
 1  

The Design of Analog Circuits by Means of Genetic Programming 
 

John R. Koza 

Section on Medical 

Informatics 

Department of Medicine 

School of Medicine 

Stanford University 

Stanford, California 94305 

koza@smi.stanford.edu 

Forrest H Bennett 
III 

Chief Scientist 

Genetic Programming Inc. 

Los Altos, California 

94023 

forrest@evolute.com 

David Andre 

Division of Computer 

Science 

University of California  

Berkeley, California 

94720 

dandre@cs.berkeley.edu 

Martin A. Keane 

Chief Scientist 

Econometrics Inc. 

111 E. Wacker Dr. 

Chicago, Illinois 60601 

makeane@ix.netcom.com 

 

1. Introduction 

The design process entails creation of a complex structure to satisfy user-defined requirements. The 

design of analog electrical circuits is particularly challenging because it is generally viewed as requiring 

human intelligence and because it is a major activity of practicing analog electrical engineers.   

The design process for analog circuits begins with a high-level description of the circuit's desired 

behavior and entails creation of both the topology and the sizing of a satisfactory circuit. The topology 

comprises the gross number of components in the circuit, the type of each component (e.g., a resistor), 

and a list of all connections between the components. The sizing involves specifying the values (typically 

numerical) of each of the circuit's components. 

Considerable progress has been made in automating the design of certain categories of purely digital 

circuits; however, the design of analog circuits and mixed analog-digital circuits has not proved as 

amenable to automation (Rutenbar 1993).  Describing "the analog dilemma," Aaserud and Nielsen (1995) 

noted  

"Analog designers are few and far between.  In contrast to digital design, most of the analog 

circuits are still handcrafted by the experts or so-called 'zahs' of analog design.  The design 

process is characterized by a combination of experience and intuition and requires a thorough 

knowledge of the process characteristics and the detailed specifications of the actual product.  



2 
"Analog circuit design is known to be a knowledge-intensive, multiphase, iterative task, which 

usually stretches over a significant period of time and is performed by designers with a large 

portfolio of skills.  It is therefore considered by many to be a form of art rather than a science."  

There has been extensive previous work on the problem of circuit design (synthesis) using simulated 

annealing, artificial intelligence, and other techniques as outlined in Koza, Bennett, Andre, Keane, and 

Dunlap 1997, including work using genetic algorithms (Kruiskamp and Leenaerts 1995; Grimbleby 1995; 

Thompson 1996).  However, there has previously been no general automated technique for synthesizing 

an analog electrical circuit from a high-level statement of the circuit's desired behavior.  

This chapter presents a uniform approach to the automatic design of both the topology and sizing of 

analog electrical circuits. Section 2 presents design problems involving six prototypical analog circuits.  

Section 3 describes the method.  Section 4 details required preparatory steps. Section 5 shows the results 

for the six problems. Section 6 cites other circuits that have been designed by genetic programming.  

2. Six Problems of Analog Design 

This chapter applies genetic programming to an illustrative suite of six problems of analog circuit design.  

The circuits comprise a variety of types of components, including transistors, diodes, resistors, inductors, 

and capacitors.  The circuits have varying numbers of inputs and outputs.   

(1) Design a one-input, one-output lowpass filter composed of capacitors and inductors that passes all 

frequencies below 1,000 Hz and suppresses all frequencies above 2,000 Hz.  

(2) Design a one-input, one-output highpass filter composed of capacitors and inductors that 

suppresses all frequencies below 1,000 Hz and passes all frequencies above 2,000 Hz.  

(3) Design a one-input, one-output tri-state frequency discriminator (source identification) circuit that 

is composed of resistors, capacitors, and inductors and that produces an output of 1/2 volt and 1 volt for 

incoming signals whose frequencies are within 10% of 256 Hz and within 10% of 2,560 Hz, respectively, 

but produces an output of 0 volts otherwise.   

(4) Design a one-input, one-output computational circuit that is composed of transistors, diodes, 

resistors, and capacitors and that produces an output voltage equal to the square root of its input voltage.  



3 
(5) Design a two-input, one-output time-optimal robot controller circuit that is composed of the above 

components and that navigates a constant-speed autonomous mobile robot (with nonzero turning radius) 

to an arbitrary destination in minimal time.  

(6) Design a one-input, one-output amplifier composed of the above components and that delivers 

amplification of 60 dB (i.e., 1,000 to 1) with low distortion and low bias.  

The above six prototypical circuits are representative of analog circuits that are in widespread use.  

Filters extract specified ranges from frequencies from electrical signals and amplifiers enhance the 

amplitude of signal.  Frequency discriminators are used in source identification and signal recognition.  

Analog computational circuits are used to perform real-time mathematical calculations on signals.  

Embedded controllers are used to control the operation of numerous automatic devices.   

3. Design by Genetic Programming 

The circuits are developed using genetic programming (Koza 1992; Koza and Rice 1992), an extension of 

the genetic algorithm {Holland 1975) in which the population consists of computer programs. Multipart 

programs consisting of a main program and one or more reusable, parametrized, hierarchically-called 

subprograms can be evolved using automatically defined functions (Koza 1994a, 1994b). Architecture-

altering operations (Koza 1995) automatically determine the number of such subprograms, the number of 

arguments that each possesses, and the nature of the hierarchical references, if any, among such 

automatically defined functions. For current research in genetic programming, see Kinnear 1994, 

Angeline and Kinnear 1996, Koza, Goldberg, Fogel, and Riolo 1996, Koza et al. 1997, and Banzhaf, 

Nordin, Keller, and Francone 1998.  

A computer program is not a circuit design.  Genetic programming can be applied to circuits if a 

mapping is established between the program trees (rooted, point-labeled trees – that is, acyclic graphs – 

with ordered branches) used in genetic programming and the labeled cyclic graphs germane to electrical 

circuits.  The principles of developmental biology, the creative work of Kitano (1990) on using genetic 

algorithms to evolve neural networks, and the innovative work of Gruau (1992) on using genetic 

programming to evolve neural networks provide the motivation for mapping trees into circuits by means 

of a growth process that begins with an embryo. For circuits, the embryonic circuit typically includes 

fixed wires that connect the inputs and outputs of the particular circuit being designed and certain fixed 

components (such as source and load resistors).  Until these wires are modified, the circuit does not 



4 
produce interesting output. An electrical circuit is developed by progressively applying the functions in a 

circuit-constructing program tree to the modifiable wires of the embryonic circuit (and, during the 

developmental process, to new components and modifiable wires).   

