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Abstract 
 
Most real-world controllers are composed of 
proportional, integrative, and derivative signal 
processing blocks. The so-called PID controller was 
invented and patented by Callender and Stevenson in 
1939. In 1942, Ziegler and Nichols developed 
mathematical rules for automatically selecting the 
parameter values for PID controllers. In their 
influential 1995 book, Astrom and Hagglund 
developed a world-beating PID controller that 
outperforms the 1942 Ziegler-Nichols rules on an 
industrially representative set of plants.  In this 
paper, we approached the problem of automatic 
synthesis of a controller using genetic programming 
without requiring in advance  that the topology of the 
plant be the conventional PID topology. We present 
a genetically evolved controller that outperforms the 
automatic tuning rules developed by Astrom and 
Hagglund in 1995 for the industrially representative 
set of plants specified by Astrom and Hagglund.   

1 Introduction 

Automatic controllers are ubiquitous in the real world 
(Astrom and Hagglund 1995; Dorf and Bishop 1998; 
Bryson and Ho 1975; Boyd and Barratt 1991). The 
purpose of a controller is to force, in a meritorious 
way, the response of a system (conventionally called 
the plant) to match a desired response (the reference 
signal or setpoint). For example, the cruise control 
device in a car continuously adjusts the engine (the 
plant) based on the difference between the speed 
specified by the driver (the reference signal) and the 
car's actual speed (the plant response).  

The input to a controller typically consists of 
reference signal(s) and plant response(s). The output 
of a controller consists of control variable(s) that are 
passed from the controller to the plant. The 
individual signal-processing blocks of a controller 
are coupled to one another in a particular topological 
arrangement.  

Over 90% of all real-world controllers are PID 
controllers. PID controllers are composed of a 
proportional (P), an integrative (I), and a derivative 
(D) block. The PID controller was invented and 
patented by Albert Callender and Allan Stevenson of 

Imperial Chemical Limited of Northwich, England in 
1939. In 1942, Ziegler and Nichols developed 
mathematical rules for automatically selecting the 
parameter values associated with the proportional, 
integrative, and derivative blocks of a PID controller.  

In their influential 1995 book PID Controllers: 
Theory, Design, and Tuning, Astrom and Hagglund 
(1995) identified four families of plants  

"that are representative for the dynamics of 
typical industrial processes."  

The first of the four families of plants in Astrom 
and Hagglund 1995 consists of plants represented by 
transfer functions of the form 
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where T = 0.1, … , 10.  
The second family consists of the n-lag plants 

represented by transfer functions of the form 
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where n = 3, 4, and 8.  
The third family consists of plants represented by 

transfer functions of the form 

)1)(1)(1)(1(
1)( 32 ssss

sG
ααα ++++

=  (C) 

where α = 0.2, 0.5, and 0.7.  
The fourth family consists of plants represented by 

transfer functions of the form 
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where α = 0.1, 0.2, 0.5, 1.0, and 2.0.  
Astrom and Hagglund developed a method in their 

1995 book for automatically tuning PID controllers 
for all the plants in all four of these industrially 
representative families of plants. They employed the 
widely used Ziegler-Nichols rules (Ziegler and 
Nichols 1942) as a “starting point.” The tuning rules 
developed by Astrom and Hagglund in their 1995 
book outperform the widely used Ziegler-Nichols 
tuning rules  on all 16 industrially representative 
plants used by Astrom and Hagglund.  As Astrom- 
Hagglund observe,  



“[Our] new methods give substantial 
improvements in control performance while 
retaining much of the simplicity of the 
Ziegler-Nichols rules.” 

The methods developed by Astrom and Hagglund 
use several parameters representing the overall 
characteristics of a plant. These parameters are not, 
of course, a complete representation of the behavior 
of the plant. However, these parameters offer the 
practical advantage of being readily obtainable for 
real-world plants by means of relatively 
straightforward testing in the field. 

In one version of their method, Astrom and 
Hagglund use two frequency-domain parameters, 
namely the ultimate gain, Ku (the minimum value of 
the gain that must be introduced into the feedback 
path to cause the system to oscillate) and the ultimate 
period, Tu (the period of this lowest frequency 
oscillation). In another version, Astrom and 
Hagglund use two time-domain parameters, namely 
the plant’s time constant, Tr, and the dead time, L (the 
period before the plant output begins to respond to a 
change in the reference signal). Astrom and 
Hagglund describe a procedure for estimating these 
parameters from the plant's response to a step input.  

