

Automated Discovery of Detectors and Iteration-Performing Calculations to

Recognize Patterns in Protein Sequences Using Genetic Programming

John R. Koza
Computer Science Department

Stanford University
Stanford, California 94305-2140

 Koza@CS.Stanford.Edu, 415-941-0336

Abstract

This paper describes an automated process for
the dynamic creation of a pattern-recognizing
computer program consisting of initially-unknown
detectors, an initially-unknown iterative
calculation incorporating the as-yet-uncreated
detectors, and an initially-unspecified final
calculation incorporating the results of the as-yet-
uncreated iteration. The program's goal is to
recognize a given protein segment as being a
transmembrane domain or non-transmembrane
area. The recognizing program to solve this
problem will be evolved using the recently-
developed genetic programming paradigm.
Genetic programming starts with a primordial
ooze of randomly generated computer programs
composed of available programmatic ingredients
and then genetically breeds the population using
the Darwinian principle of survival of the fittest
and the genetic crossover (sexual recombination)
operation. Automatic function definition enables
genetic programming to dynamically create
subroutines (detectors). When cross-validated,
the best genetically-evolved recognizer achieves
an out-of-sample correlation of 0.968 and an out-
of-sample error rate of 1.6%. This error rate is
better than that recently reported for five other
methods.

1. Statement of the Problem
The goal in this paper is to use genetic programming with
automatically defined functions (ADFs) to create a
computer program for recognizing a given subsequence of
amino acids in a protein as being a transmembrane domain
or non-transmembrane area of the protein. The automated
process that will create the recognizing program for this
problem will be given a set of differently-sized protein
segments and the correct classification for each segment.
The recognizing program will consist of initially-
unspecified detectors, an initially-unspecified iterative
calculation incorporating the as-yet-undiscovered
detectors, and an initially-unspecified final calculation

incorporating the results of the as-yet-undiscovered
iteration.
Although genetic programming does not know the
chemical characteristics or biological meaning of the
sequence of amino acids appearing in the protein segment,
we will show that the results have an interesting biological
interpretation. Of course, the reader may ignore the
biological interpretation and view this problem as a one-
dimensional pattern recognition problem.
Genetic programming is a domain-independent method for
evolving computer programs that solve, or approximately
solve, problems. To accomplish this, genetic programming
starts with a primordial ooze of randomly generated
computer programs composed of the available
programmatic ingredients, and breeds the population or
programs using the Darwinian principle of survival of the
fittest and an analog of the naturally occurring genetic
operation of crossover (sexual recombination). Automatic
function definition enables genetic programming to
dynamically create subroutines dynamically during the run.
The question arises as to whether genetic programming can
evolve a recognizing program consisting of initially
unspecified detectors, an initially unspecified iterative
calculation incorporating the as-yet-undiscovered
detectors, and an initially unspecified final calculation
incorporating the results of the as-yet-undiscovered
iteration. The genetically evolved program in this paper
accomplishes this. It achieves a better error rate than all
four algorithms described in Weiss et al. (1993). When
analyzed, the genetically evolved program has a simple
biological interpretation.
2. Transmembrane Domains in Proteins
Proteins are polypeptide molecules composed of sequences
of amino acids. There are 20 amino acids (residues) in the
alphabet of proteins. They are denoted by the letters A, C,
D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y.
Broadly speaking, the sequence of amino acids in a protein
determines the locations of its atoms in three-dimensional
space; this, in turn, determines the biological structure and
function of a protein (Anfinsen 1973).
A transmembrane protein is a protein that finds itself
embedded in a membrane (e.g., a cell wall) in such a way

