
 

Version 1 – Submitted December 11, 1998 for Evolution as Computation Workshop (EAC) at DIMACS to be held 
in Princeton, New Jersey on January 11 – 12 (Monday – Tuesday), 1999.  

 
Genetic Programming:  Biologically Inspired 

Computation that Creatively Solves Non-Trivial 
Problems 

 
John R. Koza 

Consulting Professor 
Section on Medical Informatics 

Department of Medicine 
Medical School Office Building 

Stanford University 
Stanford, California 94305 
koza@stanford.edu 

http://www.smi.stanford.edu/people/koza/ 
 

Forrest H Bennett III 
Chief Scientist 

Genetic Programming Inc. 
Box 1669 

Los Altos, California 94023 
forrest@evolute.com 

http://www.genetic-programming.com 
 

David Andre 
Division of Computer Science 

University of California  
Berkeley, California 94720 

dandre@cs.berkeley.edu 
 

Martin A. Keane 
Chief Scientist 

Econometrics Inc. 
111 E. Wacker Dr. 

Chicago, Illinois 60601 
makeane@ix.netcom.com 

 
Abstract 

This paper describes a biologically inspired domain-independent technique, called genetic 
programming, that automatically creates computer programs to solve problems. Starting with a 
primordial ooze of thousands of randomly created computer programs, genetic programming 
progressively breeds a population of computer programs over a series of generations using the 
Darwinian principle of natural selection, recombination (crossover), mutation, gene duplication, 
gene deletion, and certain mechanisms of developmental biology. The technique is illustrated by 
applying it to a non-trivial problem involving the automatic synthesis (design) of a lowpass filter 
circuit.  The evolved results are competitive with human-produced solutions to the problem.  In 
fact, four of the automatically created circuits exhibit human-level creativity and inventiveness, as 
evidenced by the fact that they correspond to four inventions that were patented between 1917 and 
1936.  



 

 

1. Introduction 
One of the central challenges of computer science is to get a computer to solve a problem without explicitly 
programming it.  In particular, it would be desirable to have a problem-independent system whose input is a high-
level statement of a problem's requirements and whose output is a working computer program that solves the given 
problem.  Paraphrasing Arthur Samuel (1959), this challenge concerns 

How can computers be made to do what needs to be done, without being told exactly how to do it? 
As Samuel also explained (Samuel 1983), 

“The aim [is] ... to get machines to exhibit behavior, which if done by humans, would be assumed to 
involve the use of intelligence.” 

Three questions arise: 
• Can computer programs be automatically created? 
• Can automatically created programs be competitive with human-produced programs? 
• Can the automatic process exhibit creativity and inventiveness? 

This paper provides an affirmative answer to all three questions.  
Section 2 describes genetic programming.  Section 3 presents a problem involving the automatic synthesis 

(design) of an analog electrical circuit, namely a lowpass filter. Section 4 details the circuit-constructing functions 
used in applying genetic programming to the problem of analog circuit synthesis. Section 5 presents the preparatory 
steps required for applying genetic programming to the lowpass filter problem. Section 6 shows the results.  

2. Background on Genetic Programming 
Genetic programming is a biologically inspired, domain-independent method that automatically creates a computer 
program from a high-level statement of a problem's requirements.   

John Holland's pioneering book Adaptation in Natural and Artificial Systems (1975) described a domain-
independent algorithm, called the genetic algorithm, based on an evolutionary process involving natural selection, 
recombination, and mutation. In the most commonly used form of the genetic algorithm, each point in the search 
space of the given problem is encoded into a fixed-length string of characters reminiscent of a strand of DNA.  The 
genetic algorithm then conducts a search in the space of fixed-length character strings to find the best (or at least a 
very good) solution to the problem by genetically breeding a population of character strings over a number of 
generations. Numerous practical problems can be solved using the genetic algorithm.  Recent work in the field of 
genetic algorithms is described in Goldberg 1989, Michalewicz 1996, Mitchell 1996, Gen and Cheng 1997, and 
Back 1997.   

Genetic programming is an extension of the genetic algorithm in which the population consists of computer 
programs.  The goal of genetic programming is to provide a domain-independent problem-solving method that 
automatically creates a computer program from a high-level statement of a problem's requirements. Starting with a 
primordial ooze of thousands of randomly created computer programs, genetic programming progressively breeds a 
population of computer programs over a series of generations using the Darwinian principle of natural selection, 
recombination (crossover), mutation, gene duplication, gene deletion, and certain mechanisms of developmental 
biology.  Work on genetic programming is described in Koza 1992; Koza and Rice 1992; Kinnear 1994; Koza 
1994a; Koza 1994b; Angeline and Kinnear 1996; Koza, Goldberg, Fogel, and Riolo 1996; Koza et al 1997; Koza et 
al 1998; Banzhaf, Poli, Schoenauer, and Fogarty 1998, Banzhaf, Nordin, Keller, and Francone 1998; Spector, 
Langdon, O'Reilly, and Angeline 1999; Koza, Bennett, Andre, and Keane 1999, and on the World Wide Web at 
www.genetic-programming.org. The computer programs are compositions of functions (e.g., arithmetic 
operations, conditional operators, problem-specific functions) and terminals (e.g., external inputs, constants, zero-
argument functions). The programs may be thought of as trees whose points are labeled with the functions and 
whose leaves are labeled with the terminals.  

Genetic programming breeds computer programs to solve problems by executing the following three steps:  
(1) Randomly create an initial population of individual computer programs. 
(2) Iteratively perform the following substeps (called a generation) on the population of programs until the 
termination criterion has been satisfied:  

(a) Assign a fitness value to each individual program in the population using the fitness measure. 
(b) Create a new population of individual programs by applying the following three genetic operations. The 
genetic operations are applied to one or two individuals in the population selected with a probability based 
on fitness (with reselection allowed).  



 

(i) Reproduction: Reproduce an existing individual by copying it into the new population. 
(ii) Crossover: Create two new individual programs from two existing parental individuals by genetically 
recombining subtrees from each program using the crossover operation at randomly chosen crossover 
points in the parental individuals.  
(iii) Mutation: Create a new individual from an existing parental individual by randomly mutating one 
randomly chosen subtree of the parental individual. 

(3) Designate the individual computer program that is identified by the method of result designation (e.g., the 
best-so-far individual) as the result of the run of genetic programming. This result may represent a solution (or 
an approximate solution) to the problem.  

Genetic programming starts with an initial population (generation 0) of randomly generated computer programs 
composed of the given primitive functions and terminals. The creation of this initial random population is a blind 
random search of the space of computer programs.  

The computer programs in generation 0 of a run of genetic programming will almost always have exceedingly 
poor fitness. Nonetheless, some individuals in the population will turn out to be somewhat more fit than others. 
These differences in performance are then exploited so as to direct the search into promising areas of the search 
space. The Darwinian principle of reproduction and survival of the fittest and the genetic operation of crossover  
(augmented by occasional mutation) are used to create a new population of offspring programs from the current 
population of computer programs.  

