
Genetic Programming: Biologically Inspired

Computation that Creatively Solves

Non-Trivial Problems

John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane

Abstract. This paper describes a biologically inspired domain-independent tech-
nique, called genetic programming, that automatically creates computer programs
to solve problems. Starting with a primordial ooze of thousands of randomly cre-
ated computer programs, genetic programming progressively breeds a population
of computer programs over a series of generations using the Darwinian principle of
natural selection, recombination (crossover), mutation, gene duplication, gene dele-
tion, and certain mechanisms of developmental biology. The technique is illustrated
by applying it to a non-trivial problem involving the automatic synthesis (design) of
a lowpass �lter circuit. The evolved results are competitive with human-produced
solutions to the problem. In fact, four of the automatically created circuits ex-
hibit human-level creativity and inventiveness, as evidenced by the fact that they
correspond to four inventions that were patented between 1917 and 1936.

1 Introduction

One of the central challenges of computer science is to get a computer to
solve a problem without explicitly programming it. In particular, it would be
desirable to have a problem-independent system whose input is a high-level
statement of a problem's requirements and whose output is a working com-
puter program that solves the given problem. Paraphrasing Arthur Samuel
(1959), this challenge concerns

How can computers be made to do what needs to be done, without
being told exactly how to do it?

As Samuel also explained (Samuel 1983),

\The aim [is] ... to get machines to exhibit behavior, which if done
by humans, would be assumed to involve the use of intelligence."

Three questions arise:

� Can computer programs be automatically created?

� Can automatically created programs be competitive with human-produced
programs?

� Can the automatic process exhibit creativity and inventiveness?

16 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

This paper provides an a�rmative answer to all three questions.
Section 2 describes genetic programming. Section 3 presents a problem

involving the automatic synthesis (design) of an analog electrical circuit,
namely a lowpass �lter. Section 4 details the circuit-constructing functions
used in applying genetic programming to the problem of analog circuit syn-
thesis. Section 5 presents the preparatory steps required for applying genetic
programming to the lowpass �lter problem. Section 6 shows the results.

2 Background on Genetic Programming

Genetic programming is a biologically inspired, domain-independent method
that automatically creates a computer program from a high-level statement
of a problem's requirements.

John Holland's pioneering book Adaptation in Natural and Arti�cial Sys-

tems (1975) described a domain-independent algorithm, called the genetic
algorithm, based on an evolutionary process involving natural selection, re-
combination, and mutation. In the most commonly used form of the genetic
algorithm, each point in the search space of the given problem is encoded
into a �xed-length string of characters reminiscent of a strand of DNA. The
genetic algorithm then conducts a search in the space of �xed-length charac-
ter strings to �nd the best (or at least a very good) solution to the problem
by genetically breeding a population of character strings over a number of
generations. Numerous practical problems can be solved using the genetic al-
gorithm. Recent work in the �eld of genetic algorithms is described in Gold-
berg 1989, Michalewicz 1996, Mitchell 1996, Gen and Cheng 1997, and Back
1997.

Genetic programming is an extension of the genetic algorithm in which
the population consists of computer programs. The goal of genetic program-
ming is to provide a domain-independent problem-solving method that au-
tomatically creates a computer program from a high-level statement of a
problem's requirements. Starting with a primordial ooze of thousands of
randomly created computer programs, genetic programming progressively
breeds a population of computer programs over a series of generations us-
ing the Darwinian principle of natural selection, recombination (crossover),
mutation, gene duplication, gene deletion, and certain mechanisms of de-
velopmental biology. Work on genetic programming is described in Koza
1992; Koza and Rice 1992; Kinnear 1994; Koza 1994a; Koza 1994b; An-
geline and Kinnear 1996; Koza, Goldberg, Fogel, and Riolo 1996; Koza et
al 1997; Koza et al 1998; Banzhaf, Poli, Schoenauer, and Fogarty 1998,
Banzhaf, Nordin, Keller, and Francone 1998; Spector, Langdon, O'Reilly,
and Angeline 1999; Koza, Bennett, Andre, and Keane 1999, and on the World
Wide Web at www.genetic-programming.org. The computer programs are
compositions of functions (e.g., arithmetic operations, conditional operators,
problem-speci�c functions) and terminals (e.g., external inputs, constants,

Genetic Programming: Biologically Inspired Computation 17

zero-argument functions). The programs may be thought of as trees whose
points are labeled with the functions and whose leaves are labeled with the
terminals.

Genetic programming breeds computer programs to solve problems by
executing the following three steps:

1. Randomly create an initial population of individual computer programs.
2. Iteratively perform the following substeps (called a generation) on the

population of programs until the termination criterion has been satis�ed:

(a) Assign a �tness value to each individual program in the population
using the �tness measure.

(b) Create a new population of individual programs by applying the fol-
lowing three genetic operations. The genetic operations are applied to
one or two individuals in the population selected with a probability
based on �tness (with reselection allowed).
i. Reproduction: Reproduce an existing individual by copying it into
the new population.

ii. Crossover : Create two new individual programs from two exist-
ing parental individuals by genetically recombining subtrees from
each program using the crossover operation at randomly chosen
crossover points in the parental individuals.

iii. Mutation: Create a new individual from an existing parental in-
dividual by randomly mutating one randomly chosen subtree of
the parental individual.

3. Designate the individual computer program that is identi�ed by the
method of result designation (e.g., the best-so-far individual) as the result
of the run of genetic programming. This result may represent a solution
(or an approximate solution) to the problem.

Genetic programming starts with an initial population (generation 0) of ran-
domly generated computer programs composed of the given primitive func-
tions and terminals. The creation of this initial random population is a blind
random search of the space of computer programs.

The computer programs in generation 0 of a run of genetic programming
will almost always have exceedingly poor �tness. Nonetheless, some individu-
als in the population will turn out to be somewhat more �t than others. These
di�erences in performance are then exploited so as to direct the search into
promising areas of the search space. The Darwinian principle of reproduction
and survival of the �ttest and the genetic operation of crossover (augmented
by occasional mutation) are used to create a new population of o�spring
programs from the current population of computer programs.

The reproduction operation involves probabilistically selecting a computer
program from the current population of programs based on �tness (i.e., the
better the �tness, the more likely the individual is to be selected) and allowing
it to survive by copying it into the new population.

18 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

The crossover operation creates new o�spring computer programs from
two parental programs selected probabilistically based on �tness. The parental
programs in genetic programming are typically of di�erent sizes and shapes.
The o�spring programs are composed of subexpressions (subtrees, subpro-
grams) from their parents.

For example, consider the following computer program (presented here as
a LISP S-expression):

(+ (* 0.234 Z) (- X 0.789)),

which one would ordinarily write as

0:234Z + x� 0:789.

This program takes two inputs (X and Z) and produces a oating point
output.

Also, consider a second program:

(* (* Z Y) (+ Y (* 0.314 Z))).

One crossover point is randomly and independently chosen in each parent.
Suppose that the crossover points are the * in the �rst parent and the + in the
second parent. These two crossover fragments are the subexpressions rooted
at the crossover points and are underlined in the above two parental computer
programs.

The two o�spring resulting from crossover are

(+ (+ Y (* 0.314 Z)) (- X 0.789))

and

(* (* Z Y) (* 0.234 Z)).

Crossover creates new computer programs using parts of existing parental
programs. Because entire sub-trees are swapped, the crossover operation pro-
duces syntactically and semantically valid programs as o�spring regardless of
the choice of the two crossover points. The two o�spring here are typical of
the o�spring produced by the crossover operation in that they are di�erent
from both of their parents and di�erent from each other in size and shape.
Because programs are selected to participate in the crossover operation with
a probability based on �tness, crossover allocates future trials to regions of
the search space whose programs contain parts of promising programs.