The functions in the circuit-constructing program trees are divided into four categories: (1) topology-

modifying functions that alter the circuit topology, (2) component-creating functions that insert 

components into the circuit, (3) arithmetic-performing functions that appear in subtrees as argument(s) to 

the component-creating functions and specify the numerical value of the component, and (4) 

automatically defined functions that appear in the function-defining branches and potentially enable 

certain substructures of the circuit to be reused (with parameterization). 

Each branch of the program tree is created in accordance with a constrained syntactic structure. 

Branches are composed of construction-continuing subtrees that continue the developmental process and 

arithmetic-performing subtrees that determine the numerical value of components. Topology-modifying 

functions have one or more construction-continuing subtrees, but no arithmetic-performing subtree. 

Component-creating functions have one or more construction-continuing subtrees and typically have one 

arithmetic-performing subtree. This constrained syntactic structure is preserved using structure-preserving 

crossover with point typing (see Koza 1994a). 

3.1. The Embryonic Circuit 

An electrical circuit is created by executing a circuit-constructing program tree that contains various 

component-creating and topology-modifying functions. Each tree in the population creates one circuit. 

The specific embryonic circuit used depends on the number of inputs and outputs. 

Figure 16.1 shows a one-input, one-output embryonic circuit in which VSOURCE is the input signal 

and VOUT is the output signal (the probe point).  The circuit is driven by an incoming alternating circuit 

source VSOURCE. There is a fixed load resistor RLOAD and a fixed source resistor RSOURCE in the 

embryo. In addition to the fixed components, there is a modifiable wire Z0 between nodes 2 and 3. All 

development originates from this modifiable wire. 



5 

 

Figure 16.1  One-input, one-output embryonic circuit. 3.2. Component-Creating Functions 

Each program tree contains component-creating functions and topology-modifying functions. The 

component-creating functions insert a component into the developing circuit and assign component 

value(s) to the component.  

Each component-creating functions has a writing head that points to an associated highlighted 

component in the developing circuit and modifies that component in a specified manner. The 

construction-continuing subtree of each component-creating functions points to a successor function or 

terminal in the circuit-constructing program tree. 

The arithmetic-performing subtree of a component-creating functions consists of a composition of 

arithmetic functions (addition and subtraction) and random constants (in the range -1.000 to +1.000). The 

arithmetic-performing subtree specifies the numerical value of a component by returning a floating-point 

value that is interpreted on a logarithmic scale as the value for the component in a range of 10 orders of 

magnitude (using a unit of measure that is appropriate for the particular type of component). 

The two-argument resistor-creating R function causes the highlighted component to be changed into a 

resistor. The value of the resistor in kilo Ohms is specified by its arithmetic-performing subtree.   

Figure 16.2 shows a modifiable wire Z0 connecting nodes 1 and 2 of a partial circuit containing four 

capacitors (C2, C3, C4, and C5).  Z0 has a writing head and is subject to subsequent modification.  

Figure 16.3 shows the result of applying the R function to the modifiable wire Z0 of figure 16.2. The 

newly created R1 has a writing head so that R1 remains subject to subsequent modification. 



6 

 

Figure 16.2  Modifiable wire Z0.   

  

Figure 16.3  Result of applying the R function.   

Similarly, the two-argument capacitor-creating C function causes the highlighted component to be 

changed into a capacitor whose value in micro-Farads is specified by its arithmetic-performing subtree.  

In addition, the two-argument inductor-creating L function causes the highlighted component to be 

changed into an inductor whose value in micro-Henrys is specified by its arithmetic-performing subtree.  

The one-argument Q_D_PNP diode-creating function causes a diode to be inserted in lieu of the 

highlighted component. This function has only one argument because there is no numerical value 

associated with a diode and thus no arithmetic-performing subtree.  In practice, the diode is implemented 

here using a pnp transistor whose collector and base are connected to each other. The Q_D_NPN function 

inserts a diode using an npn transistor in a similar manner. 

There are also six one-argument transistor-creating functions (Q_POS_COLL_NPN, 

Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, 

Q_NEG_COLL_PNP) that insert a bipolar junction transistor in lieu of the highlighted component and that 

directly connect the collector or emitter of the newly created transistor to a fixed point of the circuit (the 

positive power supply, ground, or the negative power supply). For example, the Q_POS_COLL_NPN 

function inserts a bipolar junction transistor whose collector is connected to the positive power supply.  

Each of the functions in the family of six different three-argument transistor-creating Q_3_NPN 

functions causes an npn bipolar junction transistor to be inserted in place of the highlighted component 

and one of the nodes to which the highlighted component is connected. The Q_3_NPN function creates 



7 
five new nodes and three modifiable wires. There is no writing head on the new transistor, but there is a 

writing head on each of the three new modifiable wires. There are 12 members (called Q_3_NPN0, ..., 

Q_3_NPN11) in this family of functions because there are two choices of nodes (1 and 2) to be bifurcated 

and then there are six ways of attaching the transistor's base, collector, and emitter after the bifurcation. 

Similarly the family of 12 Q_3_PNP functions causes a pnp bipolar junction transistor to be inserted.  

3.3. Topology-Modifying Functions 

Each topology-modifying function in a program tree points to an associated highlighted component and 

modifies the topology of the developing circuit. 

The three-argument SERIES division function creates a series composition of the highlighted 

component (with a writing head), a copy of it (with a writing head), one new modifiable wire (with a 

writing head), and two new nodes.  

The four-argument PARALLEL0 parallel division function creates a parallel composition consisting of 

the original highlighted component (with a writing head), a copy of it (with a writing head), two new 

modifiable wires (each with a writing head), and two new nodes. Figure 16.4 shows the result of applying 

PARALLEL0 to the resistor R1 from figure 16.3.   

  

Figure 16.4  Result of the PARALLEL0 function.The one-argument polarity-reversing FLIP function 

reverses the polarity of the highlighted component.  