Table 2 shows the characteristics of a total of 26 
different plants that are discussed in this paper.  All 
26 plants are members of Astrom and Hagglund’s 
four families of plants. Columns 3, 4, 5, and 6 of the 
table describe the plants in terms of their ultimate 
gain, Ku; ultimate period, Tu; dead time, L; and the 
time constant, Tr; respectively. Column 7 identifies 
the 16 plants that Astrom and Hagglund included in 
their test bed. Column 8 refers to two runs described 
in this paper and indicates the plants that were 
employed in these two runs.  

Figure 3 shows the world-beating solution 
developed by Astrom and Hagglund in their 1995 
book for the 16 industrially representative plants. 
This controller is a PID controller.  

Equation 1 in the figure is  
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Equation 4 is  
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The tuning developed by Astrom and Hagglund in 

their 1995 book outperforms the widely used Ziegler-
Nichols tuning rules (Ziegler and Nichols 1942) on 
all 16 industrially representative plants used by 
Astrom and Hagglund.  

The topology of a controller entails the 
specification of  

• the total number of processing blocks to be 
employed in the controller,  
• the type of each block (e.g., gain, lead, lag, 
integrator, differentiator, adder, subtractor), and  
• the connections (directed lines) between the 
input point(s) and the output point of each block 
in the controller, 
• the connections (directed lines) between blocks 
of the controller and the external input(s) to the 
controller, and 
• the connections (directed lines) between blocks 
of the controller and the external output(s) of the 
controller.  

Astrom and Hagglund were, of course, seeking a 
PID controller that would outperform the Ziegler-
Nichols rules. They prespecified the PID topology.  

The question arises as to whether it is possible to 
find a yet better controller. An improved controller 
(if it exists) might possibly be a PID controller. An 
improved general-purpose controller would possibly 
employ a novel topology that is different and more 
complex than the PID controller shown in figure 3.  

Genetic programming  (Koza, Bennett, Andre, and 
Keane 1999; Koza, Bennett, Andre, Keane, and 
Brave 1999) is a method for automatically creating a 
computer program to solve a problem.  Genetic 
programming has previously been used to 
automatically create both the topology and parameter 
values (tuning) for a controller for a particular two-
lag plant and a particular three-lag plant (Koza, 
Keane, Yu, Bennett, and Mydlowec 2000). However, 
the two (different) evolved controllers in that work 
applied only to particular plants (each belonging to 
the same family). Genetic programming has also 
been used to automatically create both the topology 
and parameter values of a controller for plants 
belonging to two families (Keane, Yu, and Koza 
2000).  

In this paper, we approach the problem of creating 
an improved controller using genetic programming 
by building on the 1995 Astrom and Hagglund rules. 
We do this by inserting a terminal into the terminal 
set representing the output of the Astrom and 



Hagglund 1995 controller (figure 3). This terminal 
returns the time-domain signal produced by a PID 
controller tuned using the Astrom and Hagglund 
rules.  That is, the terminal causes a connection to be 
made to a PID controller that has been tuned for the 
specific plant under consideration using the current 
instantiations of the free variables for ultimate gain, 
Ku, and ultimate period, Tu. The instantiations of the 
values of Ku and Tu, of course, vary from fitness case 
to fitness case.  

Genetic programming automatically creates its 
controller using a fitness measure built from the same 
elements used in Astrom and Hagglund 1995. That 
is, our fitness measure attempts to optimize for the 
integral of the time-weighted absolute error (ITAE) 
for a step input and also to optimize for maximum 
sensitivity and sensor noise attenuation.  

In this paper, we present designs for both the 
topology and tuning for parameterized general-
purpose controllers for industrially representative 
plants belonging to all four families of plants 
described by equations (A), (B), (C), and (D).  These 
are the same industrially representative set of plants 
specified by Astrom and Hagglund. 

The automatically designed controllers in this 
paper outperform the controller designed using the 
techniques of Astrom and Hagglund using the 
performance criteria of Astrom and Hagglund.  

The automatically designed controller is general in 
the sense that it contains free variables and therefore 
provides a solution to an entire category of problems 
(i.e., all the plants in all four families).  

Early controllers were built from mechanical, 
pneumatic, or analog electrical components (e.g., 
inductors and capacitors implementing differentiation 
and integration). Altering the basic topology of such 
controllers was therefore cumbersome and expensive. 
However, most present day controllers are electronic 
devices that are programmed by means of software. 
This means that a topology that is more complex than 
a PID topology can be implemented today merely by 
changing software.  

Section 2 of this paper describes the preparatory 
steps and section 3 presents the results.  

