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ABSTRACT 

Automated methods of machine learning may prove to be useful in discovering 

biologically meaningful information hidden in the rapidly growing databases of DNA 

sequences and protein sequences.   

Genetic programming is an extension of the genetic algorithm in which a population of 

computer programs is bred, over a series of generations, in order to solve a problem.  

Genetic programming is capable of evolving complicated problem-solving expressions of 

unspecified size and shape.  Moreover, when automatically defined functions are added to 

genetic programming, genetic programming becomes capable of efficiently capturing and 

exploiting recurring sub-patterns.   

This chapter describes how genetic programming with automatically defined functions 

successfully evolved motifs for detecting the D-E-A-D box family of proteins and for 
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detecting the manganese superoxide dismutase family.  Both motifs were evolved without 

prespecifying their length.  Both evolved motifs employed automatically defined functions 

to capture the repeated use of common subexpressions.  When tested against the SWISS-

PROT database of proteins, the two genetically evolved consensus motifs detect the two 

families either as well, or slightly better than, the comparable human-written motifs found 

in the PROSITE database.   

 

1. Introduction 

The structure and functions of living organisms are primarily determined by proteins (Stryer 

1995).  Proteins are large polypeptide molecules composed of sequences of up to several 

thousand amino acid residues.  All proteins are composed from the same repertoire of 20 amino 

acid residues (conventionally denoted by the letters A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, 

T, V, W, and Y).  Subject to only a few minor qualifications, the three-dimensional location of 

every atom of a protein in a living organism is fully determined by its sequence (its primary 

structure) of amino acid residues (Anfinsen 1973).  The protein's three-dimensional structure (its 

tertiary structure or conformation), in turn, determines the biological function and activity of the 

protein within a living organism.  Thus, effectively all of the information about the biological 

function and activity of a protein is contained (albeit deeply hidden) in its primary sequence (i.e., 

the linear sequence of letters over an alphabet of size 20).   

SWISS-PROT is a massive, systematically-collected, periodically-reviewed, annotated 

database of protein sequences that is maintained by the University of Geneva and the European 

Molecular Biology Laboratory (Bairoch and Boeckmann 1991).  Release 30 (October 1994) of 

SWISS-PROT, for example, contains 14,147,368 amino acid residues from 40,292 sequences 

from hundreds of different species.  The Human Genome Project and other research efforts in 

molecular biology are rapidly increasing the number of entries in SWISS-PROT and other 

databases of protein sequences and genomic DNA sequences.  Automated techniques (such as 

those of machine learning) may prove useful or necessary for analyzing this accumulating data.   
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Most proteins appear in many different species; however, the primary sequences of the 

"same" protein in two different species are often not identical.  For one thing, the primary 

sequences of the "same" protein in two different species may differ slightly in length.  Moreover, 

even after using an alignment algorithm (e.g., Smith and Waterman 1981) to align the related 

sequences of somewhat different lengths, the residues found at a particular aligned position often 

will still differ.  The reason is that only relatively small subsequences of the overall sequence are 

responsible for the biological function, activity, and structure of the protein.  Over millions of 

years, evolution has substituted dissimilar residues at non-critical positions.  Even when one 

locates the relatively small subsequence of the protein that is responsible for the protein's 

biological activity, only a few of the residues of the subsequence will prove to be identical (that 

is, conserved) because evolution has also substituted chemically similar residues  at these critical 

positions.   

Sometimes, amidst all the differences, it is possible to identify certain high specificity, high 

sensitivity patterns (called motifs, sites, signatures, or fingerprints) in a set of sequences for 

biologically similar proteins.  If a motif is defined well, it will detect a biologically-important 

common property.  The residues in such motifs often prove to be directly responsible for the 

essential function and activity of the protein.   

PROSITE is a database of biologically meaningful patterns found in protein sequences 

(Bairoch and Bucher 1994).  Release 12 (June 1994) of PROSITE, for example, contains 1,029 

different motifs.  Motifs are entered in the PROSITE database after careful consideration by 

Amos Bairoch at the University of Geneva and his colleagues.  Since the intended primary 

purpose of PROSITE is to detect families of proteins in computerized databases, a motif is 

included in PROSITE if it detects most (preferably all) sequences that have a particular 

biological property (i.e., has few false negatives), while detecting few (preferably zero) unrelated 

sequences (i.e., has few false positives).   

Automated methods of machine learning may be useful in discovering biologically 

meaningful patterns that are hidden in the rapidly growing databases of genomic and protein 
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sequences.  Unfortunately, almost all existing methods of automated discovery require that the 

user specify, in advance, the size and shape of the pattern that is to be discovered.  However, in 

practice, the discovery of the size and shape of the pattern may, in fact, be the problem (or at 

least a major part of the problem).  Moreover, none of the existing methods of automated 

discovery have a workable analog of the idea of a reusable, parameterized subroutine or 

subprogram to capture and exploit repeated occurrences of regularities or sub-patterns of the 

problem environment.   