that part of the protein is located on one side of the
membrane, part is within the membrane, and part is on the
opposite side of the membrane. Transmembrane proteins
often cross back and forth through the membrane several
times and have short loops immersed in the different
milieu on each side of the membrane. The length of each
transmembrane domain and each loop or other non-
transmembrane area are usually different. Transmembrane
proteins perform functions such as sensing the presence of
certain chemicals or certain stimuli on one side of the
membrane and transporting chemicals or transmitting
signals to the other side of the membrane. Understanding
the behavior of transmembrane proteins requires
identification of their transmembrane domains.
Biological membranes are of hydrophobic (water-hating)
composition. The amino acids in the transmembrane
domain of a protein that are exposed to the membrane
therefore have a pronounced tendency to be hydrophobic.
This tendency toward hydrophobicity is an overall
distributional characteristic of the entire segment (not of
any particular few amino acids of the segment). Many
transmembrane domains are α-helices and our discussion
here is limited to α-helical transmembrane domains.
For example, a successful recognizing program should
identify the following 24-residue segment from positions
96–119 of mouse peripheral myelin protein 22 (identified
as "PM22_MOUSE" in the SWISS-PROT computerized
database of proteins) as a transmembrane domain:

(1) FYITGFFQILAGLCVMSAAAIYTV,
Conversely, a successful program should identify the
following 27-residue segment between positions 35–61 as
being in a non-transmembrane area of the protein:

(2) TTDLWQNCTTSALGAVQHCYSSSVSEW
This classification problem will be solved by genetic
programming without reference to any knowledge about
the hydrophobicity of the 20 amino acids; however, we
will use such knowledge to explain the problem (and, later,
to interpret the genetically evolved program). Two thirds
of the 24 residues of segment (1) are in the category
consisting of I, V, L, F, C, M, or A having the highest
numerical values of hydrophobicity on Kyte-Doolittle
scale. If a human were clustering the 20 hydrophobicity
values into three categories with the benefit of knowledge
of the Kyte-Doolittle hydrophobicity scale, these seven
residues would be categorized into a hydrophobic
category. Seven of the 24 residues of segment (1) (i.e.,
two Gs, two Ts, two Ys, and one S) are in the category
consisting of G, T, S, W, Y, P (which the knowledgeable
human would cluster into a neutral category). Only one
residue of segment (1) (i.e., the Q at position 103) is in the
category consisting of H, Q, N, E, D, K, R (which the
knowledgeable human would cluster into a hydrophilic
category). Even through there are some residues from all
three categories in segments(1), segment (1) is

predominantly hydrophobic and is, in fact, a
transmembrane domain of PM22_MOUSE.
In contrast, 13 of the 27 (about half) of the residues of
segment (2) are neutral, eight (about a quarter) are
hydrophobic, and six (about a quarter) are hydrophilic.
This distribution is very different from that of segment (1).
Segment (2) is, in fact, a non-transmembrane area.
3. Background on Genetic Programming
John Holland's pioneering Adaptation in Natural and
Artificial Systems (1975, 1992) described how the
evolutionary process in nature can be applied to artificial
systems using the genetic algorithm operating on fixed
length character strings.
Genetic programming is an extension of the genetic
algorithm in which the genetic population consists of
computer programs (that is, compositions of primitive
functions and terminals). As described in Genetic
Programming: On the Programming of Computers by
Means of Natural Selection (Koza 1992), genetic
programming is a domain independent method that
genetically breeds populations of computer programs to
solve problems by executing the following three steps:
(1) Generate an initial population of random computer

programs composed of the primitive functions and
terminals of the problem.

(2) Iteratively perform the following sub-steps until the
termination criterion has been satisfied:
(a) Execute each program in the population and

assign it a fitness value according to how well it
solves the problem.

(b) Create a new population of programs by applying
the following two primary operations. The
operations are applied to program(s) in the
population selected with a probability based on
fitness (i.e., the fitter the program, the more likely
it is to be selected).
(i) Reproduction: Copy an existing program to

the new population.
(ii) Crossover: Create two new offspring

programs for the new population by
genetically recombining randomly chosen
parts of two existing programs. The genetic
crossover (sexual recombination) operation
(described below) operates on two parental
computer programs and produces two
offspring programs using parts of each
parent.

(3) The single best computer program in the population
produced during the run is designated as the result of
the run of genetic programming. This result may be a
solution (or approximate solution) to the problem.

Recent advances in genetic programming are described in
Kinnear (1994). A videotape visualization of numerous
applications of genetic programming can be found in Koza
and Rice (1992) and Koza and Rice (1994).