2 Preparatory Steps 

Six major preparatory steps are required to apply 
genetic programming to controller synthesis.  

2.1 Program Architecture 

Since the to-be-synthesized controller has one output 
(control variable), each program tree in the 
population has one result-producing branch.  

2.2 Terminal Set 

The terminal set, T (except for the arithmetic-
performing subtrees described below) contains time-
domain signals.  
T = {REFERENCE_SIGNAL, 

CONTROLLER_OUTPUT, 
PLANT_OUTPUT, LEFT_1, … , LEFT_4, 
RIGHT_1, … , RIGHT_4}.  

The REFERENCE_SIGNAL is the time-domain 
signal representing the desired plant response.  

The PLANT_OUTPUT is the time-domain signal 
representing the plant output.  

The CONTROLLER_OUTPUT is the time-domain 
signal representing the output of the controller (i.e., 
the control variable).  

The eight terminals LEFT_1, … , LEFT_4 and 
RIGHT_1, … , RIGHT_4 are explained in the next 
section in conjunction with the TAKEOFF function. 

The numerical parameter value for each signal 
processing block possessing a parameter is 
established by an arithmetic-performing subtree 
containing perturbable numerical terminals, 
arithmetic operations, and the four parameters for 
representing the overall characteristics of a plant. The 
value returned by an entire arithmetic-performing 
subtree is interpreted as a component value lying in a 
range of (positive values) between 10-3 and 103. The 
terminal set for the arithmetic-performing subtrees is 
Taps = {ℜ, KU, TU, L, TR}.  
where Ku is the ultimate gain; Tu is the ultimate 
period; Tr is the plant’s time constant; and is L the 
dead time.  

Here ℜ denotes a perturbable numerical value. In 
the initial random generation (generation 0) of a run, 
each perturbable numerical value is set, individually 
and separately, to a random value in a chosen range 
(from -3.0 and +3.0 here). In later generations, a 
perturbable numerical value may be changed by 
adding or subtracting a relatively small number 
drawn from a Gaussian probability distribution (with 
standard deviation of 1.0).  

A constrained syntactic structure maintains one 
function and terminal set for the arithmetic-
performing subtrees and a different function and 
terminal set (below) for the rest of the program tree.  

2.3 Function Set 

The function set, F (except for the arithmetic-
performing subtrees described below) contains 
continuous-time signal processing functions.  
F = {GAIN, INTEGRATOR, DIFFERENTIATOR, 

DIFFERENTIAL_INPUT_ 
INTEGRATOR, LEAD, LAG, LAG2, 



INVERTER, ADD_SIGNAL, SUB_SIGNAL, 
MUL_SIGNAL, DIV_SIGNAL, 
ADD_3_SIGNAL, TAKEOFF}.  

The two-argument GAIN function multiplies the 
time-domain signal represented by its first argument 
by a constant numerical value represented by its 
second argument. This numerical value is constant in 
the sense that it is not a time-domain signal (like the 
first argument) and in the sense that this numerical 
value does not vary when the controller is operating.  

The one-argument INTEGRATOR function 
integrates the time-domain signal represented by its 
one argument. That is, it applies the transfer function 
1/s, where s is the Laplace transform variable.  

The one-argument DIFFERENTIATOR function 
differentiates the time-domain signal represented by 
its argument. That is, it applies the transfer function 
s.  

The two-argument DIFFERENTIAL_INPUT_ 
INTEGRATOR function integrates the time-domain 
signal representing the difference between its two 
arguments.  

The two-argument LEAD function applies the 
transfer function 1 + τs, where τ is a real-valued 
numerical parameter. The first argument is the time-
domain input signal. The second argument, τ, is a 
numerical parameter representing the time constant 
(usually expressed in seconds) of the LEAD.  

The two-argument LAG function applies the 
transfer function 1/(1 + τs), where τ is a numerical 
parameter. The first argument is the time-domain 
input signal while the second, τ, is the time constant.  

The three-argument LAG2 function applies the 
transfer function 
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where ζ is the damping ratio, and ω0 is the corner 
frequency.  

The one-argument INVERTER function negates 
the time-domain signal represented by its argument.  

The two-argument ADD_SIGNAL, 
SUB_SIGNAL, and MULT_SIGNAL functions 
perform addition, subtraction, and multiplication, 
respectively, on the two time-domain signals 
represented by their two arguments. Note that the 
MULT_SIGNAL function differs from the GAIN 
function (described earlier) in that the second 
argument of a GAIN function is a constant numerical 
value (i.e., not a time-domain signal) whose value 
does not vary when the controller is operating.  

