annual
rate for the United States gross national product in
billions of 1982 dollars). The second time series is “GD”
(i.e.the gross national product deflator normalized to 1.0
for 1982). The third series is “FYGM3” (i.e. the monthly
interest rate yields of 3-month Treasury bills, averaged
for each quarter). The fourth series is “M2” (i.e. the
monthly values of the seasonally adjusted money stock M2 in
billions of dollars, averaged for each quarter). The time
series used here were obtained from the CITIBASE data base
of machine-readable econometric time series (Citybank 1989)
and were entered into an Apple Micro-Explorer computer
(i.e. a Macintosh II computer with a Texas Instruments LISP
board) and then ported into an Explorer LISP machine using

 6

an Ethernet.

The actual long-term historic postwar value of the M2
velocity of money in the United States is 1.6527 (Hallman
et. al. 1989) so that the “correct” solution is the
multiplicative (non-linear) relationship

M2 = GD* GNP82
 1.6527

However, we are not told a priori whether the functional
relationship between the given observed data (the three
independent variables) and the target function (the
dependent variable M2) is linear, multiplicative,
polynomial, exponential, logarithmic, or otherwise. The set
of available functions for this problem is F = {+, -, *, %,
EXP, RLOG}. The set of available atoms for this problem is
A = {GNP82, GD, FYGM3}. They provide access to the values
of the 28-year time series for particular quarters. We are
not told that the addition, subtraction, exponential, and
logarithmic functions and the time series for the 3-month
Treasury bill yields (FYGM3) are irrelevant to the problem.

Note that the restricted logarithm function RLOG used here
is the logarithm of the absolute value and returns 0 for an
argument of 0. Note also that the restricted division
function % returns a value of 0 if division by 0 is
attempted.

A population size of 300 LISP S-expressions was used. In
generating the initial random population (generation 0),
various random real-valued constants were inserted at
random as atoms amongst the initial random LISP S-
expressions. The initial random population was,
predictably, highly unfit. In one fairly typical run, none
of the 300 individual S-expressions in the initial random
population came within 3% of any of the 112 environmental
data points in the time series for M2. The sum of errors
between that best S-expression and the actual time series
was very large (88448). Similarly, the best individuals in
generations 1 through 4 came close to the actual time
series in only a small number of cases (i.e. 7, 2, 3, and 5
of the 112 cases, respectively) and also had large sum of
errors (72342, 70298, 26537, 23627). However, by generation
6, the best individual came close to the actual time series
in 41 of the 112 environmental cases and had an sum of
errors of 6528.

In generation 9, the following S-expression for M2 emerged:
(* GD (% GNP82 (% (% -.587 0.681) (RLOG -0.587)))).
Note that this S-expression for M2 is equivalent to
(% (* GD GNP82) 1.618),
or, more familiarly,

 7

M2 = GD* GNP82
 1.618

The S-expression discovered in the 9th generation comes
within 3% of the actual values of M2 for 82 of the 112
points in the 28-year time series. The sum of the absolute
errors between the S-expression discovered and the 112
points of the 28-year time series is 3765.2. The S-
expression discovered here compares favorably to the
“correct” “exchange equation” M=PQ/V (with a value of V of
1.6527) which had a sum of errors of 3920.7 and which came
within 3% of the actual time series data for 73 of 112
points in the 28-year time period studied.

REFERENCES

Citibank, N. A. CITIBASE: Citibank Economic Database
(Machine Readable Magnetic Data File), 1946 - Present. New
York: Citibank N.A. 1989.

Goldberg, D. E. Genetic Algorithms in Search, Optimization,
and Machine Learning. Reading, MA: Addison-Wesley l989.

Hallman, Jeffrey J., Porter, Richard D., Small, David H. M2
per Unit of Potential GNP as an Anchor for the Price Level.
Washington,DC: Board of Governors of the Federal Reserve
System. Staff Study 157, April 1989.

Holland, John H. Adaptation in Natural and Artificial
Systems, Ann Arbor, MI: University of Michigan Press 1975.

Koza, John R. Hierarchical genetic algorithms operating on
populations of computer programs. Proceedings of the 11th
International Joint Conference on Artificial Intelligence
(IJCAI). San Mateo, CA: Morgan Kaufman 1989.

Koza, John R. Genetic computing using hierarchical genetic
algorithms. Machine Learning. In press. 1990.

Koza, John R. and Keane, Martin. Cart Centering and broom
balancing by genetically breeding populations of control
strategy programs. Proceedings of International Joint
Conference on Neural Networks - January 1990.

Langley, P. and Zytkow, J. Data-driven approaches to
empirical discovery.Artificial Intelligence.40(1989)283-
312.