3.1. Crossover
The genetic crossover operation operates on two parental
computer programs selected with a probability based on
fitness and produces two new offspring programs
consisting of parts of each parent.
For example, consider the following computer program
(shown here as a LISP symbolic expression):
(+ (* 0.234 Z) (- X 0.789)).
We would ordinarily write this LISP S-expression as
0.234z + x − 0.789. This two-input, one-output
computer program takes X and Z as inputs and produces a
single floating point output.
Also, consider a second program:
(* (* Z Y) (+ Y (* 0.314 Z))).

This program is equivalent to zy(y + 0.314z).
The crossover operation creates new offspring by
exchanging sub-trees (i.e., subroutines, sublists,
subprocedures, subfunctions) between the two parents.
The two parents are typically of different sizes and shapes.
The sub-trees to be exchanged (called crossover
fragments) are selected at random by selecting crossover
points at random. Suppose that crossover points are the
multiplication (*) in the first parent and the addition (+) in
the second parent. The two crossover fragments are the
underlined sub-programs (sub-lists) in the two parents.
The two offspring resulting from crossover are
(+ (+ Y (* 0.314 Z)) (- X 0.789)) and
(* (* Z Y) (* 0.234 Z)).
Assuming closure of the functions and terminals of which
the programs are composed, crossover produces
syntactically and semantically valid programs as offspring.
3.2. Automatic Function Definition
Automatic function definition is used to enable genetic
programming to evolve subroutines during a run.
Automatic function definition can be implemented within
the context of genetic programming by establishing a
constrained syntactic structure for the individual programs
in the population as described in Genetic Programming II:
Scalable Automatic Programming by Means of
Automatically Defined Functions (Koza 1994). Each
program in the population contains one (or more) function-
defining branches, one main result-producing branch, and
possibly other types of branches (such as iteration-
performing branches). The function-defining branch(es)
define the automatically defined functions ADF0, ADF1,
etc. The result-producing branch may invoke the ADFs.
The value returned by the overall program is the value
returned by the result-producing branch.
The initial random generation of the population
(generation 0) is created so that every individual program
in the population has a constrained syntactic structure
consisting of the problem's particular arrangement of
branches. Each branch is composed of functions and
terminals appropriate to that branch. This constrained

syntactic structure must be preserved as the run proceeds
from generation to generation. Structure-preserving
crossover is implemented by limiting crossover to points
lying within the bodies of the various branches (branch
typing). The crossover point for the first parent is
randomly selected, without restriction, from the body of
any one of the branches. However, once this selection is
made for the first parent, the crossover point of the second
parent is randomly selected from the body from the same
type of branch. This method of performing crossover
preserves the syntactic validity of all offspring throughout
the run. As the run progresses, genetic programming will
evolve different function-defining branches, different
result-producing branches, and different ways of calling
these automatically defined functions from the result-
producing branch.
4. Preparatory Steps
In applying genetic programming with automatic function
definition to a problem, there are six major preparatory
steps. These steps involve determining
(1) the set of terminals for each branch,
(2) the set of functions for each branch,
(3) the fitness measure,
(4) the parameters and variables for controlling the run,
(5) the result designation and termination method and
(6) the architecture of the overall program.
4.1. Architecture of the Overall Program
We begin by deciding that the overall architecture of the
yet-to-be-evolved recognizing program will have to be
capable of categorizing the residues into useful categories,
then iteratively performing some arithmetic calculations
and conditional operations on the categories, and finally
performing some arithmetic calculations and conditional
operations to reach a conclusion. This suggests an overall
architecture for the recognizing program of several
automatically defined functions (say ADF0, ADF1, ADF2)
to serve as detectors for categorization, an iteration-
performing branch, IPB0, for performing arithmetic
operations and conditional operations for examining the
residues of the protein segment using the as-yet-
undiscovered detectors, and a result-producing branch,
RPB0, for performing arithmetic and conditional
operations for reaching a conclusion.
4.2. Function-Defining Branches
Automatically defined functions seem well suited to the
role of dynamically defining categories of the amino acids.
If the automatically defined functions are to play the role
of set formation, each defined function should be able to
interrogate the current residue as to which of the 20 amino
acids it is. Since we anticipate that some numerical
calculations will subsequently be performed on the result
of the categorization of the residues, we employ numerical-
valued logic, rather than Boolean-valued logic returning
the non-numerical values of True and False. One way to