There are six three-argument functions (T_GND_0, T_GND_1, T_POS_0, T_POS_1, T_NEG_0, 

T_NEG_1) that insert two new nodes and two new modifiable wires, and then make a connection to 

ground, positive power supply, or negative power supply, respectively.  

There are two three-argument functions (PAIR_CONNECT_0 and PAIR_CONNECT_1) that enable 

distant parts of a circuit to be connected together. The first PAIR_CONNECT to occur in the development 

of a circuit creates two new wires, two new nodes, and one temporary port. The next PAIR_CONNECT 



8 
creates two new wires and one new node, connects the temporary port to the end of one of these new 

wires, and then removes the temporary port. 

The one-argument NOOP function has no effect on the highlighted component; however, it delays 

activity on the developmental path on which it appears in relation to other developmental paths in the 

overall program tree.  

The zero-argument END function causes the highlighted component to lose its writing head, thereby 

ending that particular developmental path.  

The zero-argument SAFE_CUT function causes the highlighted component to be removed from the 

circuit provided that the degree of the nodes at both ends of the highlighted component is three (i.e., no 

dangling components or wires are created).   

An electrical circuit is created by executing the functions in a circuit-constructing program tree.  The 

functions are progressively applied in a developmental process to the embryonic circuit and its successors 

until all of the functions in the program tree are executed.  That is, the functions in the circuit-

constructing program tree progressively side-effect the embryonic circuit and its successors until a fully 

developed circuit eventually emerges. The functions are applied in a breadth-first order.    

Figure 16.5 is an illustrative circuit-constructing program tree shown as a rooted, point-labeled tree 

with ordered branches.  The overall program consists of two main result-producing branches joined by a 

connective LIST function (labeled 1).  The first (left) result-producing branch is rooted at the capacitor-

creating C function (labeled 2).  The second result-producing branch is rooted at the polarity-reversing 

FLIP function (labeled 3).  This figure also contains four occurrences of the inductor-creating L function 

(at 17, 11, 20, and 12).  The figure contains two occurrences of the topology-modifying SERIES function 

(at 5 and 10).  The figure also contains five occurrences of the development-controlling END function (at 

15, 25, 27, 31, and 22) and one occurrence of the development-controlling "no operation" NOP function 

(at 6).  There is a seven-point arithmetic-performing subtree at 4 under the capacitor-creating C function 

at 4.  Similarly, there is a three-point arithmetic-performing subtree at 19 under the inductor-creating L 

function at 11, and one-point arithmetic-performing subtrees (i.e., constants) at 26, 30, and 21.  Additional 

details can be found in Koza, Bennett, Andre, and Keane (1999).  



9 

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8
7

9 10 11 12

13 14 15 17 1816 19 20 21

22

23 24 25 26 27 28 29 30 31  

Figure 16.5  Illustrative circuit-constructing program tree.  

4. Preparatory Steps 

Before applying genetic programming to a problem of circuit design, seven major preparatory steps are 

required: (1) identify the suitable embryonic circuit, (2) determine the architecture of the overall circuit-

constructing program trees, (3) identify the terminals of the program trees, (4) identify the primitive 

functions of the program trees, (5) create the fitness measure, (6) choose parameters, and (7) determine 

the termination criterion and method of result designation.  

4.1. Embryonic Circuit 

The embryonic circuit used on a particular problem depends on the circuit's number of inputs and outputs.  

For example, an embryonic circuit with two modifiable wires (Z0 and Z1) was used for the lowpass 

and highpass filters (which each have one input and one output).  However, the robot controller circuit 

has two inputs (VSOURCE1 and VSOURCE2), not just one.  Each input needs its own separate source 

resistor (RSOURCE1 and RSOURCE2).  Thus, the embryonic circuit for the robot controller circuit has 

three modifiable wires (Z0, Z1, and Z2) in order to provide full connectivity between the two inputs and 

the one output.   

All development originates from the modifiable wires.   

In some problems, such as the amplifier, the embryonic circuit contains additional fixed components 

(as described in Koza, Bennett, Andre, and Keane 1997).   

4.2. Program Architecture 

Since there is one result-producing branch in the program tree for each modifiable wire in the embryo, the 

architecture of each circuit-constructing program tree depends on the embryonic circuit. One result-

producing branch was used for the frequency discriminator and the computational circuit; two were used 

for lowpass and highpass filter problems; and three were used for the robot controller and amplifier.  



10 
The architecture of each circuit-constructing program tree also depends on the use, if any, of 

automatically defined functions. Automatically defined functions provide a mechanism enabling certain 

substructures to be reused and are described in detail in Koza, Bennett, Andre, and Keane 1999. 

Automatically defined functions and architecture-altering operations were used in the frequency 

discriminator, robot controller, and amplifier. For these problems, each program in the initial population 

of programs had a uniform architecture with no automatically defined functions. In later generations, the 

number of automatically defined functions, if any, emerged as a consequence of the architecture-altering 

operations (also described in Koza, Bennett, Andre, and Keane 1999).   

4.3. Function and Terminal Sets 

The function set for each design problem depended on the type of electrical components that were used to 

construct the circuit.  Inductors and capacitors were used for the lowpass and highpass filter problems.  

Capacitors, diodes, and transistors were used for the computational circuit, the robot controller, and the 

amplifier. Resistors (in addition to inductors and capacitors) were used for the frequency discriminator.  

When transistors were used, functions to provide connectivity to the positive and negative power supplies 

were also included.   

For the computational circuit, the robot controller, and the amplifier, the function set, Fccs-initial, for 

each construction-continuing subtree was 

Fccs-initial = {R, C, SERIES, PARALLEL0, PARALLEL1, FLIP, NOOP, T_GND_0, T_GND_1, 

T_POS_0, T_POS_1, T_NEG_0, T_NEG_1, PAIR_CONNECT_0, PAIR_CONNECT_1, 

Q_D_NPN, Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11, Q_3_PNP0, ..., Q_3_PNP11, 

Q_POS_COLL_NPN, Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, 

Q_POS_EMIT_PNP, Q_NEG_COLL_PNP}. 