The mutation operation creates an o�spring computer program from one
parental program selected based on �tness. One mutation point is randomly
and independently chosen and the subtree occurring at that point is deleted.
Then, a new subtree is grown at that point using the same growth procedure
as was originally used to create the initial random population.

For example, consider the following parental program (presented as a
LISP S-expression) composed of Boolean functions and terminals:

Genetic Programming: Biologically Inspired Computation 19

(OR (AND D2 D1 (NOR D0 D1))).

Suppose that the AND is randomly chosen as the mutation point (out of the
seven points in the program tree). The three-point subtree rooted at the AND
corresponds to the underlined portion of the LISP S-expression above. The
subtree rooted at the chosen mutation point is deleted. In this example, the
subtree consists of the three points (AND D2 D1). A new subtree, such as

(AND (NOT D0) (NOT D1)),

is randomly grown using the available functions and terminals and in-
serted in lieu of the subtree (AND D2 D1). The result of the mutation oper-
ation is

(OR ((AND (NOT D0) (NOT D1)) (NOR D0 D1))).

The o�spring here is typical of the o�spring produced by the mutation
operation in that they is di�erent than its parent in size and shape.

After the genetic operations are performed on the current population, the
population of o�spring (i.e., the new generation) replaces the old population
(i.e., the old generation). Each individual in the new population of programs is
then measured for �tness, and the process is repeated over many generations.

The dynamic variability of the computer programs that are created during
the run are important features of genetic programming. It is often di�cult
and unnatural to try to specify or restrict the size and shape of the eventual
solution in advance.

Scalable automated programming requires some hierarchical mechanism
to exploit, by reuse and parameterization, the regularities, symmetries, ho-
mogeneities, similarities, patterns, and modularities inherent in problem en-
vironments. Subroutines provide this mechanism in ordinary computer pro-
grams. Automatically de�ned functions (Koza 1994a, 1994b) implement this
mechanism within the context of genetic programming. Automatically de�ned
functions are implemented by establishing a constrained syntactic structure
for the individual programs in the population. Each multi-part program in the
population contains one (or more) automatically de�ned functions and one
(or more) main result-producing branches. The result-producing branch usu-
ally has the ability to call one or more of the automatically de�ned functions.
An automatically de�ned function may have the ability to refer hierarchically
to other already-de�ned automatically de�ned functions.

The initial random generation is created so that every individual program
in the population consists of automatically de�ned function(s) and result-
producing branch(es) in accordance with the problem's constrained syntactic
structure. Since a constrained syntactic structure is involved, crossover and
mutation are performed so as to preserve this syntactic structure in all o�-
spring.

20 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

Architecture-altering operations enhance genetic programming with au-
tomatically de�ned functions by providing a way to automatically determine
the number of such automatically de�ned functions, the number of arguments
that each automatically de�ned function possesses, and the nature of the hier-
archical references, if any, among such automatically de�ned functions (Koza
1995). These operations include branch duplication, argument duplication,
branch creation, argument creation, branch deletion, and argument deletion.
The architecture-altering operations are motivated by the naturally occur-
ring mechanism of gene duplication that creates new proteins (and hence
new structures and new behaviors in living things) as described by Susumu
Ohno in Evolution by Gene Duplication (1970). Details are found in Koza,
Bennett, Andre, and Keane 1999.

Genetic programming has been applied to numerous problems in �elds
such as system identi�cation, control, classi�cation, design, optimization, and
automatic programming.

3 Statement of the Illustrative Problem

Design is a major activity of practicing engineers. The design process entails
creation of a complex structure to satisfy user-de�ned requirements. Since
the design process typically entails tradeo�s between competing considera-
tions, the end product of the process is usually a satisfactory and compliant
design as opposed to a perfect design. Design is usually viewed as requiring
creativity and human intelligence. Consequently, the �eld of design is a source
of challenging problems for automated techniques of machine intelligence. In
particular, design problems are useful for determining whether an automated
technique can produce results that are competitive with human-produced
results.

The design (synthesis) of analog electrical circuits is especially challeng-
ing. The design process for analog circuits begins with a high-level descrip-
tion of the circuit's desired behavior and characteristics and entails creation
of both the topology and the sizing of a satisfactory circuit. The topology
comprises the gross number of components in the circuit, the type of each
component (e.g., a capacitor), and a list of all connections between the com-
ponents. The sizing involves specifying the values (typically numerical) of
each of the circuit's components.

Although considerable progress has been made in automating the syn-
thesis of certain categories of purely digital circuits, the synthesis of analog
circuits and mixed analog-digital circuits has not proved to be as amenable
to automation. There is no previously known general technique for automat-
ically creating an analog circuit from a high-level statement of the design
goals of the circuit. Describing \the analog dilemma," O. Aaserud and I.
Ring Nielsen (1995) noted

Genetic Programming: Biologically Inspired Computation 21

\Analog designers are few and far between. In contrast to digital de-
sign, most of the analog circuits are still handcrafted by the experts
or so-called `zahs' of analog design. The design process is charac-
terized by a combination of experience and intuition and requires a
thorough knowledge of the process characteristics and the detailed
speci�cations of the actual product.
\Analog circuit design is known to be a knowledge-intensive, multi-
phase, iterative task, which usually stretches over a signi�cant period
of time and is performed by designers with a large portfolio of skills.
It is therefore considered by many to be a form of art rather than a
science."

This paper focuses on one particular problem of analog circuit synthe-
sis, namely the design of a lowpass �lter circuit composed of capacitors and
inductors. A simple �lter is a one-input, one-output electronic circuit that
receives a signal as its input and passes the frequency components of the
incoming signal that lie in a speci�ed range (called the passband) while sup-
pressing the frequency components that lie in all other frequency ranges (the
stopband). In particular, the goal is to design a lowpass �lter that passes all
frequencies below 1,000 Hertz (Hz) and suppresses all frequencies above 2,000
Hz.

The approach described in this paper has been applied to many other
problems of analog circuit synthesis, including the design of a ampli�ers,
computational circuits, a temperature-sensing circuit, a voltage reference cir-
cuit, a time-optimal robot controller circuit, a di�cult-to-design asymmetric
bandpass �lter, a crossover �lter, a double passband �lter, bandstop �lter,
frequency discriminator circuits, and a frequency-measuring circuit (as de-
scribed in detail in Koza, Bennett, Andre, and Keane 1999).

4 Applying Genetic Programming to the Problem

Genetic programming can be applied to the problem of synthesizing circuits
if a mapping is established between the program trees (rooted, point-labeled
trees | that is, acyclic graphs | with ordered branches) used in genetic
programming and the labeled cyclic graphs germane to electrical circuits.
The principles of developmental biology provide the motivation for mapping
trees into circuits by means of a developmental process that begins with a
simple embryo. For circuits, the embryo typically includes �xed wires that
connect the inputs and outputs of the particular circuit being designed and
certain �xed components (such as source and load resistors). Until these wires
are modi�ed, the circuit does not produce interesting output. An electrical
circuit is developed by progressively applying the functions in a circuit-con-
structing program tree to the modi�able wires of the embryo (and, during
the developmental process, to new components and modi�able wires).

22 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

An electrical circuit is created by executing the functions in a circuit-con-
structing program tree. The functions are progressively applied in a devel-
opmental process to the embryo and its successors until all of the functions
in the program tree are executed. That is, the functions in the circuit-con-
structing program tree progressively side-e�ect the embryo and its successors
until a fully developed circuit eventually emerges. The functions are applied
in a breadth-�rst order.