The reproduction operation involves probabilistically selecting a computer program from the current population 
of programs based on fitness (i.e., the better the fitness, the more likely the individual is to be selected) and allowing 
it to survive by copying it into the new population.  

The crossover operation creates new offspring computer programs from two parental programs selected 
probabilistically based on fitness. The parental programs in genetic programming are typically of different sizes and 
shapes. The offspring programs are composed of subexpressions (subtrees, subprograms) from their parents.  

For example, consider the following computer program (presented here as a LISP S-expression):  
(+ (* 0.234 Z) (- X 0.789)), 
which one would ordinarily write as 

0.234 Z + X – 0.789. 
This program takes two inputs (X and Z) and produces a floating point output.  

Also, consider a second program: 
(* (* Z Y) (+ Y (* 0.314 Z))). 

One crossover point is randomly and independently chosen in each parent. Suppose that the crossover points are 
the * in the first parent and the + in the second parent. These two crossover fragments are the subexpressions rooted 
at the crossover points and are underlined in the above two parental computer programs.  

The two offspring resulting from crossover are 
(+ (+ Y (* 0.314 Z)) (- X 0.789)) 
and 
(* (* Z Y) (* 0.234 Z)). 

Crossover creates new computer programs using parts of existing parental programs. Because entire sub-trees 
are swapped, the crossover operation produces syntactically and semantically valid programs as offspring regardless 
of the choice of the two crossover points. The two offspring here are typical of the offspring produced by the 
crossover operation in that they are different from both of their parents and different from each other in size and 
shape. Because programs are selected to participate in the crossover operation with a probability based on fitness, 
crossover allocates future trials to regions of the search space whose programs contain parts of promising programs.   

The mutation operation creates an offspring computer program from one parental program selected based on 
fitness. One mutation point is randomly and independently chosen and the subtree occurring at that point is deleted. 
Then, a new subtree is grown at that point using the same growth procedure as was originally used to create the 
initial random population.   

For example, consider the following parental program (presented as a LISP S-expression) composed of Boolean 
functions and terminals:  
(OR (AND D2 D1 (NOR D0 D1))). 

Suppose that the AND is randomly chosen as the mutation point (out of the seven points in the program tree).  
The three-point subtree rooted at the AND corresponds to the underlined portion of the LISP S-expression above.  
The subtree rooted at the chosen mutation point is deleted.  In this example, the subtree consists of the three points 
(AND D2 D1).  A new subtree, such as  



 

(AND (NOT D0) (NOT D1)), 
is randomly grown using the available functions and terminals and inserted in lieu of the subtree (AND D2 D1). 
The result of the mutation operation is  
(OR ((AND (NOT D0) (NOT D1)) (NOR D0 D1))).  
The offspring here is typical of the offspring produced by the mutation operation in that they is different than its 
parent in size and shape. 

After the genetic operations are performed on the current population, the population of offspring (i.e., the new 
generation) replaces the old population (i.e., the old generation). Each individual in the new population of programs 
is then measured for fitness, and the process is repeated over many generations. 

The dynamic variability of the computer programs that are created during the run are important features of 
genetic programming. It is often difficult and unnatural to try to specify or restrict the size and shape of the eventual 
solution in advance.  

Scalable automated programming requires some hierarchical mechanism to exploit, by reuse and 
parameterization, the regularities, symmetries, homogeneities, similarities, patterns, and modularities inherent in 
problem environments. Subroutines provide this mechanism in ordinary computer programs. Automatically defined 
functions (Koza 1994a, 1994b) implement this mechanism within the context of genetic programming. 
Automatically defined functions are implemented by establishing a constrained syntactic structure for the individual 
programs in the population. Each multi-part program in the population contains one (or more) automatically defined 
functions and one (or more) main result-producing branches. The result-producing branch usually has the ability to 
call one or more of the automatically defined functions. An automatically defined function may have the ability to 
refer hierarchically to other already-defined automatically defined functions.  

The initial random generation is created so that every individual program in the population consists of 
automatically defined function(s) and result-producing branch(es) in accordance with the problem’s constrained 
syntactic structure. Since a constrained syntactic structure is involved, crossover and mutation are performed so as 
to preserve this syntactic structure in all offspring.  

Architecture-altering operations enhance genetic programming with automatically defined functions by 
providing a way to automatically determine the number of such automatically defined functions, the number of 
arguments that each automatically defined function possesses, and the nature of the hierarchical references, if any, 
among such automatically defined functions (Koza 1995). These operations include branch duplication, argument 
duplication, branch creation, argument creation, branch deletion, and argument deletion. The architecture-altering 
operations are motivated by the naturally occurring mechanism of gene duplication that creates new proteins (and 
hence new structures and new behaviors in living things) as described by Susumu Ohno in. Evolution by Gene 
Duplication  (1970). Details are found in Koza, Bennett, Andre, and Keane 1999. 

Genetic programming has been applied to numerous problems in fields such as system identification, control, 
classification, design, optimization, and automatic programming.  

3. Statement of the Illustrative Problem 
Design is a major activity of practicing engineers. The design process entails creation of a complex structure to 
satisfy user-defined requirements. Since the design process typically entails tradeoffs between competing 
considerations, the end product of the process is usually a satisfactory and compliant design as opposed to a perfect 
design. Design is usually viewed as requiring creativity and human intelligence. Consequently, the field of design is 
a source of challenging problems for automated techniques of machine intelligence. In particular, design problems 
are useful for determining whether an automated technique can produce results that are competitive with human-
produced results.   

The design (synthesis) of analog electrical circuits is especially challenging. The design process for analog 
circuits begins with a high-level description of the circuit's desired behavior and characteristics and entails creation 
of both the topology and the sizing of a satisfactory circuit. The topology comprises the gross number of 
components in the circuit, the type of each component (e.g., a capacitor), and a list of all connections between the 
components. The sizing involves specifying the values (typically numerical) of each of the circuit's components.  

Although considerable progress has been made in automating the synthesis of certain categories of purely digital 
circuits, the synthesis of analog circuits and mixed analog-digital circuits has not proved to be as amenable to 
automation. There is no previously known general technique for automatically creating an analog circuit from a 
high-level statement of the design goals of the circuit. Describing "the analog dilemma," O. Aaserud and I. Ring 
Nielsen (1995) noted  

"Analog designers are few and far between. In contrast to digital design, most of the analog circuits 
are still handcrafted by the experts or so-called 'zahs' of analog design. The design process is 



 

characterized by a combination of experience and intuition and requires a thorough knowledge of the 
process characteristics and the detailed specifications of the actual product.  

"Analog circuit design is known to be a knowledge-intensive, multiphase, iterative task, which 
usually stretches over a significant period of time and is performed by designers with a large portfolio 
of skills. It is therefore considered by many to be a form of art rather than a science."  