For the npn transistors, the Q2N3904 model was used. For pnp transistors, the Q2N3906 model was 

used. 

The initial terminal set, Tccs-initial, for each construction-continuing subtree was 

Tccs-initial = {END, SAFE_CUT}.  

The initial terminal set, Taps-initial, for each arithmetic-performing subtree consisted of 

Taps-initial = {ℜ}, 

where ℜ represents floating-point random constants from –1.0 to +1.0.  



11 
The function set, Faps, for each arithmetic-performing subtree was, 

Faps = {+, -}.  

The terminal and function sets were identical for all result-producing branches for a particular 

problem. 

For the lowpass filter, highpass filter, and frequency discriminator, there was no need for functions to 

provide connectivity to the positive and negative power supplies.   

For the frequency discriminator, the robot controller, and the amplifier, the architecture-altering 

operations were used and the set of potential new functions, Fpotential, was 

Fpotential = {ADF0, ADF1, ...}.  

The set of potential new terminals, Tpotential, for the automatically defined functions was 

Tpotential = {ARG0}.  

The architecture-altering operations change the function sets and terminal sets for each construction-

continuing subtree of all three result-producing branches and the function-defining branches.  

4.4. Fitness Measure 

The fitness measure varies for each problem. The high-level statement of desired circuit behavior is 

translated into a well-defined measurable quantity that can be used by genetic programming to guide the 

evolutionary process. The evaluation of each individual circuit-constructing program tree in the 

population begins with its execution. This execution progressively applies the functions in each program 

tree to an embryonic circuit, thereby creating a fully developed circuit. A netlist is created that identifies 

each component of the developed circuit, the nodes to which each component is connected, and the value 

of each component. The netlist becomes the input to our modified version of the 217,000-line SPICE 

(Simulation Program with Integrated Circuit Emphasis) simulation program (Quarles, Newton, Pederson, 

and Sangiovanni-Vincentelli 1994).  SPICE then determines the behavior of the circuit. It was necessary 

to make considerable modifications in SPICE so that it could run as a submodule within the genetic 

programming system.  



12 
 4.4.1. Fitness Measure for the Lowpass Filter 

A simple filter is a one-input, one-output electronic circuit that receives a signal as its input and passes 

the frequency components of the incoming signal that lie in a specified range (called the passband) while 

suppressing the frequency components that lie in all other frequency ranges (the stopband).   

The desired lowpass LC filter has a passband below 1,000 Hz and a stopband above 2,000 Hz. The 

circuit is driven by an incoming AC voltage source with a 2 volt amplitude.  

 The attenuation of the filter is defined in terms of the output signal relative to the reference voltage 

(one volt here).  A decibel is a unitless measure of relative voltage that is defined as 20 times the common 

(base 10) logarithm of the ratio between the voltage at a particular probe point and a reference voltage.  

In this problem, a voltage in the passband of exactly 1 volt and a voltage in the stopband of exactly 0 

volts is regarded as ideal. The (preferably small) variation within the passband is called the passband 

ripple. Similarly, the incoming signal is never fully reduced to zero in the stopband of an actual filer. The 

(preferably small) variation within the stopband is called the stopband ripple. A voltage in the passband 

of between 970 millivolts and 1 volt (i.e., a passband ripple of 30 millivolts or less) and a voltage in the 

stopband of between 0 volts and 1 millivolts (i.e., a stopband ripple of 1 millivolts or less) is regarded as 

acceptable. Any voltage lower than 970 millivolts in the passband and any voltage above 1 millivolts in 

the stopband is regarded as unacceptable. 

A fifth-order elliptic (Cauer) filter with a modular angle Θ of 30 degrees (i.e., the arcsin of the ratio of 

the boundaries of the passband and stopband) and a reflection coefficient ρ of 24.3% is required to satisfy 

these design goals (Williams and Taylor 1995).  

Since the high-level statement of behavior for the desired circuit is expressed in terms of frequencies, 

the voltage VOUT is measured in the frequency domain. SPICE performs an AC small signal analysis and 

report the circuit's behavior over five decades (between 1 Hz and 100,000 Hz) with each decade being 

divided into 20 parts (using a logarithmic scale), so that there are a total of 101 fitness cases.  

Fitness is measured in terms of the sum over these cases of the absolute weighted deviation between 

the actual value of the voltage that is produced by the circuit at the probe point VOUT and the target 

value for voltage. The smaller the value of fitness, the better. A fitness of zero represents an 

(unattainable) ideal filter. 

Specifically, the standardized fitness is 



13 

F(t) = 
i=0

100
∑ (W (d ( f i ), f i )d ( f i )) 

where fi is the frequency of fitness case i; d(x) is the absolute value of the difference between the target 

and observed values at frequency x; and W(y, x) is the weighting for difference y at frequency x. 

The fitness measure is designed to not penalize ideal values, to slightly penalize every acceptable 

deviation, and to heavily penalize every unacceptable deviation. Specifically, the procedure for each of 

the 61 points in the 3-decade interval between 1 Hz and 1,000 Hz for the intended passband is as follows:  
• If the voltage equals the ideal value of 1.0 volt in this interval, the deviation is 0.0.  
• If the voltage is between 970 millivolts and 1 volt, the absolute value of the deviation from 1 volt is 
weighted by a factor of 1.0.  
• If the voltage is less than 970 millivolts, the absolute value of the deviation from 1 volt is weighted 
by a factor of 10.0.   

The acceptable and unacceptable deviations for each of the 35 points from 2,000 Hz to 100,000 Hz in 

the intended stopband are similarly weighed (by 1.0 or 10.0) based on the amount of deviation from the 

ideal voltage of 0 volts and the acceptable deviation of 1 millivolts.  

For each of the five "don't care" points between 1,000 and 2,000 Hz, the deviation is deemed to be 

zero. 

The number of “hits” for this problem (and all other problems herein) is defined as the number of 

fitness cases for which the voltage is acceptable or ideal or that lie in the "don't care" band (for a filter).  

Many of the random initial circuits and many that are created by the crossover and mutation operations 

in subsequent generations cannot be simulated by SPICE. These circuits receive a high penalty value of 

fitness (108) and become the worst-of-generation programs for each generation.  

For details, see Koza, Bennett, Andre, and Keane 1996b.  