implement this approach is to define 20 numerical-valued
zero-argument logical functions for determining whether
the residue currently being examined is a particular amino
acid. For example, (A?) is the zero-argument residue-
detecting function returning a numerical +1 if the current
residue is alanine (A) but otherwise returning a numerical
–1. A similar residue-detecting function is defined for
each of the 19 other amino acids. Since we envisage that
the automatically defined functions will be used for set
formation, it seems reasonable to include the logical
disjunctive function in the function set of the automatically
defined functions. ORN is the two-argument numerical-
valued disjunctive function returning +1 if either or both of
its arguments are positive, but returning –1 otherwise.
The terminal set for each of the three function-defining
branches (ADF0, ADF1, and ADF2) contains the 20 zero-
argument numerical-valued residue-detecting functions.

Tfd = {(A?), (C?), ... , (Y?)}.
The function set for the three function-defining branches
(ADF0, ADF1, and ADF2) contains only the two-argument
numerically-valued logical disjunctive function.
Ffd = {ORN}.
4.3. Iteration-Performing Branch
Typical computer programs contain iterative operators that
perform some specified work until some condition
expressed by a termination predicate is satisfied. When we
attempt to include iterative operators in genetically-
evolved programs, we face the practical problem that both
the work and the termination predicate are initially created
at random and are subsequently subject to modification by
the crossover operation. Consequently, iterative operators
will, at best, be nested and consume enormous amounts of
computer time or will, at worst, have unsatisfiable
termination predicates and go into infinite loops. This
problem can sometimes be partially alleviated by imposing
arbitrary time-out limits (e.g., on each iterative loop
individually and all iterative loops cumulatively).
In problems where we can envisage one iterative
calculation being usefully performed over a particular
known, finite set, there is an attractive alternative to
permitting imposing arbitrary time-out limits. For such
problems, the iteration can be restricted to exactly one
iteration over the finite set. The termination predicate of
the iteration is thereby fixed and is not subject to
evolutionary modification. Thus, there is no nesting and
there are no infinite loops.
In the case of problems involving the examination of the
residues of a protein, iteration can very naturally be limited
to the ordered set of amino acid residues of the protein
segment involved. Thus, for this problem, we employ one
iteration-performing branch, with the iteration restricted to
the ordered set of amino acid residues in the protein
segment. That is, each time iterative work is performed by
the body of the iteration-performing branch, the current

residue of the protein is advanced to the next residue of the
protein segment until the end of the entire protein segment
is encountered. The result-producing (wrap-up) branch
produces the final output of the overall program.
Useful iterative calculations typically require both an
iteration variable and memory (state). That is, the nature
of the work performed by the body of the iteration-
performing branch typically varies depending on the
current value of the iteration variable. Memory is typically
required to transmit information from one iteration to the
next. In this problem, the same work is executed as many
times as there are residues in a protein segment, so the
iteration variable is the residue at the current position in
the segment. Depending on the problem, the iteration
variable may be explicitly available or be implicitly
available through functions that permit it to be
interrogated. For this problem, the automatically defined
functions provide a way to interrogate the residues of the
protein sequence.
Memory can be introduced into any program by means of
settable variables, M0, M1, M2, and M3. Settable variables
are initialized to some appropriate value (e.g., zero) at the
beginning of the execution of the iteration-performing
branch. These settable variables typically change as a
result of each iteration.
The terminal set for the iteration-performing branch is
Tipb0 = {LEN, M0, M1, M2, M3, ←}.
Here ← represents floating-point random constants
between –10.000 and +10.000 with a granularity of 0.001
and LEN is the length of the current protein segment.
Since we envisage that the iteration-performing branch will
perform numerical calculations and make decisions based
on these calculations, it seems reasonable to include the
four arithmetic operations and a conditional operator in the
function set. We have used the four arithmetic functions
(+, -, *, and %) and the conditional comparative operator
IFLTE (If Less Than or Equal) on many previous
problems, so we include them in the function set for the
iteration-performing branch. The protected division
function % takes two arguments and returns one when
division by 0 is attempted (including 0 divided by 0), and,
otherwise, returns the normal quotient. The four-argument
conditional branching function IFLTE evaluates and
returns its third argument if its first argument is less than or
equal to its second argument and otherwise evaluates and
returns its fourth argument.
Since a numerical calculation is to be performed on the
results of the categorization performed by the function-
defining branches, the functions ADF0, ADF1, and ADF2
are included in the function set for the iteration-performing
branch.
We need a way to change the settable variables M0, M1,
M2, and M3. The one-argument setting function SETM0
can be used to set M0 to a particular value. Similarly, the