This paper focuses on one particular problem of analog circuit synthesis, namely the design of a lowpass filter 
circuit composed of capacitors and inductors. A simple filter is a one-input, one-output electronic circuit that 
receives a signal as its input and passes the frequency components of the incoming signal that lie in a specified 
range (called the passband) while suppressing the frequency components that lie in all other frequency ranges (the 
stopband). In particular, the goal is to design a lowpass filter that passes all frequencies below 1,000 Hertz (Hz) and 
suppresses all frequencies above 2,000 Hz.   

The approach described in this paper has been applied to many other problems of analog circuit synthesis, 
including the design of a amplifiers, computational circuits, a temperature-sensing circuit, a voltage reference 
circuit, a time-optimal robot controller circuit, a difficult-to-design asymmetric bandpass filter, a crossover filter, a 
double passband filter, bandstop filter, frequency discriminator circuits, and a frequency-measuring circuit (as 
described in detail in Koza, Bennett, Andre, and Keane 1999).   

4. Applying Genetic Programming to the Problem 
Genetic programming can be applied to the problem of synthesizing circuits if a mapping is established between the 
program trees (rooted, point-labeled trees – that is, acyclic graphs – with ordered branches) used in genetic 
programming and the labeled cyclic graphs germane to electrical circuits. The principles of developmental biology 
provide the motivation for mapping trees into circuits by means of a developmental process that begins with a 
simple embryo. For circuits, the embryo typically includes fixed wires that connect the inputs and outputs of the 
particular circuit being designed and certain fixed components (such as source and load resistors). Until these wires 
are modified, the circuit does not produce interesting output. An electrical circuit is developed by progressively 
applying the functions in a circuit-constructing program tree to the modifiable wires of the embryo (and, during the 
developmental process, to new components and modifiable wires).  

An electrical circuit is created by executing the functions in a circuit-constructing program tree. The functions 
are progressively applied in a developmental process to the embryo and its successors until all of the functions in 
the program tree are executed. That is, the functions in the circuit-constructing program tree progressively side-
effect the embryo and its successors until a fully developed circuit eventually emerges. The functions are applied in 
a breadth-first order.  

The functions in the circuit-constructing program trees are divided into five categories: (1) topology-modifying 
functions that alter the circuit topology, (2) component-creating functions that insert components into the circuit, (3) 
development-controlling functions that control the development process by which the embryo and its successors is 
changed into a fully developed circuit, (4) arithmetic-performing functions that appear in subtrees as argument(s) to 
the component-creating functions and specify the numerical value of the component, and (5) automatically defined 
functions that appear in the automatically defined functions and potentially enable certain substructures of the 
circuit to be reused (with parameterization). 

Each branch of the program tree is created in accordance with a constrained syntactic structure. Each branch 
is composed of topology-modifying functions, component-creating functions, development-controlling functions, 
and terminals. Component-creating functions typically have one arithmetic-performing subtree, while topology-
modifying functions, and development-controlling functions do not. Component-creating functions and topology-
modifying functions are internal points of their branches and possess one or more arguments (construction-
continuing subtrees) that continue the developmental process. The syntactic validity of this constrained syntactic 
structure is preserved using structure-preserving crossover with point typing. For details, see Koza, Bennett, Andre, 
and Keane 1999.  

4.1. The Embryonic Circuit 
An electrical circuit is created by executing a circuit-constructing program tree that contains various component-
creating, topology-modifying, and development-controlling functions. Each tree in the population creates one 
circuit. The specific embryo used depends on the number of inputs and outputs. 

Figure 1 shows a one-input, one-output embryonic (initial) circuit in which VSOURCE is the input signal and 
VOUT is the output signal (the probe point). The circuit is driven by an incoming alternating circuit source 
VSOURCE. There is a fixed load resistor RLOAD and a fixed source resistor RSOURCE in the embryo. In 



 

addition to the fixed components, there are two modifiable wires, Z0 and Z1. All development originates from these 
modifiable wires. 

4.2. Component-Creating Functions 
The component-creating functions insert a component into the developing 
circuit and assign component value(s) to the component.  

Each component-creating function has a writing head that points to an 
associated highlighted component in the developing circuit and modifies 
that component in a specified manner. The construction-continuing subtree 
of each component-creating function points to a successor function or 
terminal in the circuit-constructing program tree. 

The arithmetic-performing subtree of a component-creating function 
consists of a composition of arithmetic functions (addition and subtraction) 
and random constants (in the range -1.000 to +1.000). The arithmetic-
performing subtree specifies the numerical value of a component by 
returning a floating-point value that is interpreted on a logarithmic scale as 

the value for the component in a range of 10 orders of magnitude (using a unit of measure that is appropriate for the 
particular type of component). 

The two-argument resistor-creating R function causes the highlighted component to be changed into a resistor. 
The value of the resistor in kilo Ohms is specified by its arithmetic-performing subtree.  

Figure 2 shows a modifiable wire Z0 connecting nodes 1 and 2 of a partial circuit containing four capacitors 
(C2, C3, C4, and C5). Figure 3 shows the result of applying the R 
function to the modifiable wire Z0 of figure 2..  

Similarly, the two-argument capacitor-creating C function causes the 
highlighted component to be changed into a capacitor whose value in 
micro-Farads is specified by its arithmetic-performing subtree. In 
addition, the two-argument inductor-creating L function causes the 
highlighted component to be changed into an inductor whose value in 
micro-Henrys is specified by its arithmetic-performing subtree.  

4.3. Topology-Modifying Functions 
Each topology-modifying function in a program tree points to an 
associated highlighted component and modifies the topology of the 
developing circuit. 

The three-argument SERIES division function creates a series 
composition of the modifiable wire or modifiable component with which 
it is associated, a copy of the modifiable wire or modifiable component 
with which it is associated, one new modifiable wire (with a writing 
head), and two new nodes. Figure 4 shows the result of applying the 
SERIES function to the resistor R1 from figure 3. After execution of the 
SERIES function, resistors R1 and R7 and modifiable wire Z6 remain 
modifiable.  All three are associated with the top-most function in one of 
the three construction-continuing subtrees of the SERIES function. 

The reader is referred to Koza, Bennett, Andre, and Keane 1999 for a 
detailed description of all the circuit-constructing functions mentioned 
herein.  

The four-argument PARALLEL0 parallel division function creates a 
parallel composition consisting of the modifiable wire or modifiable 
component with which it is associated, a copy of the modifiable wire or 
modifiable component with which it is associated, two new modifiable 
wires (each with a writing head), and two new nodes. There are 

potentially two topologically distinct outcomes of a parallel division. Since we 
want the outcome of all circuit-constructing functions to be deterministic, there 
are two members (called PARALLEL0 and PARALLEL1) in the PARALLEL 
family of topology-modifying functions. The two functions operate differently 
depending on degree and numbering of the preexisting components in the 
developing circuit. The use of the two functions breaks the symmetry between 

 
Figure 1 One-input, one-output 

embryonic (initial) circuit .  