4.4.2. Fitness Measure for the Highpass Filter 

The fitness cases for the highpass filter are the same 101 points in the five decades of frequency between 

1 Hz and 100,000 Hz as for the lowpass filter.  The fitness measure is substantially the same as that for 

the lowpass filter problem above, except that the locations of the passband and stopband are reversed.  

4.4.3. Fitness Measure for the Tri-state Frequency Discriminator 

Fitness is the sum, over 101 fitness cases, of the absolute weighted deviation between the actual value of 

the voltage that is produced by the circuit and the target value.  



14 
The three points that are closest to the band located within 10% of 256 Hz are 229.1 Hz, 251.2 Hz, and 

275.4 Hz.  The procedure for each of these three points is as follows: If the voltage equals the ideal value 

of 1/2 volts in this interval, the deviation is 0.0.  If the voltage is more than 240 millivolts from 1/2 volts, 

the absolute value of the deviation from 1/2 volts is weighted by a factor of 20.  If the voltage is more 

than 240 millivolts from 1/2 volts, the absolute value of the deviation from 1/2 volts is weighted by a 

factor of 200.  This arrangement reflects the fact that the ideal output voltage for this range of frequencies 

is 1/2 volts, the fact that a 240-millivolt discrepancy is acceptable, and the fact that a larger discrepancy is 

not acceptable.   

Similar weighting was used for the three points (2,291 Hz, 2,512 Hz, and 2,754 Hz) that are closest to 

the band located within 10% of 2,560 ,Hz.  

The procedure for each of the remaining 95 points is as follows:  If the voltage equals the ideal value 

of 0 volts, the deviation is 0.0.  If the voltage is within 240 millivolts of 0 volts, the absolute value of the 

deviation from 0 volts is weighted by a factor of 1.0.  If the voltage is more than 240 millivolts from  0 

volts, the absolute value of the deviation from 0 volts is weighted by a factor of 10.  For details, see Koza, 

Bennett, Lohn, Dunlap, Andre, and Keane 1997b. 

4.4.4. Fitness Measure for the Computational Circuit 

SPICE is called to perform a DC sweep analysis at 21 equidistant voltages between –250 millivolts and 

+250 millivolts. Fitness is the sum, over these 21 fitness cases, of the absolute weighted deviation 

between the actual value of the voltage that is produced by the circuit and the target value for voltage. For 

details, see Koza, Bennett, Lohn, Dunlap, Andre, and Keane 1997a.   

4.4.5. Fitness Measure for the Robot Controller Circuit 

The fitness of a robot controller was evaluated using 72 randomly chosen fitness cases each representing a 

different target point. Fitness is the sum, over the 72 fitness cases, of the travel times. If the robot came 

within a capture radius of 0.28 meters of its target point before the end of the 80 time steps allowed for a 

particular fitness case, the contribution to fitness for that fitness case was the actual time. However, if the 

robot failed to come within the capture radius during the 80 time steps, the contribution to fitness was 

0.160 hours (i.e., double the worst possible time).  

SPICE performs a nested DC sweep, which provides a way to simulate the DC behavior of a circuit 

with two inputs. It resembles a nested pair of FOR loops in a computer program in that both of the loops 



15 
have a starting value for the voltage, an increment, and an ending value for the voltage. For each voltage 

value in the outer loop, the inner loop simulates the behavior of the circuit by stepping through its range 

of voltages. Specifically, the starting value for voltage is –4 volts, the step size is 0.2 volts, and the ending 

value is +4 volts. These values correspond to the dimensions of the robot's world of 64 square meters 

extending 4 meters in each of the four directions from the origin of a coordinate system (i.e., 1 volt equals 

1 meter).  For details, see Koza, Bennett, Keane, and Andre 1997. 

4.4.6. Fitness Measure for the 60 dB Amplifier 

SPICE was requested to perform a DC sweep analysis to determine the circuit's response for several 

different DC input voltages. An ideal inverting amplifier circuit would receive the DC input, invert it, and 

multiply it by the amplification factor. A circuit is flawed to the extent that it does not achieve the desired 

amplification, the output signal is not perfectly centered on 0 volts(i.e., it is biased), or the DC response is 

not linear.  Fitness is calculated by summing an amplification penalty, a bias penalty, and two non-

linearity penalties – each derived from these five DC outputs.  For details, see Bennett, Koza, Andre, and 

Keane 1996.  

4.5. Control Parameters 

The population size, M, was 640,000 for all problems.  Other parameters were substantially the same for 

each of the six problems and can be found in the references cited above.   

4.6. Implementation on Parallel Computer 

Each problem was run on a medium-grained parallel Parsytec computer system (Andre and Koza 1996) 

consisting of 64 80-MHz PowerPC 601 processors arranged in an 8 by 8 toroidal mesh with a host PC 

Pentium type computer. The distributed genetic algorithm was used with a population size of Q = 10,000 

at each of the D = 64 demes (semi-isolated subpopulations). On each generation, four boatloads of 

emigrants, each consisting of B = 2% (the migration rate) of the node's subpopulation (selected on the 

basis of fitness) were dispatched to each of the four adjacent processing nodes.  

5. Results 

In all six problems, fitness was observed to improve over successive generations. A large majority of the 

randomly created initial circuits of generation 0 were not able to be simulated by SPICE; however, most 

were simulatable after only a few generations.  Satisfactory results were generated in every case on the 



16 
first or second trial.  When two runs were required, the first produced an almost satisfactory result.  This 

rate of success suggests that the capabilities of the approach and current computing system have not been 

fully exploited.   

5.1. Lowpass Filter 

Many of the runs produced lowpass filters having a topology similar to that employed by human 

engineers. For example, in generation 32 of one run, a circuit (figure 16.6) was evolved with a near-zero 

fitness of 0.00781.  The circuit was 100% compliant with the design requirements in that it scored 101 

hits (out of 101).  After the evolutionary run, this circuit (and all evolved circuits herein) were simulated 

anew using the commercially available MicroSim circuit simulator to verify performance.  As can be 

seen, inductors appear in series horizontally across the top of the figure, while capacitors appear vertically 

as shunts to ground. This circuit had the recognizable ladder topology of a Butterworth or Chebychev 

lowpass filter (Williams and Taylor 1995).   