setting functions SETM1, SETM2, and SETM3 can be used
to set the respective values of the settable variables M1,
M2, and M3, respectively. Thus, memory can be written
(i.e., the state can be set) with the setting functions,
SETM0, SETM1, SETM2, and SETM3, and memory can be
read (i.e., the state can be interrogated) merely by referring
to the terminals, M0, M1, M2, and M3.
Thus, the function set for the iteration-performing branch,
IPB0, is
Fipb0 = {ADF0, ADF1, ADF2, SETM0, SETM1,

SETM2, SETM3, IFLTE, +, -, *, %}.
taking 0, 0, 0, 1, 1, 1, 1, 4, 2, 2, 2, and 2 arguments.
4.4. Result-Producing Branch
The result-producing (wrap-up) branch then performs a
non-iterative floating-point calculation and produces the
final result of the overall program. The settable variables
M0, M1, M2, and M3 provide a way to pass the results of
the iteration-performing branch to the result-producing
branch.
The terminal set for the result-producing branch, RPB0, is
Trpb0 = {LEN, M0, M1, M2, M3, ←}.
The function set for the result-producing branch RPB0, is
Frpb0 = {IFLTE, +, -, *, %}
taking 4, 2, 2, 2, and 2 arguments, respectively.
A wrapper is used to convert the floating-point value
produced by the result-producing branch into a binary
outcome. If the genetically-evolved program returns a
positive value, the segment will be classified as a
transmembrane domain, but otherwise it will be classified
as a non-transmembrane area.
4.5. Fitness Cases
Release 25 of the SWISS-PROT protein data base (Bairoch
and Boeckmann 1991) contains 248 mouse transmembrane
proteins averaging 499.8 residues in length. Each protein
contains between one and 12 transmembrane domains, the
average being 2.4. The transmembrane domains range in
length from 15 and 101 residues and average 23.0.
123 of the 248 proteins were arbitrarily selected to create
the in-sample set of fitness cases to measure fitness during
the evolutionary process. One of the transmembrane
domains of each of these 123 proteins was selected at
random as a positive fitness case for this in-sample set.
One segment of the same length as a random one of the
transmembrane segments that is not contained in any of the
protein's transmembrane domains was selected from each
protein as a negative fitness case. There are 123 positive
and 123 negative fitness cases in the in-sample set.
The evolutionary process is driven by fitness as measured
by the set of in-sample fitness cases. However, the true
measure of performance for a recognizing program is how
well it generalizes to different cases from the same
problem environment. Thus, 250 out-of-sample fitness

cases (125 positive and 125 negative) were created from
the remaining 125 proteins in a manner similar to the
above. These out-of-sample fitness cases were then used
to validate the performance of the genetically-evolved
programs.
4.6. Fitness Measure
Fitness will measure how well a particular genetically-
evolved recognizing program predicts whether the segment
is, or is not, transmembrane domain. Fitness is measured
over a number of trials, which we call fitness cases. The
fitness cases for this problem consist of protein segments.
When a genetically-evolved recognizing program in the
population is tested against a particular fitness case, the
outcome can be a true-positive, true-negative, false-
positive, or false-negative. Fitness can be measured by the
correlation coefficient C. When the predictions and
observations each take on only two possible values,
correlation is a general, and easily computed, measure for
evaluating the performance of a recognizing program.
The correlation, C, lends itself immediately to being the
measure of raw fitness measure for a genetically evolved
computer program. Since raw fitness ranges between –1.0
and +1.0 (higher values being better), standardized fitness