The functions in the circuit-constructing program trees are divided into
�ve categories: (1) topology-modifying functions that alter the circuit topol-
ogy, (2) component-creating functions that insert components into the circuit,
(3) development-controlling functions that control the development process
by which the embryo and its successors is changed into a fully developed
circuit, (4) arithmetic-performing functions that appear in subtrees as argu-
ment(s) to the component-creating functions and specify the numerical value
of the component, and (5) automatically de�ned functions that appear in the
automatically de�ned functions and potentially enable certain substructures
of the circuit to be reused (with parameterization).

Each branch of the program tree is created in accordance with a con-
strained syntactic structure. Each branch is composed of topology-modifying
functions, component-creating functions, development-controlling functions,
and terminals. Component-creating functions typically have one arithmetic-
performing subtree, while topology-modifying functions, and development-
controlling functions do not. Component-creating functions and topology-
modifying functions are internal points of their branches and possess one or
more arguments (construction-continuing subtrees) that continue the devel-
opmental process. The syntactic validity of this constrained syntactic struc-
ture is preserved using structure-preserving crossover with point typing. For
details, see Koza, Bennett, Andre, and Keane 1999.

4.1 The Embryonic Circuit

An electrical circuit is created by executing a circuit-constructing program
tree that contains various component-creating, topology-modifying, and development-
controlling functions. Each tree in the population creates one circuit. The
speci�c embryo used depends on the number of inputs and outputs.

Figure 1 shows a one-input, one-output embryonic (initial) circuit in
which VSOURCE is the input signal and VOUT is the output signal (the
probe point). The circuit is driven by an incoming alternating circuit source
VSOURCE. There is a �xed load resistor RLOAD and a �xed source resis-
tor RSOURCE in the embryo. In addition to the �xed components, there
are two modi�able wires, Z0 and Z1. All development originates from these
modi�able wires.

Genetic Programming: Biologically Inspired Computation 23

Fig. 1. One-input, one-output embryonic (initial) circuit .

4.2 Component-Creating Functions

The component-creating functions insert a component into the developing
circuit and assign component value(s) to the component.

Each component-creating function has a writing head that points to an
associated highlighted component in the developing circuit and modi�es that
component in a speci�ed manner. The construction-continuing subtree of
each component-creating function points to a successor function or terminal
in the circuit-constructing program tree.

The arithmetic-performing subtree of a component-creating function con-
sists of a composition of arithmetic functions (addition and subtraction) and
random constants (in the range {1:000 to +1:000). The arithmetic-performing
subtree speci�es the numerical value of a component by returning a oating-
point value that is interpreted on a logarithmic scale as the value for the
component in a range of 10 orders of magnitude (using a unit of measure
that is appropriate for the particular type of component).

The two-argument resistor-creating R function causes the highlighted com-
ponent to be changed into a resistor. The value of the resistor in kilo Ohms
is speci�ed by its arithmetic-performing subtree.

Figure 2 shows a modi�able wire Z0 connecting nodes 1 and 2 of a partial
circuit containing four capacitors (C2, C3, C4, and C5). Figure 3 shows the
result of applying the R function to the modi�able wire Z0 of �gure 2.

Similarly, the two-argument capacitor-creating C function causes the high-
lighted component to be changed into a capacitor whose value in micro-
Farads is speci�ed by its arithmetic-performing subtree. In addition, the two-
argument inductor-creating L function causes the highlighted component to
be changed into an inductor whose value in micro-Henrys is speci�ed by its
arithmetic-performing subtree.

24 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

Fig. 2. Modi�able wire Z0.

Fig. 3. Result of applying the R function.

4.3 Topology-Modifying Functions

Each topology-modifying function in a program tree points to an associated
highlighted component and modi�es the topology of the developing circuit.

The three-argument SERIES division function creates a series composition
of the modi�able wire or modi�able component with which it is associated,
a copy of the modi�able wire or modi�able component with which it is asso-
ciated, one new modi�able wire (with a writing head), and two new nodes.
Figure 4 shows the result of applying the SERIES function to the resistor R1
from �gure 3. After execution of the SERIES function, resistors R1 and R7
and modi�able wire Z6 remain modi�able. All three are associated with the
top-most function in one of the three construction-continuing subtrees of the
SERIES function.

The reader is referred to Koza, Bennett, Andre, and Keane 1999 for a
detailed description of all the circuit-constructing functions mentioned herein.

Genetic Programming: Biologically Inspired Computation 25

Fig. 4. Result after applying the SERIES division function.

The four-argument PARALLEL0 parallel division function creates a parallel
composition consisting of the modi�able wire or modi�able component with
which it is associated, a copy of the modi�able wire or modi�able component
with which it is associated, two new modi�able wires (each with a writing
head), and two new nodes. There are potentially two topologically distinct
outcomes of a parallel division. Since we want the outcome of all circuit-
constructing functions to be deterministic, there are two members (called
PARALLEL0 and PARALLEL1) in the PARALLEL family of topology-modifying
functions. The two functions operate di�erently depending on degree and
numbering of the preexisting components in the developing circuit. The use
of the two functions breaks the symmetry between the potentially distinct
outcomes.

The one-argument polarity-reversing FLIP function reverses the polarity
of the highlighted component.

The two-argument TWO GROUND (\ground") function enables any part of
a circuit to be connected to ground. The TWO GROUND function creates a
new node and a composition of two modi�able wires and one nonmodi�able
wire such that the nonmodi�able wire makes an unconditional connection to
ground.

The eight two-argument functions in the TWO VIA family of functions
(called TWO VIA0, ..., TWO VIA7), each create a new node and a composition of
two modi�able wires and one nonmodi�able wire such that the nonmodi�able
wire makes a connection, called a via, to a designated one of eight imaginary
numbered layers (0 to 7) of an imaginary silicon wafer on which the circuit
resides. the TWO VIA functions provide a way to connect distant parts of a
circuit.

The zero-argument SAFE CUT function causes the highlighted component
to be removed from the circuit provided that the degree of the nodes at both

26 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

ends of the highlighted component is three (i.e., no dangling components or
wires are created).

4.4 Development-Controlling Functions

The one-argument NOOP (\No Operation") function has no e�ect on the mod-
i�able wire or modi�able component with which it is associated; however,
it has the e�ect of delaying activity on the developmental path on which
it appears in relation to other developmental paths in the overall circuit-
constructing program tree.

The zero-argument END function makes the modi�able wire or modi�-
able component with which it is associated non-modi�able (thereby ending
a particular developmental path).

4.5 Example of Developmental Process

Figure 5 is an illustrative circuit-constructing program tree shown as a rooted,
point-labeled tree with ordered branches. The overall program consists of
two main result-producing branches joined by a connective LIST function
(labeled 1 in the �gure). The �rst (left) result-producing branch is rooted
at the capacitor-creating C function (labeled 2). The second result-producing
branch is rooted at the polarity-reversing FLIP function (labeled 3). This
�gure also contains four occurrences of the inductor-creating L function (at
17, 11, 20, and 12). The �gure contains two occurrences of the topology-
modifying SERIES function (at 5 and 10). The �gure also contains �ve oc-
currences of the development-controlling END function (at 15, 25, 27, 31, and
22) and one occurrence of the development-controlling \no operation" NOP

function (at 6). There is a seven-point arithmetic-performing subtree at 4
under the capacitor-creating C function at 4. Similarly, there is a three-point
arithmetic-performing subtree at 19 under the inductor-creating L function at
11. There are also one-point arithmetic-performing subtrees (i.e., constants)
at 26, 30, and 21. Additional details can be found in Koza, Bennett, Andre,
and Keane 1999.