 

Figure 16.6  Evolved 7-rung ladder lowpass filter.  Figure 16.7 shows the behavior in the frequency 

domain of this evolved lowpass filter. As can be seen, the evolved circuit delivers about 1 volt for all 

frequencies up to 1,000 Hz and about 0 volts for all frequencies above 2,000 Hz.  

In another run, a 100% compliant recognizable "bridged T" arrangement was evolved.  In yet another 

run using automatically defined functions, a 100% compliant circuit emerged with the recognizable 

elliptic topology that was invented and patented by Cauer. When invented. the Cauer filter was a 

significant advance (both theoretically and commercially) over the Butterworth and Chebychev filters.   

Thus, genetic programming rediscovered the ladder topology of the Butterworth and Chebychev 

filters, the "bridged T" topology, and the elliptic topology.   



17 

 

Figure 16.7  Frequency domain behavior of genetically evolved 7-rung ladder lowpass filter.  

It is important to note that when we performed the preparatory steps for applying genetic programming 

to the problem of synthesizing a lowpass filter, we did not employ any significant domain knowledge 

from the field of electrical engineering.  We did not incorporate knowledge of Kirchhoff's laws, integro-

differential equations, Laplace transforms, poles, zeroes, or the other mathematical techniques and 

insights about filters that are known to electrical engineers who design analog filters.  In spite of this 

absence of explicit domain knowledge, genetic programming evolved a 100% compliant circuit for the 

problem of designing an LC lowpass filter that embodied the ladder topology that is well known in the 

field of electrical engineering.   

The reinvention by genetic programming of the recognizable ladder topology of Butterworth or 

Chebychev lowpass filters is an instance where genetic programming has produced a result that is 

competitive with those created by inventive and knowledgeable humans.  It satisfies Arthur Samuel's 

criterion (1983) for artificial intelligence and machine learning, namely 

The aim [is] ... to get machines to exhibit behavior which if done by humans would be assumed 

to involve the use of intelligence.  

5.2. Highpass Filter 

In generation 27 of one run, a 100% compliant circuit (figure 16.8) was evolved with a near-zero fitness 

of 0.213. This circuit has four capacitors and five inductors (in addition to the fixed components of the 

embryo).  As can be seen, capacitors appear in series horizontally across the top of the figure, while 

inductors appear vertically as shunts to ground.  



18 

 

Figure 16.8  Evolved four-rung ladder highpass filter.  Figure 16.9 shows the behavior in the 

frequency domain of this evolved highpass filter.  As desired, the evolved highpass delivers about 0 volts 

for all frequencies up to 1,000 Hz and about 1 volt for all frequencies above 2,000 Hz.  

 

Figure 16.9  Frequency domain behavior of evolved four-rung ladder highpass filter.  The reversal 

of roles for the capacitors and inductors in lowpass and highpass ladder filters is well known to electrical 

engineers.  It arises because of the duality of the single terms (derivatives versus integrals) in the integro-

differential equations that represent the voltages and currents of the inductors and capacitors in the loops 

and nodes of a circuit.  However, genetic programming was not given any domain knowledge concerning 

this duality.  In fact, the fitness measure was the only difference in the preparatory steps for the problem 

of synthesizing the highpass filter versus  the problem of synthesizing the lowpass filter.  In spite of the 

absence of explicit domain knowledge about electrical engineering in general or duality in particular, 



19 
genetic programming evolved a 100% compliant highpass filter embodying the well-known highpass 

ladder topology.  Using the fitness measure appropriate for highpass filters, genetic programming 

searched the same space (i.e., the space of circuit-constructing program trees composed of the same 

component-creating functions and the same topology-modifying functions) and discovered circuit-

constructing program tree that yielded a 100%-complaint highpass filter.   

The rediscovery by genetic programming of the reversal of roles of capacitors and inductors in lowpass 

and filters is an instance where genetic programming has produced a result that is competitive with those 

created by inventive and knowledgeable humans.  This result (and all of the succeeding results in this 

chapter) satisfies Arthur Samuel's criterion (1983) for success in artificial intelligence and machine 

learning.   

5.3. Tri-state Frequency Discriminator 

The evolved three-way tri-state frequency discriminator circuit from generation 106 scores 101 hits (out 

of 101).  Figure 16.10 shows this circuit (after expansion of its automatically defined functions). The 

circuit produces the desired outputs of 1 volt and 1/2 volts (each within the allowable tolerance) for the 

two specified bands of frequencies and the desired near-zero signal for all other frequencies.   

 

Figure 16.10  Evolved frequency discriminator.  

5.4. Computational Circuit 

The genetically evolved computational circuit for the square root from generation 60 (figure 16.11), 

achieves a fitness of 1.68, and has 36 transistors, two diodes, no capacitors, and 12 resistors (in addition 

to the source and load resistors in the embryo).  The output voltages produced by this best-of-run circuit 

are almost exactly the required values.  



20 

 

Figure 16.11  Evolved square root circuit.  

5.5. Robot Controller Circuit 

The best-of-run time-optimal robot controller circuit (figure 16.12) appeared in generation 31, scores 72 

hits, and achieves a near-optimal fitness of 1.541 hours. In comparison, the optimal value of fitness for 

this problem is known to be 1.518 hours. This best-of-run circuit has 10 transistors and 4 resistors. The 

program has one automatically defined function that is called twice (incorporated into the figure).  

 

Figure 16.12  Evolved robot controller.  This problem entails navigating a robot to a destination in 

minimum time, so its fitness measure (section 4.4.5) is expressed in terms of elapsed time.  The fitness 

measure is a high-level description of "what needs to be done" – namely, get the robot to the destination 

in a time-optimal way.  However, the fitness measure does not specify "how to do it."  In particular, the 

fitness measure conveys no hint about the critical (and counterintuitive) tactic needed to minimize elapsed 



21 
time in time-optimal control problem – namely, that it is sometimes necessary to veer away from the 

destination in order to reach it in minimal time.  Nonetheless, the evolved time-optimal robot controller 

embodies this counterintuitive tactic.  For example, figure 16.13 shows the trajectory for the fitness case 

where the destination is (0.409, –0.892).  Correct time-optimal handling of this difficult destination point 

requires a trajectory that begins by veering away from the destination (thereby increasing the distance to 

the destination) followed by a circular trajectory to the destination.  The small circle in the figure 

represents the capture radius of 0.28 meters around the destination point.   