The problem of discovering biologically meaningful patterns in databases can be rephrased as 

a search for an unknown-sized task-performing computer program (i.e., a composition of 

primitive functions and terminals).  When the motif discovery problem is so rephrased, genetic 

programming becomes a candidate for solving this problem.  Moreover, if it is also desired to 

reuse regularities in the problem environment, then genetic programming with automatically 

defined functions becomes a candidate.   

Section 2 of this chapter provides background on protein databases, motifs, the D-E-A-D box 

family of proteins, and the manganese superoxide dismutase family.  Section 3 of this chapter 

provides background on genetic programming.  Section 4 identifies the preparatory steps 

required to apply genetic programming to the D-E-A-D box problem.  Section 5 describes the 

implementation of genetic programming on a parallel computer.  Section 6 presents a genetically 

consensus evolved motif that is slightly better than the human-written motif found in the 

PROSITE database for detecting the D-E-A-D box family of proteins.  Section 7 presents a 

genetically evolved consensus motif for detecting the manganese superoxide dismutase family 

that is as good as the human-written motif found in the PROSITE database.  Section 8 states the 

conclusion.    

2. Background on Motifs and Proteins 

The D-E-A-D Box Family of Proteins and the Manganese Superoxide Dismutase Family of 

Proteins will be used to illustrate how genetic programming may be applied to the problem of 

discovering motifs in protein sequences.   
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2.1 The D-E-A-D Box Family of Proteins 

In the "Birth of the D-E-A-D box," Linder et. al. (1989) described a family of proteins (called 

helicases) involved in the unwinding of the double helix of the DNA molecule during the 

replication of DNA (Chang, Arenas, and Abelson 1990; and Dorer, Christensen, and Johnson 

1990; Hodgman 1988).  This family of proteins gets its name from the fact that the amino acid 

residues D (aspartic acid), E (glutamic acid),  A (alanine), and D appear, in that order, at the core 

of one of its biologically critical subsequences.  There are 34 proteins from this family among 

the 40,292 proteins appearing in Release 30 of SWISS-PROT.  Proteins of this family can be 

detected effectively (but not perfectly) by the following motif of length nine (called 

ATP_HELICASE_1) that was included by Amos Bairoch at the University of Geneva in the 

PROSITE database: 

[LIVM]-[LIVM]-D-E-A-D-X-[LIVM]-[LIVM]. 

In interpreting this expression, the first pair of square brackets indicates that the first residue 

of the nine is to be chosen from the set consisting of the amino acid residues L, I, V, and M.  The 

second pair of square brackets indicates that the second residue is chosen (independently from 

the first) from the same set of four possibilities.  Then, the third, fourth, fifth, and sixth residues 

must be D, E, A, and D, respectively. The X in the motif indicates that the seventh residue can be 

any of the 20 possible amino acid residues.  The eighth and ninth residues are chosen from the 

same set of four, namely L, I, V, and M.    

D and E are negatively charged and hence hydrophilic (water-loving) at normal pH values.  A 

is small, uncharged, hydrophobic (water-hating).  L (leucine), I (isoleucine), V (valine), or M 

(methionine) are moderately-sized, uncharged, and hydrophobic.  Thus, ignoring the X, this 

motif calls for three hydrophilic residues accompanied, on each side, by two moderately-sized 

hydrophobic residues.   

The above PROSITE expression detects any of 44 ∞ 20 = 5,120 different possible sequences 

of length nine (out of approximately 5 ∞ 1011 possible sequences of length nine).  When SWISS-

PROT is searched using the above PROSITE motif, there are 34 true positives, 14,147,333 true 
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negatives (among the 40,292 proteins), 1 false positive, and 0 false negatives.  This corresponds 

to a correlation coefficient (Matthews 1975), C, of 0.99.   

Table 1 shows six of the 34 proteins containing the D-E-A-D box motif in the SWISS-PROT 

database.  The table shows the position of the start of the D-E-A-D box motif in its second 

column.  The third column shows the three amino acid residues in the primary sequence before 

the onset of the motif, the nine residues (in boldface) of the D-E-A-D box itself, and the five 

residues following the D-E-A-D box.   

Table 1  Six examples of D-E-A-D box motif.  