 
Figure 2 Modifiable wire Z0.  

 
Figure 3 Result of applying the R 

function.  

 
Figure 4  Result after applying the 

SERIES division function.    



 

the potentially distinct outcomes.  
The one-argument polarity-reversing FLIP function reverses the polarity of the highlighted component.  
The two-argument TWO_GROUND ("ground") function enables any part of a circuit to be connected to ground.  

The TWO_GROUND function creates a new node and a composition of two modifiable wires and one nonmodifiable 
wire such that the nonmodifiable wire makes an unconditional connection to ground.  

The eight two-argument functions in the TWO_VIA family of functions (called TWO_VIA0, ..., TWO_VIA7), 
each create a new node and a composition of two modifiable wires and one nonmodifiable wire such that the 
nonmodifiable wire makes a connection, called a via, to a designated one of eight imaginary numbered layers (0 to 
7) of an imaginary silicon wafer on which the circuit resides. the TWO_VIA functions provide a way to connect 
distant parts of a circuits.  

The zero-argument SAFE_CUT function causes the highlighted component to be removed from the circuit 
provided that the degree of the nodes at both ends of the highlighted component is three (i.e., no dangling 
components or wires are created).  

4.4. Development-Controlling Functions 
The one-argument NOOP ("No Operation") function has no effect on the modifiable wire or modifiable component 
with which it is associated; however, it has the effect of delaying activity on the developmental path on which it 
appears in relation to other developmental paths in the overall circuit-constructing program tree.  

The zero-argument END function makes the modifiable wire or modifiable component with which it is 
associated non-modifiable (thereby ending a particular developmental path). 

4.5. Example of Developmental Process 
Figure 5 is an illustrative circuit-constructing program tree shown as a rooted, point-labeled tree with ordered 
branches. The overall program consists of two main result-producing branches joined by a connective LIST 
function (labeled 1 in the figure). The first (left) result-producing branch is rooted at the capacitor-creating C 
function (labeled 2). The second result-producing branch is rooted at the polarity-reversing FLIP function (labeled 
3). This figure also contains four occurrences of the inductor-creating L function (at 17, 11, 20, and 12). The figure 
contains two occurrences of the topology-modifying SERIES function (at 5 and 10). The figure also contains five 
occurrences of the development-controlling END function (at 15, 25, 27, 31, and 22) and one occurrence of the 
development-controlling "no operation" NOP function (at 6). There is a seven-point arithmetic-performing subtree at 
4 under the capacitor-creating C function at 4. Similarly, there is a three-point arithmetic-performing subtree at 19 
under the inductor-creating L function at 11.  There are also one-point arithmetic-performing subtrees (i.e., 

constants) at 26, 30, and 21. Additional details can be found in Koza, Bennett, Andre, and Keane 1999.  

5. Preparatory Steps 
Before applying genetic programming to a problem of circuit design, seven major preparatory steps are required: (1) 
identify the embryonic circuit, (2) determine the architecture of the circuit-constructing program trees, (3) identify 
the primitive functions of the program trees, (4) identify the terminals of the program trees, (5) create the fitness 
measure, (6) choose control parameters for the run, and (7) determine the termination criterion and method of result 
designation.  
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Figure 5 Illustrative circuit-constructing program tree.  



 

5.1. Embryonic Circuit 
The embryonic circuit used on a particular problem depends on the circuit's number of inputs and outputs. A one-
input, one-output embryo with two modifiable wires (figure 1) was used. 

5.2. Program Architecture 
Since there is one result-producing branch in the program tree for each modifiable wire in the embryo, the 
architecture of each circuit-constructing program tree depends on the embryonic circuit. Two result-producing 
branches were used for the filter problems.  

The architecture of each circuit-constructing program tree also depends on the use, if any, of automatically 
defined functions. Automatically defined functions provide a mechanism enabling certain substructures to be reused 
and are described in detail in Koza, Bennett, Andre, and Keane 1999. Automatically defined functions and 
architecture-altering operations were not used here.  

5.3. Function and Terminal Sets 
The function set for each design problem depends on the type of electrical components that are to be used for 
constructing the circuit.  

The function set included two component-creating functions (for inductors and capacitors), topology-modifying 
functions (for series and parallel divisions and for flipping components), one development-controlling function (“no 
operation”), functions for creating a via to ground, and functions for connecting pairs of points. That is, the function 
set, Fccs, for each construction-continuing subtree was 
Fccs = {L, C, SERIES, PARALLEL0, PARALLEL1, FLIP, NOOP, TWO_GROUND, TWO_VIA0_, TWO_VIA1, 

TWO_VIA2, TWO_VIA3, TWO_VIA4, TWO_VIA5, TWO_VIA6, TWO_VIA7}.  
The terminal set, Tccs, for each construction-continuing subtree was 

Tccs = {END, SAFE_CUT}.  
The terminal set, Taps, for each arithmetic-performing subtree consisted of 

Taps = {ℜ}, 
where ℜ represents floating-point random constants from –1.0 to +1.0.  

The function set, Faps, for each arithmetic-performing subtree was, 
Faps = {+, -}.  

The terminal and function sets were identical for all result-producing branches for a particular problem. 

5.4. Fitness Measure 
The evolutionary process is driven by the fitness measure. Each individual computer program in the population is 
executed and then evaluated, using the fitness measure. The nature of the fitness measure varies with the problem. 
The high-level statement of desired circuit behavior is translated into a well-defined measurable quantity that can be 
used by genetic programming to guide the evolutionary process. The evaluation of each individual circuit-
constructing program tree in the population begins with its execution. This execution progressively applies the 
functions in each program tree to an embryonic circuit, thereby creating a fully developed circuit. A netlist is 
created that identifies each component of the developed circuit, the nodes to which each component is connected, 
and the value of each component. The netlist becomes the input to our modified version of the 217,000-line SPICE 
(Simulation Program with Integrated Circuit Emphasis) simulation program (Quarles, Newton, Pederson, and 
Sangiovanni-Vincentelli 1994). SPICE then determines the behavior of the circuit. It was necessary to make 
considerable modifications in SPICE so that it could run as a submodule within the genetic programming system.  

The desired lowpass filter has a passband below 1,000 Hz and a stopband above 2,000 Hz. The circuit is driven 
by an incoming AC voltage source with a 2 volt amplitude. In this problem, a voltage in the passband of exactly 1 
volt and a voltage in the stopband of exactly 0 volts is regarded as ideal. The (preferably small) variation within the 
passband is called the passband ripple. Similarly, the incoming signal is never fully reduced to zero in the stopband 
of an actual filter. The (preferably small) variation within the stopband is called the stopband ripple. A voltage in 
the passband of between 970 millivolts and 1 volt (i.e., a passband ripple of 30 millivolts or less) and a voltage in 
the stopband of between 0 volts and 1 millivolts (i.e., a stopband ripple of 1 millivolts or less) is regarded as 
acceptable. Any voltage lower than 970 millivolts in the passband and any voltage above 1 millivolts in the 
stopband is regarded as unacceptable. 