("zero is best") can then be defined as
1 −C

2
. Standardized

fitness ranges between 0.0 and +1.0, lower values being
better and a value of 0 being the best. A standardized
fitness of 0 indicates perfect agreement between the
predicting program and the observed reality; a
standardized fitness of +1.0 indicates total disagreement;
0.50 indicates that the predictor is no better than random.
The error rate is the number of fitness cases for which the
recognizing program is incorrect divided by the total
number of fitness cases. The error rate is a less general
measure of performance for a recognizing program;
however, Weiss et al. (1993) use the error rate as their
yardstick for comparing three methods in the biological
literature with their new algorithm created using the
SWAP-1 induction technique. Therefore, we present our
final results in terms of both correlation and error rate and
we use error rate for the purpose of comparing results.
4.7. Control Parameters
Population size, M, was 4,000. The maximum number of
generations to be run, G, was set to 21. The other
parameters for controlling the runs of genetic programming
were the default values specified in Koza (1994) and
which have been used for a number of different problems.
5. Results
The best program over 11 runs produced a value of out-of-
sample correlation of 0.968 on generation 20. The in-
sample correlation of 0.976 results from 121 true positives,
122 true negatives, 1 false positive, and 2 false negatives
over the 246 in-sample fitness cases. The out-of-sample
correlation of 0.968 is the result of 123 true positives, 123

true negatives, 2 false positives, and 2 false negatives .
The out-of-sample error rate is only 1.6%. This 105-point
best program is shown below:
(progn (defun ADF0 ()

(values (ORN (ORN (ORN (I?) (H?)) (ORN (P?)
(G?))) (ORN (ORN (ORN (Y?) (N?)) (ORN (T?)
(Q?))) (ORN (A?) (H?))))))
(defun ADF1 ()

(values (ORN (ORN (ORN (A?) (I?)) (ORN (L?)
(W?))) (ORN (ORN (T?) (L?)) (ORN (T?)
(W?))))))
(defun ADF2 ()

(values (ORN (ORN (ORN (ORN (ORN (D?) (E?))
(ORN (ORN (ORN (D?) (E?)) (ORN (ORN (T?)
(W?)) (ORN (Q?) (D?)))) (ORN (K?) (P?)))) (ORN
(K?) (P?))) (ORN (T?) (W?))) (ORN (ORN (E?)
(A?)) (ORN (N?) (R?))))))

(progn (loop-over-residues (SETM0 (+ (- (ADF1)
(ADF2)) (SETM3 M0))))
 (values (% (% M3 M0) (% (% (% (- L -0.53) (*
M0 M0)) (+ (% (% M3 M0) (% (+ M0 M3) (% M1
M2))) M2)) (% M3 M0))))))

Ignoring the three residues common to the definition of
both ADF1 and ADF2, ADF1 returns 1 if the current
residue is I or L and ADF2 returns 1 if the current residue is
D, E, K, R, Q, N, or P. I and L are two of the seven
hydrophobic residues on the Kyte-Doolittle scale. D, E, K,
R, Q, and N are six of the seven hydrophilic residues, and
P is one of the neutral residues.
In the iteration-performing branch of this program from
generation 20, M0 is the running sum of the differences of
the values returned by ADF1 and ADF2. M0 will be
positive only if the hydrophobic residues in the protein
segment are so numerous that the occurrences of I and L
outnumber the occurrences of the six hydrophilic residues
and one neutral residue of ADF2. M3 is the same as the
accumulated value of M0 except that M3 lags M0 by one
residue. Because the contribution to M3 in the iteration-
performing branch of the last residue is either 0 or 1, M3 is
either equal to M0 or is one less than M0.
The result-producing branch is equivalent to

M3
3

M0 (M0 + M3)(Len + 0. 53)

The subexpression (- LEN -0.53) is always positive
and therefore can be ignored in determining whether the
result-producing branch is positive or nonpositive.
Because of the close relationship between M0 and M3,
analysis shows that the result-producing branch identifies a
protein segment as a transmembrane domain whenever the
running sum of the differences, M0, is greater than 0,
except for the special case when M0 = 1 and M3 = 0. This
special case occurs only when the running values of M0
and M3 are tied at 0 and when the very last residue of the
protein segment is I or L (i.e., ADF1 returns 1).