0 1 2 3

-2

-1

0

1

x

y

(0.409, -0.892)

 

Figure 16.13  Evolved time-optimal trajectory to destination point (0.409, –0.892).  

The evolved time-optimal robot controller generalizes so as to correctly handle all other possible 

destinations in the plane.   

5.6. 60 dB Amplifier 

The best circuit from generation 109 (figure 16.14) achieves a fitness of 0.178. Based on a DC sweep, the 

amplification is 60 dB here (i.e., 1,000-to-1 ratio) and the bias is 0.2 volts. Based on a transient analysis at 

1,000 Hz, the amplification is 59.7 dB; the bias is 0.18 volts; and the total harmonic distortion is very low 



22 
(0.17%). Based on an AC sweep, the amplification at 1,000 Hz is 59.7 dB; the flatband gain is 60 dB; and 

the 3 dB bandwidth is 79, 333 Hz. Thus, a high-gain amplifier with low distortion and acceptable bias has 

been evolved.  

 

Figure 16.14  Genetically evolved amplifier.  

6. Other Circuits 

Numerous other circuits have been similarly designed, including asymmetric bandpass filters (Koza, 

Bennett, Andre, and Keane 1996c), crossover filters (Koza, Bennett, Andre, and Keane 1996a), double 

passband filters (Koza, Andre, Bennett, and Keane 1996), amplifiers (Koza, Bennett, Andre, and Keane 

1997), a temperature-sensing circuit, and a voltage reference circuit (Koza, Bennett, Andre, Keane, and 

Dunlap 1997).   

7. Conclusion 

In this chapter, genetic programming succeeded in evolving both the topology and sizing of six different 

prototypical analog electrical circuits, including a lowpass filter, a highpass filter, a tri-state frequency 

discriminator circuit, a 60 dB amplifier, a computational circuit for the square root, and a time-optimal 

robot controller circuit.  All six of these genetically evolved circuits constitute instances of an 

evolutionary computation technique solving a problem that is usually thought to require human 

intelligence.   

There has previously been no general automated technique for synthesizing an analog electrical circuit 

from a high-level statement of the circuit's desired behavior. The approach using genetic programming to 

the problem of analog circuit synthesis is general; it can be directly applied to other problems of analog 

circuit synthesis.   



23 
In fact, this same approach is even more general and can be applied to the problem of automatic 

programming (i.e., the challenge of getting a computer to solve a problem without explicitly programming 

it).  Paraphrasing Arthur Samuel (1959), the challenge of automatic programming concerns 

How can computers be made to do what needs to be done, without being told exactly how to do 

it? 

Each of the problems in this chapter illustrates the automatic creation of a satisfactory way of "how to 

do it" from a high-level statement of "what needs to be done."   

References 

Aaserud, O. and Nielsen, I. Ring.  1995. Trends in current analog design: A panel debate.  Analog 

Integrated Circuits and Signal Processing. 7(1) 5-9.  

Andre, David and Koza, John R.  1996.  Parallel genetic programming: A scalable implementation using 

the transputer architecture.  In Angeline, P.  J.  and Kinnear, K.  E.  Jr.  (editors).  1996.  Advances in 

Genetic Programming 2.  Cambridge: MIT Press.   

Angeline, Peter J.  and Kinnear, Kenneth E.  Jr.  (editors).  1996.  Advances in Genetic Programming 2.  

Cambridge, MA: The MIT Press.  

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D.  1998.  Genetic 

Programming – An Introduction.  San Francisco, CA: Morgan Kaufmann and Heidelberg: dpunkt. 

Bennett III, Forrest H, Koza, John R., Andre, David,  and Keane, Martin A.  1996.  Evolution of a 60 

Decibel op amp using genetic programming.  In Higuchi, Tetsuya, Iwata, Masaya, and Lui, Weixin 

(editors). Proceedings of International Conference on Evolvable Systems: From Biology to Hardware 

(ICES-96).  Lecture Notes in Computer Science, Volume 1259.  Berlin: Springer-Verlag.  Pages 455-

469.   

Grimbleby, J. B.  1995.  Automatic analogue network synthesis using genetic algorithms. Proceedings of 

the First International Conference on Genetic Algorithms in Engineering Systems: Innovations and 

Applications.  London: Institution of Electrical Engineers. Pages 53–58.  

Gruau, Frederic.  1992. Cellular Encoding of Genetic Neural Networks.  Technical report 92-21.  

Laboratoire de l'Informatique du Parallélisme.  Ecole Normale Supérieure de Lyon. May 1992.   



24 
Holland, John H.  1975.  Adaptation in Natural and Artificial Systems.  Ann Arbor, MI: University of 

Michigan Press.   

Kinnear, Kenneth E.  Jr.  (editor).  1994.  Advances in Genetic Programming.  Cambridge, MA: The MIT 

Press. 

Kitano, Hiroaki.  1990.  Designing neural networks using genetic algorithms with graph generation 

system.  Complex Systems.  4(1990) 461–476.   

Koza, John R.  1992.  Genetic Programming: On the Programming of Computers by Means of Natural 

Selection.  Cambridge, MA: MIT Press. 

Koza, John R.  1994a.  Genetic Programming II: Automatic Discovery of Reusable Programs.  

Cambridge, MA: MIT Press. 

Koza, John R.  1994b.  Genetic Programming II Videotape: The Next Generation.  Cambridge, MA: MIT 

Press.  

Koza, John R.  1995.  Evolving the architecture of a multi-part program in genetic programming using 

architecture-altering operations.  In McDonnell, John R., Reynolds, Robert G., and Fogel, David B. 

(editors).  1995. Evolutionary Programming IV: Proceedings of the Fourth Annual Conference on 

Evolutionary Programming.  Cambridge, MA: The MIT Press. Pages 695–717.   

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin A.  1996.  Use of automatically 

defined functions and architecture-altering operations in automated circuit synthesis using genetic 

programming.  In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L.  (editors).  