Since the high-level statement of behavior for the desired circuit is expressed in terms of frequencies, the voltage 
VOUT is measured in the frequency domain. SPICE performs an AC small signal analysis and reports the circuit's 
behavior over five decades (between 1 Hz and 100,000 Hz) with each decade being divided into 20 parts (using a 
logarithmic scale), so that there are a total of 101 fitness cases.  



 

Fitness is measured in terms of the sum over these cases of the absolute weighted deviation between the actual 
value of the voltage that is produced by the circuit at the probe point VOUT and the target value for voltage. The 
smaller the value of fitness, the better. A fitness of zero represents an (unattainable) ideal filter.  

Specifically, the standardized fitness is 
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where fi is the frequency of fitness case i; d(x) is the absolute value of the difference between the target and 
observed values at frequency x; and W(y,x) is the weighting for difference y at frequency x. 

The fitness measure is designed to not penalize ideal values, to slightly penalize every acceptable deviation, and 
to heavily penalize every unacceptable deviation. Specifically, the procedure for each of the 61 points in the 3-
decade interval between 1 Hz and 1,000 Hz for the intended passband is as follows:  

• If the voltage equals the ideal value of 1.0 volt in this interval, the deviation is 0.0.  
• If the voltage is between 970 millivolts and 1 volt, the absolute value of the deviation from 1 volt is weighted 
by a factor of 1.0.  
• If the voltage is less than 970 millivolts, the absolute value of the deviation from 1 volt is weighted by a 
factor of 10.0.  

The acceptable and unacceptable deviations for each of the 35 points from 2,000 Hz to 100,000 Hz in the 
intended stopband are similarly weighed (by 1.0 or 10.0) based on the amount of deviation from the ideal voltage of 
0 volts and the acceptable deviation of 1 millivolts.  

For each of the five "don't care" points between 1,000 and 2,000 Hz, the deviation is deemed to be zero. 
The number of “hits” for this problem (and all other problems herein) is defined as the number of fitness cases 

for which the voltage is acceptable or ideal or that lie in the "don't care" band (for a filter).  
Many of the random initial circuits and many that are created by the crossover and mutation operations in 

subsequent generations cannot be simulated by SPICE. These circuits receive a high penalty value of fitness (108) 
and become the worst-of-generation programs for each generation.  

5.5. Control Parameters 
The population size, M, was 320,000. The probability of crossover was approximately 89%; reproduction 10%; and 
mutation 1%. Our usual control parameters were used (Koza, Bennett, Andre, and Keane 1999, Appendix D).  

5.6. Termination Criterion and Results Designation 
The maximum number of generations, G, is set to an arbitrary large number (e.g., 501) and the run was manually 
monitored and manually terminated when the fitness of the best-of-generation individual appeared to have reached a 
plateau. The best-so-far individual is harvested and designated as the result of the run. 

5.7. Implementation on Parallel Computer 
The problem was run on a medium-grained parallel Parsytec computer system consisting of 64 80-MHz PowerPC 
601 processors arranged in an 8 by 8 toroidal mesh with a host PC Pentium type computer. The distributed genetic 
algorithm (Andre and Koza 1996) with unsynchronized generations was used with a population size of Q = 5,000 at 
each of the D = 64 demes (semi-isolated subpopulations) for a total population, M, of 320,000. On each generation, 
four boatloads of emigrants, each consisting of B = 2% (the migration rate) of the node's subpopulation (selected on 
the basis of fitness) were dispatched to each of the four adjacent processing nodes.  

6. Results 
The creation of the initial random population is a blind random search of the search space of the problem.  The best 
circuit from generation 0 has a fitness of 61.7 and scores 52 hits (out of 101).  

Figures 6, 7, 8, and 9 show the behavior of the best circuits from generation 0, 10, 15, and 49, respectively, of 
one run of genetic programming. The horizontal axis represents five decades of frequencies from 1 Hz to 100,000 
Hz on a logarithmic scale.  The vertical axis represents output voltage on a linear scale. Excluding the fixed source 
and load resistors of the test fixture of the embryonic circuit, the best-of-generation circuit from generation 0 
consists of only a lone 358 nF capacitor that shunts the incoming signal to ground.  A good filter cannot be created 
by a single capacitor.  However, even a single capacitor differentially passes higher frequencies to ground and 
performs a certain amount of filtering. Figure 6 shows that the best circuit from generation 0 bears some 
resemblance to the desired lowpass filter in that it passes frequencies up to about 70 Hz at nearly a full volt and it 
almost fully suppresses frequencies near 100,000 Hz. However, its transition region is exceedingly leisurely. 
Nonetheless, in the valley of the blind, the one-eyed man is king. Moreover, as will be seen momentarily, this 



 

modest beginning serves as a building block that will become incorporated in the 100%-compliant lowpass filter 
that will eventually be evolved.  

The evolutionary process produces better and better individuals as the run progresses. For example, the best 
circuit from generation 10 has inductors in series with the incoming signal as well as a single capacitor shunted to 
ground.  Figure 7 shows that that the frequencies up to about 200 Hz are passed at nearly full voltage and that 
frequencies above 10,000 Hz are almost fully suppressed.  Figure 8 shows that the best circuit from generation 15 
(with two inductors in series with the incoming signal and three capacitors shunted to ground) comes closer to 

meeting the 
requirements of this 
design problem.   

6. 1 Campbell 
1917 
Ladder 
Filter 
Patent 

The best circuit 
(figure 10) of 
generation 49 from 
this run is 100% 
compliant with the 
problem’s design 
requirements in the 
sense that it scored 
101 hits (out of 101). 
It has a near-zero 
fitness of 0.00781 
(about five orders of 
magnitude better than 
the best circuit of 
generation 0). As can 
be seen, this evolved 
circuit consists of 
seven inductors (L5, 
L10, L22, L28, L31, 
L25, and L13) 
arranged horizontally 
across the top of the 
figure "in series" 
with the incoming 
signal VSOURCE 
and the source 
resistor RSOURCE. 
It also contains seven 
capacitors (C12, 
C24, C30, C3, C33, 
C27, and C15) that 
are each shunted to 
ground. This circuit 
is a classical ladder 
filter with seven 
rungs (Williams and 
Taylor 1995).  

 
Figure 6 Frequency domain behavior of the best circuit of generation 0.   

 
Figure 7  Frequency domain behavior of the best circuit of generation 10.   

 
Figure 8  Frequency domain behavior of the best circuit of generation 15.   