Protein Start Subsequence 

Human Putative ATP Dependent RNA Helicase P54 244 QMIVLDEADKLLSQDFV 

Rabbit Eukaryotic Initiation Factor 4A 168 KMFVLDEADEMLSRGFK 

Fruit Fly Vasa Protein 397 RFVVLDEADRMLDMGFS 

C. Elegans Putative ATP-Dependent RNA Helicase 192 KFLIMDEADRILNMDFE 

E. Coli ATP-Dependent RNA Helicase 155 ETLILDEADRMLDMGFA 

Fruit Fly Putative ATP-Dependent RNA Helicase 303 KFLVIDEADRIMDAVFQ 

The number of PROSITE expressions (composed of disjunctions such as shown above) 

covering exactly nine positions is (220)9 ~  1054.  Since the length of an expression that is 

capable of detecting a particular family of proteins is, in actual practice, not known in advance, 

the search space of the motif discovery problem is considerably larger than 1054.     

The question arises as to whether it is possible to use an automated machine learning 

technique to examine a large set of protein sequences and extract biologically meaningful motifs.  

Such a technique should, of course, not require advance specification of the length of the motif.  

When this problem is rephrased as a search for an unknown-sized task-performing computer 

program (i.e., a composition of primitive functions and terminals), genetic programming 

becomes a candidate for solving this problem.  Moreover, if it is also desired to capture 
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regularities in the problem environment (e.g., the repeated use of a subexpression such as 

[LIVM]), then genetic programming with automatically defined functions becomes relevant.   

2.2 The Manganese Superoxide Dismutase Family of Proteins 

The oxygen radicals that are normally produced in living cells have been implicated in many 

degenerative processes, including cancer and aging.  Proteins belonging to the manganese 

superoxide dismutase family prevent oxidative damage to DNA and other molecules by 

catalyzing the conversion of these toxic superoxide radicals to oxygen and hydrogen peroxide 

(Ludwig et al. 1991; Stoddard, Ringe, and Petsko 1990; Bannister, Bannister, and Rotilio 1987).  

The four ligands of the manganese atom are conserved in all the known sequences of the 

manganese superoxide dismutase family.  Amos Bairoch selected a short conserved region that 

includes two of the four ligands, namely one D (aspartic acid) and one nearby H (histidine), to 

create the following motif of length eight (called SOD_MN) for detecting proteins belonging to 

this family:   

D-X-W-E-H-[STA]-[FY][FY]. 

For example, in human manganese superoxide dismutase (whose length is 198), the above 

motif correctly identifies the protein as belonging to this family because residues 159 to 166 of 

this protein are  

DVWEHAYY. 

When it is tested against all of SWISS-PROT, the above motif scored 40 true positives, 

14,147,328 true negatives, and 0 false positive and 0 false negatives (for a correlation of 1.00).   

The Protein Data Bank (PDB), maintained by the Brookhaven National Laboratory in Upton, 

New York (Bernstein et al. 1977), is the worldwide computerized repository of the three-

dimensional coordinates of the atomic structure of proteins.  Proteins from the PDB can be 

interactively displayed by making a three-dimensional kinemage of the protein using the 

PREKIN software and viewing the kinemage with the MAGE software (Richardson and 

Richardson 1992).  Figure 1 shows residues 159 to 166 of human manganese superoxide 
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dismutase (1ABM in the Protein Data Bank) as well as the histidines at positions 26 and 74 of 

the protein sequence.  The manganese is ligated by Asp 159, His 163, His 26, and His 74.   

3. Background on Genetic Programming 

John Holland's pioneering Adaptation in Natural and Artificial Systems described how the 

evolutionary process in nature can be applied to solving problems using what is now called the 

genetic algorithm (Holland 1975).  Additional information on recent work in the field of genetic 

algorithms can be found in Goldberg (1989); Davis (1987, 1991); Michalewicz (1992); 

Eshelman (1995); Whitley (1992); Maenner and Manderick (1992); Schaffer and Whitley 

(1992); Albrecht, Reeves, and Steele (1993); Stender (1993); Buckles and Petry (1992); Stender, 

Hillebrand, and Kingdon (1994); Forrest (1991); Bauer (1994); and Davidor (1990).   

Genetic programming is an extension of the genetic algorithm in which the genetic population 

consists of computer programs.  Genetic programming starts with a primordial ooze of randomly 

generated computer programs composed of available primitive programmatic ingredients.  The 

population of programs is then bred over many generations in a domain-independent way using 

the Darwinian principle of survival of the fittest and an analog of the naturally-occurring genetic 

operation of crossover (sexual recombination).  The crossover operation is designed to create 

syntactically valid offspring programs from parents that are probabilistically selected based on 

their fitness at solving the problem at hand.  Genetic programming combines the expressive 

high-level symbolic representations of computer programs with the near-optimal efficiency of 

learning of the genetic algorithm.   

Genetic Programming: On the Programming of Computers by Means of Natural Selection 

(Koza 1992) provides evidence that genetic programming can solve, or approximately solve, a 

variety of problems from a variety of fields.  These problems include benchmark problems from 

machine learning and artificial intelligence involving control, robotics, optimization, game 

playing, symbolic regression, system identification, empirical discovery, and concept learning.  