5 Preparatory Steps

Before applying genetic programming to a problem of circuit design, seven
major preparatory steps are required: (1) identify the embryonic circuit, (2)
determine the architecture of the circuit-constructing program trees, (3) iden-
tify the primitive functions of the program trees, (4) identify the terminals of
the program trees, (5) create the �tness measure, (6) choose control param-
eters for the run, and (7) determine the termination criterion and method of
result designation.

Genetic Programming: Biologically Inspired Computation 27

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8

7

9 1 0 1 1 1 2

1 3 1 4 1 5 1 7 1 81 6 1 9 2 0 2 1

2 2

2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

Fig. 5. Illustrative circuit-constructing program tree.

5.1 Embryonic Circuit

The embryonic circuit used on a particular problem depends on the circuit's
number of inputs and outputs. A one-input, one-output embryo with two
modi�able wires (�gure 1) was used.

5.2 Program Architecture

Since there is one result-producing branch in the program tree for each modi�-
able wire in the embryo, the architecture of each circuit-constructing program
tree depends on the embryonic circuit. Two result-producing branches were
used for the �lter problems.

The architecture of each circuit-constructing program tree also depends
on the use, if any, of automatically de�ned functions. Automatically de�ned
functions provide a mechanism enabling certain substructures to be reused
and are described in detail in Koza, Bennett, Andre, and Keane 1999. Au-
tomatically de�ned functions and architecture-altering operations were not
used here.

5.3 Function and Terminal Sets

The function set for each design problem depends on the type of electrical
components that are to be used for constructing the circuit.

The function set included two component-creating functions (for induc-
tors and capacitors), topology-modifying functions (for series and parallel
divisions and for ipping components), one development-controlling function
(\no operation"), functions for creating a via to ground, and functions for con-
necting pairs of points. That is, the function set, Fccs, for each construction-
continuing subtree was

28 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

Fccs =fL, C, SERIES, PARALLEL0, PARALLEL1, FLIP, NOOP, TWO GROUND,

TWO VIA0 , TWO VIA1, TWO VIA2, TWO VIA3, TWO VIA4, TWO VIA5,

TWO VIA6, TWO VIA7g.

The terminal set, Tccs, for each construction-continuing subtree was

Tccs = END; SAFE CUT.

The terminal set, Taps, for each arithmetic-performing subtree consisted of

Taps = <,
where < represents oating-point random constants from {1:0 to +1:0. The
function set, Faps, for each arithmetic-performing subtree was,

Faps = +; -.

The terminal and function sets were identical for all result-producing
branches for a particular problem.

5.4 Fitness Measure

The evolutionary process is driven by the �tness measure. Each individual
computer program in the population is executed and then evaluated, using
the �tness measure. The nature of the �tness measure varies with the prob-
lem. The high-level statement of desired circuit behavior is translated into
a well-de�ned measurable quantity that can be used by genetic program-
ming to guide the evolutionary process. The evaluation of each individual
circuit-constructing program tree in the population begins with its execu-
tion. This execution progressively applies the functions in each program tree
to an embryonic circuit, thereby creating a fully developed circuit. A netlist
is created that identi�es each component of the developed circuit, the nodes
to which each component is connected, and the value of each component. The
netlist becomes the input to our modi�ed version of the 217; 000-line SPICE
(Simulation Program with Integrated Circuit Emphasis) simulation program
(Quarles, Newton, Pederson, and Sangiovanni-Vincentelli 1994). SPICE then
determines the behavior of the circuit. It was necessary to make consider-
able modi�cations in SPICE so that it could run as a submodule within the
genetic programming system.

The desired lowpass �lter has a passband below 1; 000 Hz and a stopband
above 2; 000 Hz. The circuit is driven by an incoming AC voltage source with
a 2 volt amplitude. In this problem, a voltage in the passband of exactly 1
volt and a voltage in the stopband of exactly 0 volts is regarded as ideal. The
(preferably small) variation within the passband is called the passband ripple.
Similarly, the incoming signal is never fully reduced to zero in the stopband
of an actual �lter. The (preferably small) variation within the stopband is
called the stopband ripple. A voltage in the passband of between 970 millivolts

Genetic Programming: Biologically Inspired Computation 29

and 1 volt (i.e., a passband ripple of 30 millivolts or less) and a voltage in
the stopband of between 0 volts and 1 millivolts (i.e., a stopband ripple of
1 millivolts or less) is regarded as acceptable. Any voltage lower than 970
millivolts in the passband and any voltage above 1 millivolts in the stopband
is regarded as unacceptable.

Since the high-level statement of behavior for the desired circuit is ex-
pressed in terms of frequencies, the voltage VOUT is measured in the fre-
quency domain. SPICE performs an AC small signal analysis and reports the
circuit's behavior over �ve decades (between 1 Hz and 100; 000 Hz) with each
decade being divided into 20 parts (using a logarithmic scale), so that there
are a total of 101 �tness cases.

Fitness is measured in terms of the sum over these cases of the absolute
weighted deviation between the actual value of the voltage that is produced
by the circuit at the probe point VOUT and the target value for voltage.
The smaller the value of �tness, the better. A �tness of zero represents an
(unattainable) ideal �lter.

Speci�cally, the standardized �tness is

F (t) =
100X

i=0

W (d(fi); fi)d(fi);

where fi is the frequency of �tness case i; d(x) is the absolute value of the
di�erence between the target and observed values at frequency x; andW (y; x)
is the weighting for di�erence y at frequency x.

The �tness measure is designed to not penalize ideal values, to slightly
penalize every acceptable deviation, and to heavily penalize every unaccept-
able deviation. Speci�cally, the procedure for each of the 61 points in the
3-decade interval between 1 Hz and 1; 000 Hz for the intended passband is as
follows:

� If the voltage equals the ideal value of 1:0 volt in this interval, the devi-
ation is 0:0.

� If the voltage is between 970 millivolts and 1 volt, the absolute value of
the deviation from 1 volt is weighted by a factor of 1:0.

� If the voltage is less than 970 millivolts, the absolute value of the deviation
from 1 volt is weighted by a factor of 10:0.

The acceptable and unacceptable deviations for each of the 35 points from
2; 000 Hz to 100; 000 Hz in the intended stopband are similarly weighed (by
1:0 or 10:0) based on the amount of deviation from the ideal voltage of 0
volts and the acceptable deviation of 1 millivolts.

For each of the �ve \don't care" points between 1; 000 and 2; 000 Hz, the
deviation is deemed to be zero.

The number of \hits" for this problem (and all other problems herein) is
de�ned as the number of �tness cases for which the voltage is acceptable or
ideal or that lie in the \don't care" band (for a �lter).

30 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

Many of the random initial circuits and many that are created by the
crossover and mutation operations in subsequent generations cannot be sim-
ulated by SPICE. These circuits receive a high penalty value of �tness (108)
and become the worst-of-generation programs for each generation.

5.5 Control Parameters

The population size, M , was 320; 000. The probability of crossover was ap-
proximately 89%; reproduction 10%; and mutation 1%. Our usual control
parameters were used (Koza, Bennett, Andre, and Keane 1999, Appendix
D).

5.6 Termination Criterion and Results Designation

The maximum number of generations, G, is set to an arbitrary large number
(e.g., 501) and the run was manually monitored and manually terminated
when the �tness of the best-of-generation individual appeared to have reached
a plateau. The best-so-far individual is harvested and designated as the result
of the run.