 
Figure 9  Frequency domain behavior of 100%-compliant seven-rung ladder circuit from 

generation 49.  



 

Figure 9 shows the behavior in the frequency domain of this evolved lowpass filter. As can be seen, the 100%-
compliant lowpass filter delivers a voltage of essentially 1 Volt in the entire passband from 1 Hz to 1,000 Hz and 
suppresses the voltage of essentially 0 Volts in the entire stopband starting at 2,000 Hz.  There is a sharp drop-off 
from 1 Volt to 0 Volts in the transitional ("don't care") region between 1,000 Hz and 2,000 Hz.  

The circuit of figure 10 has the recognizable features of the circuit for which George Campbell of American 
Telephone and Telegraph received U. S. patent 1,227,113 in 1917 (Campbell 1917). Claim 2 of Campbell’s patent 
covered,  

“An electric wave filter consisting of a connecting line of negligible attenuation composed of a 
plurality of sections, each section including a capacity element and an inductance element, one of said 
elements of each section being in series with the line and the other in shunt across the line, said 
capacity and inductance elements having precomputed values dependent upon the upper limiting 
frequency and the lower limiting frequency of a range of frequencies it is desired to transmit without 
attenuation, the values of said capacity and inductance elements being so proportioned that the 
structure transmits with practically negligible attenuation sinusoidal currents of all frequencies lying 
between said two limiting frequencies, while attenuating and approximately extinguishing currents of 
neighboring frequencies lying outside of said limiting frequencies.” 

An examination of the evolved circuit of figure 10 shows that it indeed consists of “a plurality of sections.” 
(specifically, seven). In the figure, “Each section include[es] a capacity element and an inductance element.” 
Specifically, the first of the seven sections consists of inductor L5 and capacitor C12; the second section consists of 
inductor L10 and capacitor C24; and so forth. Moreover, “one of said elements of each section [is] in series with 
the line and the other in shunt across the line.” Inductor L5 of the first section is indeed “in series with the line” and 
capacitor C12 is indeed “in shunt across the line.” This is also true for the circuit’s remaining six sections. 
Moreover, figure 10 herein matches figure 7 of Campbell’s 1917 patent. In addition, this circuit’s 100% compliant 
behavior in the frequency domain (figure 9 herein) confirms the fact that the values of the inductors and capacitors 
are such as to transmit “with practically negligible attenuation sinusoidal currents” of the passband frequencies 
“while attenuating and approximately extinguishing currents” of the stopband frequencies.  

In short, genetic programming evolved an electrical circuit that infringes on the claims of Campbell’s now-
expired patent.  

In addition to possessing the topology of the Campbell filter, the evolved circuit of Figure 10 also approximately 
possesses the numerical values described in Campbell’s 1917 patent (Campbell 1917). In fact, this evolved circuit is 
roughly equivalent to what is now known as a cascade of six identical symmetric π-sections (Johnson l950).  To see 
this, we modify the evolved circuit of Figure 10 in four ways.   

First, we delete the 9.68 µH inductor L5 near the upper left corner of the figure.  The value of this inductor is 
more than five orders of magnitude smaller than the value of the other six inductors (L10, L22, L28, L31, L25, and 
L13) in series across the top of the figure. The behavior of the evolved circuit is not noticeably affected by this 
deletion for the frequencies of interest in this problem.  

Second, we replace each of the five identical 202 nF capacitors (C24, C30, C3, C33, C27) by a composition of 
two parallel 101 nF capacitors.  Since the capacitance of a composition of two parallel capacitors equals the sum of 
the two individual capacitances, the behavior of the evolved circuit is not changed at all by these substitutions.  

Third, we note that the two 86.1 nF capacitors (C12 and C15) at the two ends of the ladder are each 
approximately equal to the (now) ten 101 nF capacitors.  Suppose, for sake of argument, that these 12 

 
Figure 10 Evolved seven-rung ladder lowpass filter.  



 

approximately equal capacitors are replaced by 12 equal capacitors with capacitance equal to their average value 
(98.5 nF).  The behavior of the evolved circuit is only slightly changed by these substitutions.  

Fourth, we note also that the six non-trivial inductors (L10, L22, L28, L31, L25, and L13) are approximately 
equal.  Suppose, for sake of argument, that these six approximately equal inductors are replaced by six equal 
inductors with inductance equal to their average value (200,000 µH).  Again, the behavior of the evolved circuit is 
only slightly changed by these substitutions.   

The behavior in the frequency domain of the circuit resulting from the above four changes is almost the same as 
that of the evolved circuit of Figure 10. In fact, the modified circuit is 100%-compliant (i.e., scores 101 hits).  The 
modified circuit can be viewed as what is now known as a cascade of six identical symmetric π-sections.  Each π-
section consists of an inductor of inductance L (where L equals 200,000 µH) and two equal capacitors of 
capacitance C/2 (where C equals 197 nF).  In each π-section, the two 98.5 nF capacitors constitute the vertical legs 
of the π and the one 200,000 µH inductor constitutes the horizontal bar across the top of the π.  Such π-sections are 
characterized by two key parameters. The first parameter is the characteristic resistance (impedance) of the π-
section. This characteristic resistance should match the circuit’s fixed load resistance RLOAD (1,000 Ω). The 
second parameter is the nominal cutoff frequency which separates the filter’s passband from its stopband. This 
second parameter should lie somewhere in the transition region between the end of the passband (1,000 Hz) and the 
beginning of the stopband (2,000 Hz). The characteristic resistance, R, of each of the π-sections is given by the 
formula √(L/C). This formula yields a characteristic resistance, R, of 1,008 Ω. This value is very close to the value 
of the 1,000 Ω load resistance of this problem. The nominal cutoff frequency, fc, of each of the π-sections of a 
lowpass filter is given by the formula 1/(π√LC). This formula yields a nominal cutoff frequency, fc, of 1,604 Hz 
(i.e., roughly in the middle of the transition region between the passband and stopband of the desired lowpass filter).   

The legal criteria for obtaining a U. S. patent are that the proposed invention be "new” and “useful" and  
... the differences between the subject matter sought to be patented and the prior art are such that the 
subject matter as a whole would [not] have been obvious at the time the invention was made to a 
person having ordinary skill in the art to which said subject matter pertains. (35 United States Code 
103a).  

George Campbell was part of the renowned research team of the American Telephone and Telegraph 
Corporation. He received a patent for his filter in 1917 because his idea was new in 1917, because it was useful, and 
because satisifed the above statutory test for unobviousness. The fact that genetic programming rediscovered an 
electrical circuit that was unobvious "to a person having ordinary skill in the art" establishes that this evolved result 
satisfies Arthur Samuel's criterion (Samuel 1983) for artificial intelligence and machine learning, namely 

“The aim [is] ... to get machines to exhibit behavior, which if done by humans, would be assumed to 
involve the use of intelligence.” 