Recent work on genetic programming is found in Kinnear 1994 and Angeline and Kinnear 1996.  
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A videotape visualization of a number of applications of genetic programming can be found in 

Koza and Rice (1992) and Koza (1994).  

The sequence of work-performing steps of the to-be-evolved programs are not specified in 

advance by the user.  Instead, the sequence of steps is evolved as a result of the competitive and 

selective pressures of the evolutionary process and the recombinative role of crossover.  

Specifically, genetic programming is a domain-independent method that genetically breeds 

populations of computer programs to solve problems by executing the following three steps: 
(1) Generate an initial population of random computer programs composed of the primitive 

functions and terminals of the problem. 
(2) Iteratively perform generations consisting of the following sub-steps until the termination 

criterion of the problem is satisfied: 
(a) Execute each program in the population and determine how fit it is at solving the 

problem. 
(b) Create a new generation of the population of programs by applying the following 

two primary operations to program(s) that are selected from the population with a 
probability based on fitness (i.e., the fitter the program, the more likely it is to be 
selected). 
(i) Reproduction: Copy a selected program to the new population. 
(ii) Crossover: Create two new offspring programs for the new population by 

genetically recombining randomly chosen parts of two selected programs.   
(3) The single best computer program produced anytime during the run is typically 

designated as the result of the run.  This result may be a solution (or approximate 
solution) to the problem.   

3.1 Automatically Defined Functions 

When humans write programs, they use subroutines to exploit, by reuse, the regularities, 

symmetries, homogeneities, similarities, patterns, and modularities of problem environments.  

Genetic Programming II: Automatic Discovery of Reusable Programs (Koza 1994a) extends 

genetic programming to evolve multi-part programs consisting of a main program and one or 

more reusable hierarchically-callable subprograms.   

An automatically defined function (ADF) is a function (i.e., subroutine, DEFUN, procedure, 

module) that is dynamically evolved during a run of genetic programming and that may be called 

by a calling program (or subprogram) that is simultaneously being evolved.   

When automatically defined functions are being used, a program in the population consists of 

one (or more) reusable function-defining branches along with a main result-producing branch.  
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As a run progresses, genetic programming evolves different main programs in the result-

producing branch, different subprograms (i.e., automatically defined functions) in the function-

defining branches, and different hierarchical references among the branches.  The initial random 

generation of the population is created so that every individual program in the population has a 

constrained syntactic structure consisting of a particular architectural arrangement of result-

producing branches and function-defining branches.  Crossover is then performed in a structure-

preserving way so as to preserve the syntactic validity of all offspring by assigning types to 

either entire branches (branch typing and like-branch typing) or individual points of the overall 

program (point typing).   

Genetic programming with automatically defined functions has been shown to be capable of 

solving numerous problems.  More importantly, the evidence so far indicates that, for many 

problems, genetic programming requires less computational effort (i.e., fewer fitness evaluations 

to yield a solution with a satisfactorily high probability) with automatically defined functions 

than without them (provided the difficulty of the problem is above a certain relatively low break-

even point).  Also, genetic programming usually yields solutions with smaller average overall 

size with automatically defined functions than without them (again provided that the problem is 

not too simple).  That is, parsimony is an emergent property of automatically defined functions.   

Moreover, there is also evidence that genetic programming with automatically defined 

functions is scalable.  For several problems for which a progression of scaled-up versions was 

studied, the computational effort increased as a function of problem size at a slower rate with 

automatically defined functions than without them.  Also, the average size of solutions similarly 

increased as a function of problem size at a slower rate with automatically defined functions 

than without them.  Scalability results from the profitable reuse of hierarchically-callable 

subprograms within an overall program.   

The PROSITE language has no facility for defining and using subroutines; however, the D-E-

A-D box motif found in PROSITE database contains a repeatedly used subexpression consisting 

of four moderately-sized, uncharged, hydrophobic residues (L, I, V, and M).  Similarly, the 



                                                                                                                        11 

manganese superoxide dismutase motif contains a repeatedly used subexpression consisting of Y 

and F.  Because of this manifest modularity, genetic programming with automatically defined 

functions may be appropriate for evolving a motif-detecting program for the D-E-A-D box 

family of proteins.   

When genetic programming with automatically defined functions was applied to the problem 

of identifying transmembrane domains in proteins, the results were slightly better than previous 

human-written algorithms (Koza 1994c).  Genetic programming has also been used to identify 

omega loops in proteins (Koza 1994c), to predict whether a residue in a protein sequence is in an 

α-helix (Handley 1993a, 1994a), to predict the degree to which a protein sequence is exposed to 

solvent (Handley 1994b), to predict whether or not a nucleic acid sequence is an E. coli promoter 

region (Handley 1995a); to predict whether or not a 60-base DNA sequence contains a centrally-

located splice site (Handley 1995b); and to classify a nucleic acid subsequence as being an intron 

or exon (Handley 1995c).   