5.7 Implementation on Parallel Computer

The problem was run on a medium-grained parallel Parsytec computer sys-
tem consisting of 64 80-MHz PowerPC 601 processors arranged in an 8 by
8 toroidal mesh with a host PC Pentium type computer. The distributed
genetic algorithm (Andre and Koza 1996) with unsynchronized generations
was used with a population size of Q = 5; 000 at each of the D = 64 demes
(semi-isolated subpopulations) for a total population,M , of 320; 000. On each
generation, four boatloads of emigrants, each consisting of B = 2% (the mi-
gration rate) of the node's subpopulation (selected on the basis of �tness)
were dispatched to each of the four adjacent processing nodes.

6 Results

The creation of the initial random population is a blind random search of the
search space of the problem. The best circuit from generation 0 has a �tness
of 61:7 and scores 52 hits (out of 101).

Figures 6, 7, 8, and 9 show the behavior of the best circuits from genera-
tion 0, 10, 15, and 49, respectively, of one run of genetic programming. The
horizontal axis represents �ve decades of frequencies from 1 Hz to 100; 000
Hz on a logarithmic scale. The vertical axis represents output voltage on
a linear scale. Excluding the �xed source and load resistors of the test �x-
ture of the embryonic circuit, the best-of-generation circuit from generation
0 consists of only a lone 358 nF capacitor that shunts the incoming signal

Genetic Programming: Biologically Inspired Computation 31

to ground. A good �lter cannot be created by a single capacitor. However,
even a single capacitor di�erentially passes higher frequencies to ground and
performs a certain amount of �ltering. Figure 6 shows that the best circuit
from generation 0 bears some resemblance to the desired lowpass �lter in
that it passes frequencies up to about 70 Hz at nearly a full volt and it al-
most fully suppresses frequencies near 100; 000 Hz. However, its transition
region is exceedingly leisurely. Nonetheless, in the valley of the blind, the
one-eyed man is king. Moreover, as will be seen momentarily, this modest
beginning serves as a building block that will become incorporated in the
100%-compliant lowpass �lter that will eventually be evolved.

The evolutionary process produces better and better individuals as the
run progresses. For example, the best circuit from generation 10 has inductors
in series with the incoming signal as well as a single capacitor shunted to
ground. Figure 7 shows that that the frequencies up to about 200 Hz are
passed at nearly full voltage and that frequencies above 10; 000 Hz are almost
fully suppressed. Figure 8 shows that the best circuit from generation 15 (with
two inductors in series with the incoming signal and three capacitors shunted
to ground) comes closer to meeting the requirements of this design problem.

1.0Hz 10Hz 100 Hz 1.0 KHz 10K Hz 100 KHz

Fre que ncy
V(RLOAD:1)

1.0V

0.5V

0V

Fig. 6. Frequency domain behavior of the best circuit of generation 0.

6.1 Campbell 1917 Ladder Filter Patent

The best circuit (�gure 10) of generation 49 from this run is 100% compli-
ant with the problem's design requirements in the sense that it scored 101
hits (out of 101). It has a near-zero �tness of 0:00781 (about �ve orders of
magnitude better than the best circuit of generation 0). As can be seen, this
evolved circuit consists of seven inductors (L5, L10, L22, L28, L31, L25, and

32 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

1.0Hz 10Hz 100 Hz 1.0 KHz 10K Hz 100 KHz

Fre que ncy
V(L10:2)

1.0V

0.5V

0V

Fig. 7. Frequency domain behavior of the best circuit of generation 10.

1.0H z 10Hz 100Hz 1 .0KHz 10KHz 1 00KHz

F requency
V(L12:2)

1 .0V

0.5V

0 V

Fig. 8. Frequency domain behavior of the best circuit of generation 15.

L13) arranged horizontally across the top of the �gure \in series" with the
incoming signal VSOURCE and the source resistor RSOURCE. It also con-
tains seven capacitors (C12, C24, C30, C3, C33, C27, and C15) that are each
shunted to ground. This circuit is a classical ladder �lter with seven rungs
(Williams and Taylor 1995).

Figure 9 shows the behavior in the frequency domain of this evolved
lowpass �lter. As can be seen, the 100%-compliant lowpass �lter delivers
a voltage of essentially 1 Volt in the entire passband from 1 Hz to 1; 000
Hz and suppresses the voltage of essentially 0 Volts in the entire stopband
starting at 2; 000 Hz. There is a sharp drop-o� from 1 Volt to 0 Volts in the
transitional (\don't care") region between 1; 000 Hz and 2; 000 Hz.

Genetic Programming: Biologically Inspired Computation 33

1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz

Frequency
V(RLOAD:1)

1.0V

0.5V

0V

Fig. 9. Frequency domain behavior of 100%-compliant seven-rung ladder circuit
from generation 49.

Fig. 10. Evolved seven-rung ladder lowpass �lter.

The circuit of �gure 10 has the recognizable features of the circuit for
which George Campbell of American Telephone and Telegraph received U.
S. patent 1; 227; 113 in 1917 (Campbell 1917). Claim 2 of Campbell's patent
covered,

\An electric wave �lter consisting of a connecting line of negligible at-
tenuation composed of a plurality of sections, each section including a
capacity element and an inductance element, one of said elements of
each section being in series with the line and the other in shunt across
the line, said capacity and inductance elements having precomputed
values dependent upon the upper limiting frequency and the lower
limiting frequency of a range of frequencies it is desired to trans-
mit without attenuation, the values of said capacity and inductance
elements being so proportioned that the structure transmits with
practically negligible attenuation sinusoidal currents of all frequen-
cies lying between said two limiting frequencies, while attenuating
and approximately extinguishing currents of neighboring frequencies
lying outside of said limiting frequencies."

34 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

An examination of the evolved circuit of �gure 10 shows that it indeed consists
of \a plurality of sections" (speci�cally, seven). In the �gure, \Each section
include[es] a capacity element and an inductance element." Speci�cally, the
�rst of the seven sections consists of inductor L5 and capacitor C12; the
second section consists of inductor L10 and capacitor C24; and so forth.
Moreover, \one of said elements of each section [is] in series with the line
and the other in shunt across the line." Inductor L5 of the �rst section is
indeed \in series with the line" and capacitor C12 is indeed \in shunt across
the line." This is also true for the circuit's remaining six sections. Moreover,
�gure 10 herein matches �gure 7 of Campbell's 1917 patent. In addition, this
circuit's 100% compliant behavior in the frequency domain (�gure 9 herein)
con�rms the fact that the values of the inductors and capacitors are such
as to transmit \with practically negligible attenuation sinusoidal currents" of
the passband frequencies \while attenuating and approximately extinguishing
currents" of the stopband frequencies.

In short, genetic programming evolved an electrical circuit that infringes
on the claims of Campbell's now-expired patent.

In addition to possessing the topology of the Campbell �lter, the evolved
circuit of Figure 10 also approximately possesses the numerical values de-
scribed in Campbell's 1917 patent (Campbell 1917). In fact, this evolved
circuit is roughly equivalent to what is now known as a cascade of six identi-
cal symmetric �-sections (Johnson l950). To see this, we modify the evolved
circuit of Figure 10 in four ways.

First, we delete the 9:68 �H inductor L5 near the upper left corner of
the �gure. The value of this inductor is more than �ve orders of magnitude
smaller than the value of the other six inductors (L10, L22, L28, L31, L25, and
L13) in series across the top of the �gure. The behavior of the evolved circuit
is not noticeably a�ected by this deletion for the frequencies of interest in
this problem.

Second, we replace each of the �ve identical 202 nF capacitors (C24, C30,
C3, C33, C27) by a composition of two parallel 101 nF capacitors. Since the
capacitance of a composition of two parallel capacitors equals the sum of
the two individual capacitances, the behavior of the evolved circuit is not
changed at all by these substitutions.