6.2 Zobel 1925 “M-Derived Half Section” Patent 
In another run of this same problem, a 100%-compliant circuit was evolved in generation 34. This evolved circuit is 
roughly equivalent to what is now known as a cascade of three symmetric T-sections and an M-derived half section 
(Johnson 1950).  To see this, we modify this evolved circuit from generation 34 in three ways.  

First, we insert wires in lieu of two 0.138 µH inductors (whose value is about six orders of magnitude smaller 
than the value of the other inductors in the circuit). The behavior of this slightly modified evolved circuit (figure 11) 
is not noticeably affected by these changes for the frequencies of interest in this problem. 



 

Second, we replace each of the three 198,000 µH inductors in the figure (L16, L13, and L10) with a series 
composition of two 99,000 µH inductors. Since the inductance of two inductors in series is equal to the sum of their 
inductances, this change does not affect the behavior of the circuit at all. The circuit can now be viewed as having 
one incoming 85,400 µH inductor (L5) and six 99,000 µH inductors in series horizontally at the top of the figure. 

Third, we note also that the values of the (now) seven inductors in series horizontally across the top of the figure 
are approximately equal.  Suppose, for sake of argument, that each of these seven approximately equal inductors are 
replaced by an inductor with inductance equal to their average value (97,000 µH). This change does not appreciably 
affect the behavior of the circuit for the frequencies of interest.  

After the above changes, the evolved lowpass filter can be viewed as consisting of a cascade of three identical 
symmetric T-sections and an “M-derived half section.” In particular, each T-section consists of an incoming 
inductor of inductance L/2 (where L equals 194,000 µH), a junction point from which a capacitor of capacitance C 
(where C equals 194 nF) is shunted off to ground, and an outgoing inductor of inductance L/2. The two inductors 
are the horizontal arms of the “T.” The final half section (so named because it has only one arm of a “T”) has one 
incoming inductor of inductance L/2 and a junction point from which a capacitive-inductive shunt (C3 and L11) is 
connected to ground.  

The first three symmetric T-sections are referred to as “constant K” filter sections (Johnson l950, page 331).  
Such filter sections are characterized by two key parameters. The characteristic resistance, R, of each of each of the 
three T-sections is given by the formula R = √(L/C). When the inductance, L, is 194,000 µH and the capacitance, C, 
is 194 nF, then the characteristic resistance, R, is 1,000 Ω according to this formula (i.e., equal to the value of the 
actual load resistor). The nominal cutoff frequency, fc, of each of the three T-sections of a lowpass filter is given by 
the formula fc = 1/(π√LC). This formula yields a nominal cutoff frequency, fc, of 1,641 Hz (which is near the middle 
of the transition band for the desired pass filter).  

In other words, both of the key parameters of the three T-sections are very close to the canonical values of 
“constant K” sections designed with the aim of satisfying this problem’s design requirements.   

The final section of the evolved circuit closely approximates a section now called an “M-derived half section”. 
This final section is said to be “derived” because it is derived from the foregoing three identical “constant K” 
prototype sections.  In the derivation, m is a real constant between 0 and 1. Let m be 0.6 here. In a canonical “M-
derived half section” that is derived from the above “constant K” prototype section, the value of the capacitor in the 
vertical shunt of the half section is given by the formula mC (116.4 nF). The actual value of C3 in the evolved 
circuit is 117 nF.  The value of the inductor in the vertical shunt of an “M-derived half section” is given by the 
formula L(1– m2)/4m.  This formula yields a value of 51,733. The actual value of L5 in the evolved circuit is 52,200 
µH. The frequency, f∞, where the attenuation first becomes complete, is given by the formula f∞ = fc/√(1–m2). This 
formula yields a value of f∞ of 2,051 Hz (i.e., near the beginning of the desired stopband).  

Taken as a whole, the topology and component values of the evolved circuit are reasonably close to the 
canonical values for the three identical symmetric T-sections and a final “M-derived half section” that is designed 
with the aim of satisfying this problem’s design requirements.  

Otto Zobel of American Telephone and Telegraph Company invented the idea of adding an “M-derived half 
section” to one or more “constant K” sections.  As Zobel (1925) explains in U. S. patent 1,538,964, 

 
Figure 11 Slightly modified version of the evolved lowpass filter circuit consisting of three symmetric T-sections 

and an M-derived half section.  



 

The principal object of my invention is to provide a new and improved network for the purpose of 
transmitting electric currents having their frequency within a certain range and attenuating currents of 
frequency within a different range. . . . Another object of my invention is to provide a wave-filter with 
recurrent sections not all of which are alike, and having certain advantages over a wave-filter with all 
its sections alike.  

The advantage of Zobel’s approach is a “sharper transition” in the frequency domain behavior of the filter.  
Claim 1 of Zobel’s 1925 patent covers, 

A wave-filter having one or more half-sections of a certain kind and one or more other half-sections 
that are M-types thereof, M being different from unity.   

Claim 2 covers, 
A wave-filter having its sections and half-sections so related that they comprise different M-types of a 
common prototype, M having several values for respectively different sections and half-sections.  

Claim 3 goes on to cover, 
A wave-filter having one or more half-sections of a certain kind and one or more half-sections 
introduced from a different wave-filter having the same characteristic and the same critical 
frequencies and a different attenuation characteristic outside the free transmitting range.   

Viewed as a whole, the evolved circuit here infringes the claims of Zobel’s 1925 patent.   

6.3 Johnson 1926 “Bridged T” Patent 
In another run, a 100% compliant recognizable "bridged T" arrangement was evolved. The “bridged T” filter 
topology was invented and patented by Kenneth S. Johnson of Western Electric Company in 1926 (Johnson 1926).  

The “bridged T” was invented by Kenneth S. Johnson of Western Electric Company and patented in 1926. As 
U. S. patent 1,611,916 (Johnson 1926) states,  

In accordance with the invention, a section of an artificial line, such as a wave filter, comprises in 
general four impedance paths, three of which are arranged in the form of a T network with the fourth 
path bridged across the transverse arms of the T.  The impedances of this network, which for 
convenience, will be referred to as a bridged T network, bear a definite relationship to a network of 
the series shunt type, the characteristics of which are well known.   

In the forms of the invention described herein, the arms of the bridged T network consist of 
substantially pure reactances.  Its most useful forms are found to be wave filter networks in which 
there is a substantially infinite attenuation at a frequency within the band to be suppressed and the 
network may be designed so that this frequency is very near the cut-off frequency of the filter, thus 
producing a very sharp separation between the transmitted and suppressed bands.  