The three-argument ADD_3_SIGNAL adds three 
time-domain signals.  

For additional details on these functions and other 
preparatory steps, see Keane, Yu, and Koza 2000, 

Koza, Keane,  Yu, Bennett, and Mydlowec 2000, and 
Koza, Bennett, Andre, and Keane 1999.   

The one-argument function into the function set 
called TAKEOFF function acts as an identity function 
in that it returns the value of its argument. At the 
same time, it stores the value of its argument for 
possible future use. Whenever one of the four 
terminals (LEFT_1, … , LEFT_4) is encountered, it 
returns the value stored by the first, second, third, or 
fourth TAKEOFF function (if any), respectively, 
occurring earlier (i.e., to the left) in the overall 
program tree.  For this purpose, the earlier TAKEOFF 
function is determined on the basis of the usual 
depth-first order of evaluation from the left used in 
the LISP programming language. If there is no such 
stored value, the terminal defaults to the value of the 
root of the tree (i.e., the control variable). The value 
returned by RIGHT_1, … , RIGHT_4 is based on 
occurrences of the TAKEOFF function that occur 
later (i.e., to the right) in the overall program tree. 

The function set, Faps, for the arithmetic-
performing subtrees is 
Faps = {ADD_NUMERIC, SUB_NUMERIC, 

MUL_NUMERIC, DIV_NUMERIC, REXP, 
RLOG, POW}.  

The first three functions perform addition, 
subtraction, and multiplication of numerical values. 
The two-argument DIV_NUMERIC function divides 
the first argument by the second argument, except 
that the quotient is never allowed to exceed 105. The 
one-argument REXP function is the exponential 
function and the one-argument RLOG function is the 
natural logarithm of the absolute value.  The two-
argument POW function returns the value of its first 
argument raised to the power of the value of its 
second argument. 

2.4 Fitness Measure 

Genetic programming is a probabilistic algorithm that 
searches the space of compositions of the available 
functions and terminals under the guidance of a 
fitness measure  (Koza, Bennett, Andre, and Keane 
1999; Koza, Bennett, Andre, Keane, and Brave 
1999). The fitness measure is a mathematical 
implementation of the problem's high-level 
requirements. The fitness measure is couched in 
terms of “what needs to be done.” The fitness 
measure for most problems of controller design is 
multi-objective in the sense that there are several 
different (usually conflicting) requirements for the 
controller. 

The fitness of each individual in the population is 
determined by executing the program tree. The 
execution of the program tree produces an 
interconnected sequence of signal processing blocks 



 that is, a block diagram for the individual 
controller. The controller is embedded into a 
framework containing the (fixed) plant and the 
(fixed) external feedback loop. A SPICE netlist is 
then constructed to represent the block diagram of 
the controller, the (fixed) plant, and the (fixed) 
external feedback loop. This SPICE netlist is 
wrapped inside an appropriate set of SPICE 
commands to carry out various analyses in the time 
domain and in the frequency domain (described 
below). We also provide SPICE with subcircuit 
definitions to implement all the signal processing 
functions in the function set (described above) and all 
the signal processing functions necessary to represent 
the plant. The controller is then simulated using our 
modified version of the original 217,000-line 
SPICE3 simulator (Quarles, Newton, Pederson, and 
Sangiovanni-Vincentelli 1994). Our modified version 
of SPICE is run as a submodule within our genetic 
programming system. The SPICE simulator returns 
tabular output (representing the plant output in the 
time domain). An interface communicates this 
information to our genetic programming code. See 
Koza, Keane, Yu, Bennett, and Mydlowec 2000 for 
details.  

The fitness of each controller in the population is 
measured by means of eight separate invocations of 
the SPICE simulator for each plant. This fitness 
measure attempts to optimize step response and 
disturbance rejection while simultaneously imposing 
constraints on maximum sensitivity and sensor noise 
attenuation. The fitness of an individual controller is 
the sum of the detrimental contributions from each of 
these elements of the fitness measure. The smaller the 
sum, the better.  

R(s)
Y(s)

+
Controller Plant

U(s)

D(s)

N(s)

+

+
+

Q(s)

 
Figure 1 Overall model.  

Figure 1 presents a model for the entire system 
containing the given plant and the to-be-evolved 
controller. In this figure, R(s) is the reference signal; 
Y(s) is the plant output; and U(s) is the controller's 
output (control variable). Disturbance D(s) may be 
added to the controller's output U(s). Sensor noise 
N(s) may be added to the plant's output Y(s) yielding 
Q(s). Here N(s) is an AC signal.  