Third, we note that the two 86:1 nF capacitors (C12 and C15) at the two
ends of the ladder are each approximately equal to the (now) ten 101 nF
capacitors. Suppose, for sake of argument, that these 12 approximately equal
capacitors are replaced by 12 equal capacitors with capacitance equal to their
average value (98:5 nF). The behavior of the evolved circuit is only slightly
changed by these substitutions.

Fourth, we note also that the six non-trivial inductors (L10, L22, L28,
L31, L25, and L13) are approximately equal. Suppose, for sake of argument,
that these six approximately equal inductors are replaced by six equal induc-

Genetic Programming: Biologically Inspired Computation 35

tors with inductance equal to their average value (200; 000 �H). Again, the
behavior of the evolved circuit is only slightly changed by these substitutions.

The behavior in the frequency domain of the circuit resulting from the
above four changes is almost the same as that of the evolved circuit of Fig-
ure 10. In fact, the modi�ed circuit is 100%-compliant (i.e., scores 101 hits).
The modi�ed circuit can be viewed as what is now known as a cascade of
six identical symmetric �-sections. Each �-section consists of an inductor of
inductance L (where L equals 200; 000 �H) and two equal capacitors of ca-
pacitance C=2 (where C equals 197 nF). In each �-section, the two 98:5 nF
capacitors constitute the vertical legs of the � and the one 200; 000 �H induc-
tor constitutes the horizontal bar across the top of the �. Such �-sections are
characterized by two key parameters. The �rst parameter is the characteristic
resistance (impedance) of the �-section. This characteristic resistance should
match the circuit's �xed load resistance RLOAD (1; 000
). The second pa-
rameter is the nominal cuto� frequency which separates the �lter's passband
from its stopband. This second parameter should lie somewhere in the tran-
sition region between the end of the passband (1; 000 Hz) and the beginning
of the stopband (2; 000 Hz). The characteristic resistance, R, of each of the
�-sections is given by the formula

p
L=C. This formula yields a characteristic

resistance, R, of 1; 008
. This value is very close to the value of the 1; 000

 load resistance of this problem. The nominal cuto� frequency, fc, of each
of the �-sections of a lowpass �lter is given by the formula 1=(�

p
LC). This

formula yields a nominal cuto� frequency, fc, of 1; 604 Hz (i.e., roughly in
the middle of the transition region between the passband and stopband of
the desired lowpass �lter).

The legal criteria for obtaining a U. S. patent are that the proposed
invention be \new" and \useful" and

... the di�erences between the subject matter sought to be patented
and the prior art are such that the subject matter as a whole would
[not] have been obvious at the time the invention was made to a
person having ordinary skill in the art to which said subject matter
pertains. (35 United States Code 103a).

George Campbell was part of the renowned research team of the Ameri-
can Telephone and Telegraph Corporation. He received a patent for his �lter
in 1917 because his idea was new in 1917, because it was useful, and because
satisifed the above statutory test for unobviousness. The fact that genetic
programming rediscovered an electrical circuit that was unobvious \to a per-
son having ordinary skill in the art" establishes that this evolved result sat-
is�es Arthur Samuel's criterion (Samuel 1983) for arti�cial intelligence and
machine learning, namely

\The aim [is] ... to get machines to exhibit behavior, which if done
by humans, would be assumed to involve the use of intelligence."

36 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

6.2 Zobel 1925 \M-Derived Half Section" Patent

In another run of this same problem, a 100%-compliant circuit was evolved in
generation 34. This evolved circuit is roughly equivalent to what is now known
as a cascade of three symmetric T-sections and an M -derived half section
(Johnson 1950). To see this, we modify this evolved circuit from generation
34 in three ways.

First, we insert wires in lieu of two 0:138 �H inductors (whose value is
about six orders of magnitude smaller than the value of the other inductors
in the circuit). The behavior of this slightly modi�ed evolved circuit (�gure
11) is not noticeably a�ected by these changes for the frequencies of interest
in this problem.

Fig. 11. Slightly modi�ed version of the evolved lowpass �lter circuit consisting of
three symmetric T-sections and an M -derived half section.

Second, we replace each of the three 198; 000 �H inductors in the �gure
(L16, L13, and L10) with a series composition of two 99; 000 �H inductors.
Since the inductance of two inductors in series is equal to the sum of their
inductances, this change does not a�ect the behavior of the circuit at all. The
circuit can now be viewed as having one incoming 85; 400 �H inductor (L5)
and six 99; 000 �H inductors in series horizontally at the top of the �gure.

Third, we note also that the values of the (now) seven inductors in series
horizontally across the top of the �gure are approximately equal. Suppose, for
sake of argument, that each of these seven approximately equal inductors are
replaced by an inductor with inductance equal to their average value (97; 000
�H). This change does not appreciably a�ect the behavior of the circuit for
the frequencies of interest.

After the above changes, the evolved lowpass �lter can be viewed as con-
sisting of a cascade of three identical symmetric T-sections and an \M -derived
half section." In particular, each T-section consists of an incoming inductor of
inductance L=2 (where L equals 194; 000 �H), a junction point from which a
capacitor of capacitance C (where C equals 194 nF) is shunted o� to ground,
and an outgoing inductor of inductance L=2. The two inductors are the hor-
izontal arms of the \T." The �nal half section (so named because it has only

Genetic Programming: Biologically Inspired Computation 37

one arm of a \T") has one incoming inductor of inductance 2 and a junction
point from which a capacitive-inductive shunt (C3 and L11) is connected to
ground.

The �rst three symmetric T-sections are referred to as \constant K" �lter
sections (Johnson l950, page 331). Such �lter sections are characterized by
two key parameters. The characteristic resistance, R, of each of each of the
three T-sections is given by the formula R =

p
L=C. When the inductance,

L, is 194; 000 �H and the capacitance, C, is 194 nF, then the characteristic
resistance, R, is 1; 000
 according to this formula (i.e., equal to the value
of the actual load resistor). The nominal cuto� frequency, fc, of each of the
three T-sections of a lowpass �lter is given by the formula fc = 1=(�

p
LC).

This formula yields a nominal cuto� frequency, fc, of 1; 641 Hz (which is near
the middle of the transition band for the desired pass �lter).

In other words, both of the key parameters of the three T-sections are
very close to the canonical values of \constant K" sections designed with the
aim of satisfying this problem's design requirements.

The �nal section of the evolved circuit closely approximates a section now
called an \M -derived half section". This �nal section is said to be \derived"
because it is derived from the foregoing three identical \constant K" proto-
type sections. In the derivation, m is a real constant between 0 and 1. Let
m be 0.6 here. In a canonical \M -derived half section" that is derived from
the above \constant K" prototype section, the value of the capacitor in the
vertical shunt of the half section is given by the formula mC (116:4 nF). The
actual value of C3 in the evolved circuit is 117 nF. The value of the inductor
in the vertical shunt of an \M -derived half section" is given by the formula
L(1 � m2)=4m. This formula yields a value of 51; 733. The actual value of
L5 in the evolved circuit is 52; 200 �H. The frequency, f1, where the atten-
uation �rst becomes complete, is given by the formula f1 = fc=

p
1�m2.

This formula yields a value of f1 of 2; 051 Hz (i.e., near the beginning of the
desired stopband).

Taken as a whole, the topology and component values of the evolved
circuit are reasonably close to the canonical values for the three identical
symmetric T-sections and a �nal \M -derived half section" that is designed
with the aim of satisfying this problem's design requirements.

Otto Zobel of American Telephone and Telegraph Company invented the
idea of adding an \M -derived half section" to one or more \constant K"
sections. As Zobel (1925) explains in U. S. patent 1; 538; 964,

The principal object of my invention is to provide a new and im-
proved network for the purpose of transmitting electric currents hav-
ing their frequency within a certain range and attenuating currents
of frequency within a di�erent range. . . . Another object of my in-
vention is to provide a wave-�lter with recurrent sections not all of
which are alike, and having certain advantages over a wave-�lter with
all its sections alike.