4. Preparatory Steps for the D-E-A-D Box Family of Proteins 

In applying genetic programming with automatically defined functions to a problem, there are 

six major preparatory steps, namely determining  
(1) the set of terminals for each branch,  
(2) the set of primitive functions for each branch, 
(3) the fitness measure for evaluating how well a program does at solving the problem,  
(4) the parameters and variables for controlling the run,  
(5) the criterion for terminating a run and designating the result, and 
(6) the architecture of the overall multi-part program. 

Figure 2 summarizes these six user-supplied inputs to the genetic programming process with 

automatically defined functions.  A run of genetic programming breeds, over a series of 

generations, a population of computer programs that generally exhibit increasing fitness in 

grappling with the problem environment.  The result of a run of genetic programming is a 

computer program that may solve, or approximately solve, the user's given problem.   
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4.1 Terminal Set, Function Set, and Architecture 

After analyzing the problem, it seems reasonable that the ingredients of the to-be-evolved 

computer programs should include 20 zero-argument logical functions capable of interrogating 

the current position of a protein sequence.  For example, (A?) is the zero-argument residue-

detecting function that returns 1 if the current residue in the sequence is alanine (A) but 

otherwise returning 0.   

The square brackets used in PROSITE expressions are used to form sets of residues.  The 

two-argument disjunctive function OR can be used to dynamically define disjunctions of the 

values returned by the 20 residue-detecting functions.   

If the overall architecture of the yet-to-be-evolved motif-detecting program uses 

automatically defined functions to organize amino acid residues into subsets, then the result-

producing branch can be used to perform some operations to reach a conclusion.  A two-

argument conjunctive function AND can then correspond to the dash of the PROSITE language 

that is used to lengthen the PROSITE expression.  This suggests an overall architecture 

consisting of several (say, two) automatically defined functions and one result-producing branch.   

Specifically, the terminal set, Tadf, for the two function-defining branches (ADF0 and ADF1) 

contains the 20 zero-argument residue-detecting functions. That is,  
Tadf = {(A?), (C?), (D?), ... , (Y?)}. 

The function set, Fadf, for the two function-defining branches is  
Fadf = {OR}.   

The terminal set, Trpb, for the result-producing branch includes the now-defined ADFs, ADF0 

and ADF1, and the 20 zero-argument residue-detecting functions.  
Trpb = {ADF0, ADF1, (A?), (C?), (D?),..., (Y?)}. 

The function set, Frpb, for the result-producing branch is  
Frpb = {AND}. 

Programs consist of two function-defining branches (ADF0 and ADF1) composed of functions 

from Fadf and terminals from Tadf, as well as one result-producing branch composed of functions 

from Frpb and terminals from Trpb.  Note that we do not prespecify the length of the motif that is 
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to be evolved.  Both the size and content of each branch of the multi-part program is to be 

evolved by genetic programming.   

If the result-producing branch of an overall program returns a logically true value at a 

particular position in a protein sequence, that position will be identified as the beginning of an 

occurrence of the motif; otherwise that position will be classified negatively.  If a program 

examines a residue that is beyond the C-terminal (end) of the protein, the position will be 

classified negatively.   

4.2 Fitness Measure 

The fitness measure must assign a value as to how well a particular genetically-evolved motif-

detecting program predicts whether a particular amino acid residue is the beginning of a D-E-A-

D box.   

Fitness is measured over a number of trials called fitness cases.  A set of in-sample fitness 

cases (i.e., the training set) is used to measure the fitness of programs during the evolutionary 

process.  The fitness cases for this problem are individual amino acid residues of proteins.  The 

single residue indicating the start of the occurrence of the motif is a positive fitness case and all 

other residues are negative fitness cases.   

When a genetically evolved motif-detecting program in the population is tested against a 

particular fitness case, the outcome can be a true positive, a true negative, a false positive (an 

overprediction) , or a false negative (and underprediction).  The sum of the number of true 

positives (Ntp) the number of true negatives (Ntn), the number of false positives (Nfp), and the 

number of false negatives (Nfn) equals the total number of fitness cases, Nfc: 

Nfc = Ntp + Ntn + Nfp + N fn . 