1996.  Genetic Programming 1996: Proceedings of the First Annual Conference.  Cambridge, MA: The 

MIT Press.   

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A.  1999.  Genetic Programming 

III: Darwinian Invention and Problem Solving. San Francisco, CA: Morgan Kaufmann.   

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A.  1996a.  Four problems for 

which a computer program evolved by genetic programming is competitive with human performance.  

Proceedings of the 1996 IEEE International Conference on Evolutionary Computation.  IEEE Press.  

Pages 1–10.   



25 
Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A.  1996b.  Automated design of 

both the topology and sizing of analog electrical circuits using genetic programming.  In Gero, John S.  

and Sudweeks, Fay (editors).  Artificial Intelligence in Design '96.  Dordrecht: Kluwer.  Pages 151-170.   

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A.  1996c.  Automated 

WYWIWYG design of both the topology and component values of analog electrical circuits using 

genetic programming.  In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L.  

(editors).  1996.  Genetic Programming 1996: Proceedings of the First Annual Conference.  

Cambridge, MA: The MIT Press.   

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A.  1997. Evolution using genetic 

programming of a low-distortion 96 Decibel operational amplifier.  Proceedings of the 1997 ACM 

Symposium on Applied Computing, San Jose, California, February 28 – March 2, 1997.  New York: 

Association for Computing Machinery.  Pages 207 - 216.  

Koza, John R., Bennett III, Forrest H, Andre, David, Keane, Martin A, and Dunlap, Frank.  1997.  

Automated synthesis of analog electrical circuits by means of genetic programming.  IEEE 

Transactions on Evolutionary Computation.  1(2).  Pages 109 – 128.  
Koza, John R., Bennett III, Forrest H, Keane, Martin A., and Andre, David.  1997.  Automatic 

programming of a time-optimal robot controller and an analog electrical circuit to implement the robot 

controller by means of genetic programming.  Proceedings of 1997 IEEE International Symposium on 

Computational Intelligence in Robotics and Automation.  Los Alamitos, CA; Computer Society Press.  

Pages 340 – 346.  

Koza, John R., Bennett III, Forrest H, Lohn, Jason, Dunlap, Frank, Andre, David, and Keane, Martin A.  

1997.  Automated synthesis of computational circuits using genetic programming.  Proceedings of the 

1997 IEEE Conference on Evolutionary Computation.  Piscataway, NJ: IEEE Press.  447–452.   

Koza, John R., Bennett III, Forrest H, Lohn, Jason, Dunlap, Frank, Andre, David, and Keane, Martin A.  

1997b.  Use of architecture-altering operations to dynamically adapt a three-way analog source 

identification circuit to accommodate a new source.  In Koza, John R., Deb, Kalyanmoy, Dorigo, 

Marco, Fogel, David B., Garzon, Max, Iba, Hitoshi, and Riolo, Rick L. (editors).  1997. Genetic 

Programming 1997: Proceedings of the Second Annual Conference San Francisco, CA: Morgan 

Kaufmann.  213 – 221.   



26 
Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba, Hitoshi, and Riolo, 

Rick L. (editors).  1997. Genetic Programming 1997: Proceedings of the Second Annual Conference 

San Francisco, CA: Morgan Kaufmann. 

Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L.  (editors).  1996.  Genetic 

Programming 1996: Proceedings of the First Annual Conference.  Cambridge, MA: The MIT Press.  

Koza, John R., and Rice, James P.  1992.  Genetic Programming: The Movie.  Cambridge, MA: MIT 

Press.   

Kruiskamp Marinum Wilhelmus and Leenaerts, Domine.  1995. DARWIN: CMOS opamp synthesis by 

means of a genetic algorithm.  Proceedings of the 32nd Design Automation Conference.  New York, 

NY: Association for Computing Machinery.  Pages 433–438.  

Quarles, Thomas, Newton, A.  R., Pederson, D.  O., and Sangiovanni-Vincentelli, A.  1994.  SPICE 3 

Version 3F5 User's Manual.  Department of Electrical Engineering and Computer Science, University 

of California, Berkeley, CA.  March 1994.   

Rutenbar, R.  A.  1993.  Analog design automation: Where are we? Where are we going?  Proceedings of 

the l5th IEEE CICC.  New York: IEEE.  13.1.1-13.1.8.  

Samuel, Arthur L. 1959. Some studies in machine learning using the game of checkers. IBM Journal of 

Research and Development. 3(3): 210–229.  

Samuel, Arthur L. 1983. AI: Where it has been and where it is going. Proceedings of the Eighth 

International Joint Conference on Artificial Intelligence. Los Altos, CA: Morgan Kaufmann. Pages 

1152 – 1157.  

Thompson, Adrian.  1996.  Silicon evolution.  In Koza, John R., Goldberg, David E., Fogel, David B., and 

Riolo, Rick L.  (editors).  1996.  Genetic Programming 1996: Proceedings of the First Annual 

Conference.  Cambridge, MA: MIT Press.   

Williams, Arthur B. and Taylor, Fred J. 1995. Electronic Filter Design Handbook. Third Edition. New 

York, NY: McGraw-Hill.  



 
Version 4 -  Submitted February 6, 1999 for chapter 16 of Evolutionary Design by Computers edited by 

Peter Bentley.  

 

 

The Design of Analog Circuits by Means of Genetic Programming 
 

 
John R. Koza 

Section on Medical 

Informatics 

Department of Medicine 

School of Medicine 

Stanford University 

Stanford, California 94305 

koza@smi.stanford.edu 

Forrest H Bennett 
III 

Chief Scientist 

Genetic Programming Inc. 

Los Altos, California 

94023 

forrest@evolute.com 

David Andre 

Division of Computer 

Science 

University of California  

Berkeley, California 

94720 

dandre@cs.berkeley.edu 

Martin A. Keane 

Chief Scientist 

Econometrics Inc. 

111 E. Wacker Dr. 

Chicago, Illinois 60601 

makeane@ix.netcom.com 

 

Send to... 

 

Dr Peter J Bentley 

Department of Computer Science 

University College London 

Gower Street 

London WC1E 6BT 

United Kingdom 

 