38 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

The advantage of Zobel's approach is a \sharper transition" in the frequency
domain behavior of the �lter. Claim 1 of Zobel's 1925 patent covers,

A wave-�lter having one or more half-sections of a certain kind and
one or more other half-sections that are M-types thereof, M being
di�erent from unity.

Claim 2 covers,

A wave-�lter having its sections and half-sections so related that they
comprise di�erent M-types of a common prototype, M having several
values for respectively di�erent sections and half-sections.

Claim 3 goes on to cover,

A wave-�lter having one or more half-sections of a certain kind and
one or more half-sections introduced from a di�erent wave-�lter hav-
ing the same characteristic and the same critical frequencies and a dif-
ferent attenuation characteristic outside the free transmitting range.

Viewed as a whole, the evolved circuit here infringes the claims of Zobel's
1925 patent.

6.3 Johnson 1926 \Bridged T" Patent

In another run, a 100% compliant recognizable \bridged T" arrangement
was evolved. The \bridged T" �lter topology was invented and patented by
Kenneth S. Johnson of Western Electric Company in 1926 (Johnson 1926).
As U. S. patent 1; 611; 916 (Johnson 1926) states,

In accordance with the invention, a section of an arti�cial line,
such as a wave �lter, comprises in general four impedance paths, three
of which are arranged in the form of a T network with the fourth path
bridged across the transverse arms of the T. The impedances of this
network, which for convenience, will be referred to as a bridged T
network, bear a de�nite relationship to a network of the series shunt
type, the characteristics of which are well known.

In the forms of the invention described herein, the arms of the
bridged T network consist of substantially pure reactances. Its most
useful forms are found to be wave �lter networks in which there is a
substantially in�nite attenuation at a frequency within the band to be
suppressed and the network may be designed so that this frequency
is very near the cut-o� frequency of the �lter, thus producing a very
sharp separation between the transmitted and suppressed bands.

Claim 1 of patent 1; 611; 916 covers,

Genetic Programming: Biologically Inspired Computation 39

An electrical network comprising a pair of input terminals and a pair
of output terminals, an impedance path connected directly between
an input terminal and an output terminal, a pair of impedance paths
having a common terminal and having their other terminals con-
nected respectively to the terminals of said �rst path, and a fourth
impedance path having one terminal connected to said common ter-
minal and having connections from its other terminal to the remaining
input terminal and output terminal, each of said paths containing a
substantial amount of reactance, the impedances of said network hav-
ing such values that said network is the equivalent of a series-shunt
network having desired transmission characteristics.

The \bridged T" of �gure 12 involves L14, C3, C15, and L11. In particular,
L14 is the \impedance path connected directly between an input terminal and
an output terminal" that is referred to later as \the �rst path." The junction
of C3, C15, and L11 is the \common terminal." C3 and C15 are the \pair of
impedance paths having a common terminal and having their other terminals
connected respectively to the terminals of said �rst path." L11 is the \fourth
impedance path having one terminal connected to said common terminal and
having connections from its other terminal to the remaining input terminal
and output terminal" (namely, the input and output terminal of the section
that are both grounded).

Fig. 12. \Bridged T" circuit from generation 64.

6.4 Cauer 1934{1936 Elliptic Patents

In a run of this same problem using automatically de�ned functions (de-
scribed in Koza, Bennett, Andre, and Keane 1999), a 100% compliant circuit
emerged in generation 31. After all of the pairs and triplets of series inductors
in the evolved circuit are consolidated (as shown in �gure 13), it can be seen

40 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

that the circuit has the equivalent of six inductors horizontally across the
top of the circuit and �ve vertical shunts. Each vertical shunt consists of an
inductor and a capacitor.

Fig. 13. Evolved Cauer (elliptic) �lter topology from generation 31.

This circuit has the recognizable elliptic topology that was invented and
patented by Wilhelm Cauer (1934, 1935, 1936). The Cauer �lter was a sig-
ni�cant advance (both theoretically and commercially) over the earlier �lter
designs of Campbell, Zobel, Johnson, Butterworth, and Chebychev. For ex-
ample, for one commercially important set of speci�cations for telephones,
a �fth-order elliptic �lter matches the behavior of a 17th-order Butterworth
�lter or an eighth-order Chebychev �lter. The �fth-order elliptic �lter has one
less component than the eighth-order Chebychev �lter. As Van Valkenburg
(1982, page 379) relates in connection with the history of the elliptic �lter:

Cauer �rst used his new theory in solving a �lter problem for the
German telephone industry. His new design achieved speci�cations
with one less inductor than had ever been done before. The world
�rst learned of the Cauer method not through scholarly publication
but through a patent disclosure, which eventually reached the Bell
Laboratories. Legend has it that the entire Mathematics Department
of Bell Laboratories spent the next two weeks at the New York Pub-
lic library studying elliptic functions. Cauer had studied mathematics
under Hilbert at Goettingen, and so elliptic functions and their ap-
plications were familiar to him.

Genetic programming did not, of course, study mathematics under Hilbert or
anybody else. Instead, the elliptic topology invented and patented by Cauer

Genetic Programming: Biologically Inspired Computation 41

emerged from this run of genetic programming as a natural consequence
of the problem's �tness measure and natural selection | not because the
run was primed with domain knowledge about elliptic functions or �lters
or electrical circuitry. Genetic programming opportunistically reinvented the
elliptic topology because necessity (�tness) is the mother of invention.

7 The Illogical Nature of Creativity and Evolution

Many computer scientists and mathematicians unquestioningly assume that
every problem-solving technique must be logically sound, deterministic, logi-
cally consistent, and parsimonious. Accordingly, most conventional methods
of arti�cial intelligence and machine learning are constructed so as to possess
these characteristics. However, in spite of this strong predisposition by com-
puter scientists and mathematicians, the features of logic do not govern two
of the most important types of complex problem solving processes, namely
the invention process performed by creative humans and the evolutionary
process occurring in nature.

A new idea that can be logically deduced from facts that are known in
a �eld, using transformations that are known in a �eld, is not considered to
be an invention. There must be what the patent law refers to as an \illogical
step" (i.e., an unjusti�ed step) to distinguish a putative invention from that
which is readily deducible from that which is already known. Humans supply
the critical ingredient of \illogic" to the invention process. Interestingly, ev-
eryday usage parallels the patent law concerning inventiveness: People who
mechanically apply existing facts in well-known ways are summarily dismissed
as being uncreative. Logical thinking is unquestionably useful for many pur-
poses. It usually plays an important role in setting the stage for an invention.
But, at the end of the day, logical thinking is the antithesis of invention and
creativity.

Recalling his invention in 1927 of the negative feedback ampli�er, Harold
S. Black of Bell Laboratories (1977) said,

Then came the morning of Tuesday, August 2, 1927, when the concept
of the negative feedback ampli�er came to me in a ash while I was
crossing the Hudson River on the Lackawanna Ferry, on my way to
work. For more than 50 years, I have pondered how and why the idea
came, and I can't say any more today than I could that morning.
All I know is that after several years of hard work on the problem,
I suddenly realized that if I fed the ampli�er output back to the
input, in reverse phase, and kept the device from oscillating (singing,
as we called it then), I would have exactly what I wanted: a means
of canceling out the distortion of the output. I opened my morning
newspaper and on a page of The New York Times I sketched a simple
canonical diagram of a negative feedback ampli�er plus the equations
for the ampli�cation with feedback.