The set of positive in-sample fitness cases contained all the residues of 26 of the 34 proteins 

in SWISS-PROT belonging to the D-E-A-D box family.  Because of the rarity of the motif 

among the 14,147,368 residues in SWISS-PROT and in order to save computer time, we 

constructed the set of negative in-sample fitness cases by extracting 210 30-residue fragments 

that did not belong to the D-E-A-D box family, did not contain the D-E-A-D box motif, but did 
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contain a sizable partial match with the D-E-A-D box motif (such as all X-X-D-E-A-D-X-X-

X or V-X-X-EAD-X-X-X that are not in the D-E-A-D box family).  When we were done, the 

in-sample fitness cases consisted of 19,200 amino acid residues from 236 proteins (26 residues 

being positive instances and l9,174 being negative instances of the D-E-A-D box motif).   

Correlation is appropriate as a measure of raw fitness for genetic programming in a two-way 

classification problem.  For a two-way classification problem, correlation, C, of a genetically 

evolved motif-detecting program can be computed (Matthews 1975) as 

C =
Ntp Ntn − Nfn Nfp

Ntn + Nfn( ) Ntn + Nfp( ) Ntp + Nfn( ) Ntp + Nfp( )
 

The correlation coefficient indicates how much better a particular predictor is than a random 

predictor.  It may be instructive to view the correlation, C, as the cosine of the angle in a space of 

dimensionality Nfc between the zero-mean vector (obtained by subtracting the mean value of all 

components of the vector from each of its components) of correct answers and the zero-mean 

vector of predictions made by the predicting program.  A correlation C of –1.0 indicates that the 

pair of vectors point in opposite directions in Nfc-space (i.e., greatest negative correlation); a 

correlation of +1.0 indicates coincident vectors (i.e., greatest positive correlation); a correlation 

C of 0.0 indicates orthogonality (i.e., no correlation).   

The in-sample correlation, C, is the correlation computed from the set of in-sample fitness 

cases.  The in-sample correlation C lends itself to being the measure of raw fitness for a 

genetically evolved computer program.  Since raw fitness ranges between –1.0 and +1.0 (higher 

values being better), standardized fitness can then be defined as 
1 − C

2
.  

Standardized fitness ranges between 0.0 and +1.0, lower values being better and a value of 0 

being best.  Specifically, a standardized fitness of 0 indicates perfect agreement between the 

predicting program and the observed reality; a standardized fitness of +1.0 indicates perfect 

disagreement; a standardized fitness of 0.50 indicates that the predictor is no better than random.   
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After a motif-detecting program is evolved using the in-sample fitness cases, the question 

arises as to how well it generalizes to unseen different fitness cases from the same problem 

environment.  A set of out-of-sample fitness cases consisting of 5,605 amino acid residues from 

53 proteins (8 residues being positive instances and 5,597 being negative instances) is used to 

validate the performance of a genetically-evolved motif-detecting program.  For reference, when 

the D-E-A-D box motif found in the PROSITE database is tested against the out-of-sample 

fitness cases, there are 8 true positives, 5,596 true negatives, 1 false positive, and 0 false 

negatives (for a correlation of 0.94).  When it is tested against all of SWISS-PROT, it scored 34 

true positives, 14,147,333 true negatives, and  1 false positive and 0 false negatives (for a 

correlation of 0.99).   

  4.3 Parameters 

A population size, M, of 256,000 was used.  The maximum number of generations, G, was set at 

201 (although every run we made yielded a solution long before generation 200).  The maximum 

size (i.e., number of functions and terminals in the work-performing parts of each branch) was 

50 points per branch.  Minor parameters were chosen as in Koza 1994a.   

4.4 Termination Criterion and Result Designation 

The termination criterion for any one run of this problem is emergence of an evolved program 

with an in-sample correlation of 1.00 on the in-sample fitness cases.  That program is designated 

as the result of the one run.   

4.5 Jury Method for Creating a Consensus Motif 

Because of the intended purpose of PROSITE (which is purposely oriented toward overfitted 

descriptions) and because the 1,029 PROSITE motifs partition the existing databases into 

relatively small subsets, there is a poverty of instances of any given motif in the database.  The 

difficulties of evolving a motif from such an impoverished database can be compensated for by 

using a jury (Rost and Sander 1993) of at least two evolved results having an in-sample 

correlation of 1.00.  A unanimous jury decision was required in order to classify a position of a 
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protein sequence as the beginning of the motif.  Otherwise, the position was classified 

negatively.   

5. Implementation of Parallel Genetic Programming 

The problem (written in ANSI C) was run on a home-built medium-grained parallel computer 

system consisting of 64 INMOS transputers (housed on Transtech 4 megabyte TRAMs) arranged 

in a toroidal mesh with a host PC 486 type computer (running Windows).  The so-called 

distributed genetic algorithm or island model for parallelization (Tanese 1989, Goldberg l989) 

was used.  That is, subpopulations (called demes after Sewell Wright 1943) were situated at the 

processing nodes of the system.  Population size was Q =  4,000 at each of the D = 64 demes.  