Claim 1 of patent 1,611,916 covers, 
An electrical network comprising a pair of input terminals and a pair of output terminals, an 
impedance path connected directly between an input terminal and an output terminal, a pair of 
impedance paths having a common terminal and having their other terminals connected respectively 
to the terminals of said first path, and a fourth impedance path having one terminal connected to said 
common terminal and having connections from its other terminal to the remaining input terminal and 
output terminal, each of said paths containing a substantial amount of reactance, the impedances of 
said network having such values that said network is the equivalent of a series-shunt network having 
desired transmission characteristics.   

The “bridged T” of figure 12 involves L14, C3, C15, and L11.  In particular, L14 is the “impedance path 
connected directly between an input terminal and an output terminal” that is referred to later as “the first path.”  The 
junction of C3, C15, and L11 is the “common terminal.”  C3 and C15 are the “pair of impedance paths having a 
common terminal and having their other terminals connected respectively to the terminals of said first path.”  L11 is 
the “fourth impedance path having one terminal connected to said common terminal and having connections from 
its other terminal to the remaining input terminal and output terminal” (namely, the input and output terminal of the 
section that are both grounded).   



 

6.4 Cauer 1934 – 
1936 Elliptic 
Patents 

In a run of this same problem 
using automatically defined 
functions (described in Koza, 
Bennett, Andre, and Keane 
1999), a 100% compliant 
circuit emerged in generation 
31. After all of the pairs and 
triplets of series inductors in 
the evolved circuit are 
consolidated (as shown in 
figure 13), it can be seen that 

the circuit has the equivalent of six inductors horizontally across the top of the circuit and five vertical shunts.  Each 
vertical shunt consists of an inductor and a capacitor.   

 
This circuit has the recognizable elliptic 

topology that was invented and patented by 
Wilhelm Cauer (1934, 1935, 1936). The Cauer filter was a significant advance (both theoretically and 
commercially) over the earlier filter designs of Campbell, Zobel, Johnson, Butterworth, and Chebychev. For 
example, for one commercially important set of specifications for telephones, a fifth-order elliptic filter matches the 
behavior of a 17th-order Butterworth filter or an eighth-order Chebychev filter.  The fifth-order elliptic filter has 
one less component than the eighth-order Chebychev filter.  As Van Valkenburg (1982, page 379) relates in 
connection with the history of the elliptic filter:  

Cauer first used his new theory in solving a filter problem for the German telephone industry.  His 
new design achieved specifications with one less inductor than had ever been done before.  The world 
first learned of the Cauer method not through scholarly publication but through a patent disclosure, 
which eventually reached the Bell Laboratories.  Legend has it that the entire Mathematics 
Department of Bell Laboratories spent the next two weeks at the New York Public library studying 
elliptic functions.  Cauer had studied mathematics under Hilbert at Goettingen, and so elliptic 
functions and their applications were familiar to him.  

Genetic programming did not, of course, study mathematics under Hilbert or anybody else. Instead, the elliptic 
topology invented and patented by Cauer emerged from this run of genetic programming as a natural consequence 
of the problem's fitness measure and natural selection – not because the run was primed with domain knowledge 
about elliptic functions or filters or electrical circuitry. Genetic programming opportunistically reinvented the 
elliptic topology because necessity (fitness) is the mother of invention.  

7. The Illogical Nature of Creativity and Evolution 
Many computer scientists and mathematicians unquestioningly assume that every problem-solving technique must 
be logically sound, deterministic, logically consistent, and parsimonious.  Accordingly, most conventional methods 
of artificial intelligence and machine learning are constructed so as to possess these characteristics.  However, in 

 
Figure 12  "Bridged T" circuit from generation 64.      

Figure 13  Evolved Cauer (elliptic) filter topology from generation 31. 



 

spite of this strong predisposition by computer scientists and mathematicians, the features of logic do not govern 
two of the most important types of complex problem solving processes, namely the invention process performed by 
creative humans and the evolutionary process occurring in nature.   

A new idea that can be logically deduced from facts that are known in a field, using transformations that are 
known in a field, is not considered to be an invention.  There must be what the patent law refers to as an "illogical 
step" (i.e., an unjustified step) to distinguish a putative invention from that which is readily deducible from that 
which is already known.  Humans supply the critical ingredient of “illogic” to the invention process.  Interestingly, 
everyday usage parallels the patent law concerning inventiveness:  People who mechanically apply existing facts in 
well-known ways are summarily dismissed as being uncreative.  Logical thinking is unquestionably useful for many 
purposes.  It usually plays an important role in setting the stage for an invention.  But, at the end of the day, logical 
thinking is the antithesis of invention and creativity.  

Recalling his invention in 1927 of the negative feedback amplifier, Harold S. Black of Bell Laboratories (1977) 
said, 

Then came the morning of Tuesday, August 2, 1927, when the concept of the negative feedback 
amplifier came to me in a flash while I was crossing the Hudson River on the Lackawanna Ferry, on 
my way to work.  For more than 50 years, I have pondered how and why the idea came, and I can't 
say any more today than I could that morning.  All I know is that after several years of hard work on 
the problem, I suddenly realized that if I fed the amplifier output back to the input, in reverse phase, 
and kept the device from oscillating (singing, as we called it then), I would have exactly what I 
wanted: a means of canceling out the distortion of the output.  I opened my morning newspaper and 
on a page of The New York Times I sketched a simple canonical diagram of a negative feedback 
amplifier plus the equations for the amplification with feedback.   

Of course, inventors are not oblivious to logic and knowledge.  They do not thrash around using blind random 
search.  Black did not try to construct the negative feedback amplifier from neon bulbs or doorbells.  Instead, 
"several years of hard work on the problem" set the stage and brought his thinking into the proximity of a solution.  
Then, at the critical moment, Black made his “illogical” leap.  This unjustified leap constituted the invention.   

The design of complex entities by the evolutionary process in nature is another important type of problem-
solving that is not governed by logic.  In nature, solutions to design problems are discovered by the probabilistic 
process of evolution and natural selection.  There is nothing logical about this process.  Indeed, inconsistent and 
contradictory alternatives abound.  In fact, such genetic diversity is necessary for the evolutionary process to 
succeed.  Significantly, the solutions evolved by evolution and natural selection almost always differ from those 
created by conventional methods of artificial intelligence and machine learning in one very important respect.  
Evolved solutions are not brittle; they are usually able to grapple with the perpetual novelty of real environments.   

Similarly, genetic programming is not guided by the inference methods of formal logic in its search for a 
computer program to solve a given problem.  When the goal is the automatic creation of computer programs, all of 
our experience has led us to conclude that the non-logical approach used in the invention process and in natural 
evolution are far more fruitful than the logic-driven and knowledge-based principles of conventional artificial 
intelligence and machine learning.  In short, "logic considered harmful."  

8. Conclusion 
We illustrated genetic programming by applying it to a non-trivial problem, namely the synthesis of a design for a 
lowpass filter circuit.  The results were competitive with human-produced solutions to the problem.  The results 
exhibited creativity and inventiveness and correspond to four inventions that were patented between 1917 and 1936.  
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