42 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

Of course, inventors are not oblivious to logic and knowledge. They do not
thrash around using blind random search. Black did not try to construct the
negative feedback ampli�er from neon bulbs or doorbells. Instead, \several
years of hard work on the problem" set the stage and brought his thinking
into the proximity of a solution. Then, at the critical moment, Black made
his \illogical" leap. This unjusti�ed leap constituted the invention.

The design of complex entities by the evolutionary process in nature is
another important type of problem-solving that is not governed by logic. In
nature, solutions to design problems are discovered by the probabilistic pro-
cess of evolution and natural selection. There is nothing logical about this
process. Indeed, inconsistent and contradictory alternatives abound. In fact,
such genetic diversity is necessary for the evolutionary process to succeed.
Signi�cantly, the solutions evolved by evolution and natural selection almost
always di�er from those created by conventional methods of arti�cial intelli-
gence and machine learning in one very important respect. Evolved solutions
are not brittle; they are usually able to grapple with the perpetual novelty
of real environments.

Similarly, genetic programming is not guided by the inference methods of
formal logic in its search for a computer program to solve a given problem.
When the goal is the automatic creation of computer programs, all of our
experience has led us to conclude that the non-logical approach used in the
invention process and in natural evolution are far more fruitful than the logic-
driven and knowledge-based principles of conventional arti�cial intelligence
and machine learning. In short, \logic considered harmful."

8 Conclusion

We illustrated genetic programming by applying it to a non-trivial problem,
namely the synthesis of a design for a lowpass �lter circuit. The results were
competitive with human-produced solutions to the problem. The results ex-
hibited creativity and inventiveness and correspond to four inventions that
were patented between 1917 and 1936.

References

1. Aaserud, O. and Nielsen, I. Ring. 1995. Trends in current analog design: A
panel debate. Analog Integrated Circuits and Signal Processing. 7(1), 5{9.

2. Andre, David and Koza, John R. 1996. Parallel genetic programming: A scal-
able implementation using the transputer architecture. In Angeline, P. J. and
Kinnear, K. E. Jr. (editors). 1996. Advances in Genetic Programming 2. Cam-
bridge: MIT Press.

3. Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in

Genetic Programming 2. Cambridge, MA: The MIT Press.
4. Back, Thomas. (editor). 1997. Genetic Algorithms: Proceedings of the Seventh

International Conference. San Francisco, CA: Morgan Kaufmann.

Genetic Programming: Biologically Inspired Computation 43

5. Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D.
1998. Genetic Programming | An Introduction. San Francisco, CA: Morgan
Kaufmann and Heidelberg: dpunkt.

6. Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence
C. 1998. Genetic Programming: First European Workshop. EuroGP'98. Paris,

France, April 1998 Proceedings. Paris, France. April l998. Lecture Notes in
Computer Science. Volume 1391. Berlin, Germany: Springer- Verlag.

7. Black, Harold S. 1977. Inventing the negative feedback ampli�er. IEEE Spec-

trum. December 1977. Pages 55{60.
8. Campbell, George A. 1917. Electric Wave Filter. Filed July 15, 1915. U. S.

Patent 1,227,113. Issued May 22, 1917.
9. Cauer, Wilhelm. 1934. Arti�cial Network. U. S. Patent 1,958,742. Filed June

8, 1928 in Germany. Filed December 1, 1930 in United States. Issued May 15,
1934.

10. Cauer, Wilhelm. 1935. Electric Wave Filter. U. S. Patent 1,989,545. Filed June
8, 1928. Filed December 6, 1930 in United States. Issued January 29, 1935.

11. Cauer, Wilhelm. 1936. Unsymmetrical Electric Wave Filter. Filed November
10, 1932 in Germany. Filed November 23, 1933 in United States. Issued July
21, 1936.

12. Gen, Mitsuo and Cheng, Runwei. 1997. Genetic Algorithms and Engineering

Design. New York: John Wiley and Sons.
13. Goldberg, David E. l989a. Genetic Algorithms in Search, Optimization, and

Machine Learning. Reading, MA: Addison- Wesley.
14. Holland, John H. 1975. Adaptation in Natural and Arti�cial Systems. Ann Ar-

bor, MI: University of Michigan Press.
15. Johnson, Kenneth S. 1926. Electric-Wave Transmission. Filed March 9, 1923.

U. S. Patent 1,611,916. Issued December 28, 1926.
16. Johnson, Walter C. 1950. Transmission Lines and Networks. New York: NY:

McGraw-Hill.
17. Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming.

Cambridge, MA: The MIT Press.
18. Koza, John R. 1992. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. Cambridge, MA: MIT Press.
19. Koza, John R. 1994a. Genetic Programming II: Automatic Discovery of

Reusable Programs. Cambridge, MA: MIT Press.
20. Koza, John R. 1994b. Genetic Programming II Videotape: The Next Generation.

Cambridge, MA: MIT Press.
21. Koza, John R. 1995. Evolving the architecture of a multi-part program in ge-

netic programming using architecture-altering operations. In McDonnell, John
R., Reynolds, Robert G., and Fogel, David B. (editors). 1995. Evolutionary Pro-
gramming IV: Proceedings of the Fourth Annual Conference on Evolutionary

Programming. Cambridge, MA: The MIT Press. Pages 695{717.
22. Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy,

Dorigo, Marco, Fogel, David B., Garzon, Max H., Goldberg, David E., Iba,
Hitoshi, and Riolo, Rick L. (editors). Genetic Programming 1998: Proceedings

of the Third Annual Conference, July 22-25, 1998, University of Wisconsin,

Madison, Wisconsin. San Francisco, CA: Morgan Kaufmann.
23. Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A.

1999. Genetic Programming III : Darwinian Invention and Problem Solving.
San Francisco, CA: Morgan Kaufmann.

44 J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane

24. Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon,
Max, Iba, Hitoshi, and Riolo, Rick L. (editors). 1997. Genetic Programming

1997: Proceedings of the Second Annual Conference San Francisco, CA: Morgan
Kaufmann.

25. Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (edi-
tors). 1996. Genetic Programming 1996: Proceedings of the First Annual Con-
ference. Cambridge, MA: The MIT Press.

26. Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie.
Cambridge, MA: MIT Press.

27. Michalewicz, Zbigniew. 1996. Genetic Algorithms + Data Structures = Evolu-

tion Programs. Springer-Verlag. Third edition.
28. Mitchell, Melanie. 1996. An Introduction to Genetic Algorithms. Cambridge,

MA: The MIT Press.
29. Ohno, Susumu. Evolution by Gene Duplication. New York: Springer-Verlag

1970.
30. Quarles, Thomas, Newton, A. R., Pederson, D. O., and Sangiovanni-Vincentelli,

A. 1994. SPICE 3 Version 3F5 User's Manual. Department of Electrical Engi-
neering and Computer Science, University of California, Berkeley, CA. March
1994.

31. Samuel, Arthur L. 1959. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development. 3(3): 210-229.

32. Samuel, Arthur L. 1983. AI: Where it has been and where it is going. Proceed-
ings of the Eighth International Joint Conference on Arti�cial Intelligence. Los
Altos, CA: Morgan Kaufmann. Pages 1152{1157.

33. Spector, Lee, Langdon, William B., O'Reilly, Una-May, and Angeline, Peter
(editors). 1999. Advances in Genetic Programming 3. Cambridge, MA: The
MIT Press.

34. Van Valkenburg, M. E. 1982. Analog Filter Design. Fort Worth, TX: Harcourt
Brace Jovanovich.

35. Williams, Arthur B. and Taylor, Fred J. 1995. Electronic Filter Design Hand-

book. Third Edition. New York, NY: McGraw-Hill.