The initial random subpopulations were created locally at each processing node.  Generations 

were run asynchronously on each node.  After a generation of genetic operations was performed 

locally on each node, four boatloads, each consisting of B = 8% (the migration rate) of the 

subpopulation (selected on the basis of fitness) were dispatched to each of the four toroidally 

adjacent nodes.  Details of the parallel implementation of genetic programming can be found in 

Koza and Andre 1995.  

6. Results for the D-E-A-D Box Family of Proteins 

In one run, the best motif-detecting program (shown below) among the 256,000 random 

programs of generation 0 scored 20 true positives, 19,152 true negatives, 22 false positives, and 

6 false negatives (for an in-sample correlation of 0.60): 

(PROGN (DEFUN ADF0 () 

(VALUES (OR (L?) (N?)))) 

(DEFUN ADF1 () 

(VALUES (OR (R?) (V?)))) 

(VALUES (AND (V?) (AND (L?) (D?))))) 

Note that although we program genetic programming in C, the LISP programming language is 

used to present the genetically evolved programs since LISP highlights the program's tree 

structure.  This best-of-generation program defines the motif, V-L-D, of length three.  This 
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motif admits no alternatives in any of its three positions and ignores the subsets defined by its 

two automatically defined functions, ADF0 and ADF1.   

In subsequent generations, the programs in the population became more complex and their 

fitness improved apace.  The length of the motifs started to increase (sometimes beyond nine).  

The result-producing branches started to refer to one or both of their automatically defined 

functions.  The automatically defined functions started to be used two or more times.   

On generation 42 of one run, the best-of-generation program (shown below) scored 26 true 

positives, 19,174 true negatives, and 0 false positives and 0 false negatives (for an in-sample 

correlation of 1.00): 

(PROGN (DEFUN ADF0 () 

(VALUES (OR (OR (OR (OR (W?)(M?))(OR (C?)(A?)))(M?))(OR 

(OR (OR (OR (W?)(M?))(OR (M?)(I?)))(L?))(I?))))) 

(DEFUN ADF1 () 

(VALUES (OR (OR (OR (A?) (E?))(OR (OR (OR (OR 

(A?)(K?))(OR (V?)(N?)))(OR (OR (E?)(R?))(OR (OR 

(A?)(W?))(OR (K?)(Q?)))))(OR (V?)(K?))))(OR (OR 

(I?)(C?))(A?))))) 

(VALUES (AND (AND (AND (AND (AND (AND (AND (ADF1) (ADF0)) 

( AND (D? ) (E? ))) (ADF0)) (D? )) (ADF1)) (ADF0)) 

(ADF0))) 

This best-of-generation program defines the following motif of length nine: 

[VIAEKNRWQC]-[LIMCAW]-D-E-[LIMCAW]-D- 

[RNEKVIAWQC]-[LIMCAW]-[LIMCAW] 

Note that the common sub-expression [LIM CAW] defined in ADF0 is used a total of four times 

in the above overall expression.  When tested on the 5,605 out-of-sample fitness cases, this 

expression scored 8 true positives, 5,597 true negatives, and 0 false positives and 0 false 

negatives (for a correlation of 1.00).  When tested against SWISS-PROT, this program scored 34 
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true positives, 14,147,328 true negatives, and  6 false positives, and 0 false negatives (for a 

correlation of 0.92).   

In another run, the best-of-generation program from generation 64 had an in-sample 

correlation of 1.00 and defined the following motif of length ten: 

[FVIAC]-[LIM EQDNRSK]-D-E-[AFVIC]-D- 

  [LIMEQDNRSK]-[LIMEQDNRSK] -[LIMEQDNRSK]-[LIMEQDNRSK] 

Note that the common sub-expression [LIMEQDNRSK] defined in ADF1 is used a total of five 

times in the above overall expression.  When tested on the out-of-sample fitness cases, this 

program has a correlation of 0.94.  When tested against SWISS-PROT, this program scored 34 

true positives, 14,147,272 true negatives, and 62 false positives, and 0 false negatives (for a 

correlation of 0.60).   

In other runs, 10 additional evolved programs each had an in-sample correlation of 1.00.  

These 12 results participated in a jury that created a genetically evolved consensus motif of 

length 10 (shown below) that scored 26 true positives, 19,174 true negatives, 0 false positives, 

and 0 false negatives (for an in-sample correlation of 1.00):   

[IV]-[LIM]-D-E-[AI]-D-[RNEK]-[LIM]-[LIM]-[LIMEQDNRSK] 

Note that [LIM] is used three times in this expression.  When tested on the 5,605 out-of-sample 

fitness cases, this expression scored 8 true positives, 5,597 true negatives, and 0 false positives 

and 0 false negatives (for a correlation of 1.00).  When tested against SWISS-PROT, this 

program scored 34 true positives, 14,147,334 true negatives, and 0 false positives, and 0 false 

negatives (for a correlation of 1.00).   