Ignoring this special case, we can summarize the operation
of this overall best-of-all program from generation 20 as
follows: If the number of occurrences of I and L in a given
protein segment exceeds the number of occurrences of D,
E, K, R, Q, N, and P, classify the segment as a
transmembrane domain; otherwise, classify it as a non-
transmembrane area.
6. Conclusions
Table 1 shows the out-of-sample error rate for the four
algorithms for recognizing transmembrane domains
reviewed in Weiss et al. (1993) as well as the out-of-
sample error rate of our best-of-all genetically-evolved
program above. We wrote a computer program to test the
solution discovered by the SWAP-1 induction technique
used in the first experiment of Weiss et al. (1993). Our
implementation of their solution produced an error rate on
our test data identical to the error rate reported by them on
their own test data (i.e., the 2.5% of row 4 of the table).
As can be seen, the error rate of the best-of-all genetically-
evolved program from generation 20 is better than the
error rates of the other four methods reported in the table.
This genetically evolved program is an instance of an
algorithm discovered by an automated learning paradigm
that is superior to that written by human investigators.
In summary, without using foreknowledge of
hydrophobicity, genetic programming with automatic
function definition was able to evolve a successful
recognizing program consisting of initially-unspecified
detectors, an initially-unspecified iterative calculation
incorporating the as-yet-undiscovered detectors, and an
initially-unspecified final calculation incorporating the
results of the as-yet-undiscovered iteration.
Table 1 Comparison of five methods.
Method Error rate
von Heijne 1992 2.8%
Engelman et al. 1986 2.7%
Kyte-Doolittle 1982 2.5%
Weiss et al. 1993 2.5%
Best evolved program 1.6%
7. Acknowledgements
James P. Rice of the Knowledge Systems Laboratory at
Stanford University did the computer programming of the
above on a Texas Instruments Explorer II+ computer.
8. Bibliography
Anfinsen, C. B. 1973. Principles that govern the folding of
protein chains. Science 81: 223-230.
Bairoch, A. and Boeckmann, B. 1991. The SWISS PROT protein
sequence data bank. Nucleic Acids Research 19:2247–2249.
Engelman, D., Steitz, T., and Goldman, A. 1986. Identifying
nonpolar transbilayer helices in amino acid sequences of
membrane proteins. Annual Review of Biophysics and
Biophysiological Chemistry. Volume 15.

Holland, J. H. Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence. University of Michigan Press 1975. Also
available from The MIT Press 1992.
Kinnear, K. E. Jr. (editor). 1994. Advances in Genetic
Programming. The MIT Press.
Koza, J. R. 1992. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. The MIT Press.
Koza, J. R. 1994. Genetic Programming II. The MIT Press.
Koza, J. R., and Rice, J. P. 1992.Genetic Programming: The
Movie. The MIT Press.
Koza, J. R., and Rice, J. P. 1994. Genetic Programming II
Videotape: The Next Generation. The MIT Press.
Kyte, J. and Doolittle, R. 1982. A simple method for displaying
the hydropathic character of proteins. Journal of Molecular
Biology. 157:105-132.
von Heijne, G. Membrane protein structure prediction:
Hydrophobicity analysis and the positive-inside rule. Journal of
Molecular Biology. 225:487–494.
Weiss, S. M., Cohen, D. M., and Indurkhya, N. 1993.
Transmembrane segment prediction from protein sequence data.
In Hunter, L., Searls, D., and Shavlik, J. (editors). Proceedings
of the First International Conference on Intelligent Systems for
Molecular Biology. AAAI Press.