Thus, the genetically evolved consensus motif created by the jury scored slightly better than 

the human-written motif found in the PROSITE database on the problem of detecting the D-E-A-

D box family of proteins.   

Recalling that the motif found in the PROSITE database for the D-E-A-D box family is 

[LIVM]-[LIVM]-D-E-A-D-X-[LIVM]-[LIVM], 
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one can see that the genetically evolved consensus motif differs in the following four ways from 

the motif found in the PROSITE database.   

First, position 7 of the motif has a definite character.  The X in position 7 of the PROSITE 

motif is replaced by [RNEK] in the consensus motif.  Figure 3 is a scatter diagram relating the 

Van der Waals volume (Creighton 1993) and the hydrophobicity values (Kyte and Doolittle 

1982) of the 20 amino acids.  In this figure, R, N, E, and K are located in the same general area 

(circled in the lower right) indicating that they are all highly hydrophilic and bulky.  Second, the 

[LIVM] in positions 2, 8, and 9 of the PROSITE motif is replaced by the somewhat more 

precise [LIM] in the consensus motif.  As can be seen in the circled area at the top right of the 

figure, residues I, L, and M have virtually identical volumes whereas V has a different volume.  

Third, the [LIVM] in position 1 of the PROSITE motif is replaced by the somewhat more 

precise [IV] in the consensus motif.  

Fourth, the genetically evolved consensus motif specifies that position 10 (beyond the last 

position specified by the PROSITE motif) contains [LIMRNEKQDS].   

7. Results for the Manganese Superoxide Dismutase Family of Proteins 

The in-sample fitness cases for the problem of detecting the manganese superoxide dismutase 

family of proteins consisted of 13,518 amino acid residues from 270 proteins (30 residues being 

positive instances and 13,488 being negative instances).  The out-of-sample fitness cases were 

constructed using the same approach as described above and consisted of 3,280 residues from 53 

proteins (10 residues being positive instances and 3,270 being negative instances).   

When the manganese superoxide dismutase motif found in the PROSITE database is tested 

against the out-of-sample fitness cases, there are 10 true positives, 3,270 true negatives, 0 false 

positive, and 0 false negatives (for a correlation of 1.00).  When it is tested against all of SWISS-

PROT, it scores a correlation of 1.00.   

Three automatically defined functions were used on this problem.  

As before, the genetically evolved motifs participated in a jury that created the following 

consensus motif of length nine that had  an in-sample correlation of 1.00: 
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D–[VAML]–W–E–H–[SA]–[YFH]–[YFAHS]–[YFADHLIS] 

When tested on the 3,280 out-of-sample fitness cases, this expression had an out-of-sample 

correlation of 1.00.  When tested against SWISS-PROT, this program scored 40 true positives, 

14,147,328 true negatives, and  0 false positives, and 0 false negatives (for a correlation of 1.00).  

That is, the genetically evolved consensus motif created by the jury scored as well as the human-

written motif found in the PROSITE database on the problem of detecting the manganese 

superoxide dismutase family of proteins.   

The motif found in the PROSITE database for the manganese superoxide dismutase family is 

D-X-W-E-H-[STA]-[FY][FY]. 

The genetically evolved consensus motif differs in the following ways from the motif found in 

the PROSITE database.   

First, the X in position 2 of the PROSITE motif is replaced by the set of hydrophobic residues 

[VAML].  As can be seen from figure 4, position 2 of the motif (i.e., position 160 of the protein) 

is buried (in contrast to, for example, electrically charged Glu 162 which is exposed to the 

solvent).  Thus, it is reasonable that whatever appears at position 2 should be hydrophobic.  

Second, the [STA] in position 6 of the PROSITE motif is replaced by the somewhat more 

precise [SA] in the consensus motif.   

Third, the genetically evolved consensus motif specifies that position 9 (beyond the last 

position specified by the PROSITE motif) contains [YFADHLIS].   

8. Conclusions 

Genetic programming was successfully used to create motifs for the D-E-A-D box family of 

proteins and the manganese superoxide dismutase  family.  Both motifs were evolved without 

prespecifying their length.  Both evolved motifs employed automatically defined functions to 

capture the repeated use of a common subexpression.  When tested against the SWISS-PROT 

database of proteins, the two genetically evolved consensus motifs detect the two families either 

as well, or slightly better than, the comparable human-written motifs found in the PROSITE 

database.   
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Figure 1  Active site of human manganese superoxide dismutase.   
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Figure 2  Six major preparatory steps for applying genetic programming  with 

automatically defined functions.   
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Figure 3  Scatter diagram of hydrophobicity and Van der Waals volume of the 20 amino 

acid residues.   
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Figure 4  Section of manganese superoxide dismutase showing that position 160 is buried.   

 