The first six elements of the fitness measure for 
each plant are time-domain-based elements. These 
elements represent six choices of values for the 
height of the reference signal and disturbance signal 

(shown in table 1). The reference signal is step 
function that rises from 0 at time t = 0 to the 
specified height at t = 1 millisecond. The disturbance 
signal is a step function that rises from 0 at time t = 
10Tu to the specified height at t = 10Tu + 1 
millisecond. The disturbance signal is added to the 
controller's output.  
                    Table 1 Six combinations 
 Reference signal Disturbance signal 
 1.0 1.0 
 10-3 10-3 
 -10-6 10-6 
 1.0 -0.6 
 -1.0 0.0 
 0.0 1.0 

For each of these first six elements of the fitness 
measure, a transient analysis is performed in the time 
domain using the SPICE simulator. The function e(t) 
is the difference (error) at time t between the plant 
output and the reference signal. The contribution to 
fitness is based on the sum of two integrals of time-
weighted absolute error (ITAE). The first term of the 
integral accounts for the controller's step response 
while the second term accounts for disturbance 
rejection.  
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The factor B in the first term of the integral 
multiplies each value of e(t) by the reciprocal of the 
amplitude of the reference signal (so that all 
reference signals are equally influential). The factor 
C in the second term of the integral multiplies value 
of e(t) by the reciprocal of the amplitude of the 
disturbance signals. When the amplitude of either the 
reference signal or the disturbance signal is zero, the 
appropriate factor (B or C) is set to zero. The ITAE 
component of fitness is such that, all other things 
being equal, changing the time scale by a factor of F 
changes the ITAE by F2. The division of the integral 
by Tu

2 is an attempt to eliminate this artifact of the 
time scale and equalize the influence of each of the 
plants in the overall fitness measure. For these 
elements of the fitness measure, the contribution to 
fitness is multiplied by 20 if the element is greater 
than for the Astrom and Hagglund (1995).  

The seventh element of the fitness measure for 
each plant is a frequency-domain-based element. An 
AC sweep is performed using the SPICE simulator 
from 1/(1000Tu) to 1000/Tu while holding the 
reference signal R(s) and the disturbance signal D(s) 
at zero. The maximum sensitivity, Ms, is a measure of 
the stability margin. It is desirable to minimize the 
maximum sensitivity (and therefore maximize the 
stability margin). The quantity 1/Ms is the minimum 



distance between the Nyquist plot and the point (-
1,0) and is the stability margin incorporating both 
gain and phase margin. The maximum sensitivity is 
the maximum amplitude of Q(s). The contribution to 
fitness is 0 if Ms < 1.5; 2(Ms - 1.5) for 1.5 ≤ Ms ≤ 2.0; 
and 20(Ms - 2.0) + 1 for Ms > 2.0. For these elements 
of the fitness measure (as well as the elements 
below), the contribution to fitness is multiplied by 10 
if the element is greater than for the Astrom and 
Hagglund controller (1995).  

The eighth element of the fitness measure for each 
plant is a frequency-domain-based element 
measuring sensor noise attenuation. Achieving 
favorable sensor noise attenuation is often in direct 
conflict with the goal of achieving a rapid response 
to setpoint changes and rejection of plant 
disturbances. An AC sweep is performed using the 
SPICE simulator from 10/Tu to 1000/Tu while holding 
both the reference signal R(s) and the disturbance 
signal D(s) at zero. The attenuation of the sensor 
noise is measured at plant output at Y(s). Amin is the 
minimum attenuation in decibels within this 
frequency range. It is desirable to maximize the 
minimum attenuation. The contribution to fitness for 
sensor noise attenuation is 0 if Amin > 40 dB; (40 - 
Amin)/10 if 20 dB ≤ Amin ≤ 40 dB; and 2 + (20 - Amin) 
if Amin < 20 dB.  

A controller that cannot be simulated by SPICE is 
assigned a high penalty value of fitness (10

8
).  

2.5 Control Parameters 

The population size, M, was 100,000. A (generous) 
maximum size of 500 points (for functions and 
terminals) was established for the single result-
producing branch. The percentages of the genetic 
operations for each generation are 63% one-offspring 
crossover on internal points of the program tree, 7% 
one-offspring crossover on terminals, 1% subtree 
mutation, 20% mutation on numerical constant 
terminals, and 9% reproduction. Other parameters are 
the same as used before (Koza, Bennett, Andre, 
Keane 1999).  

2.6 Termination 

The run was manually monitored and manually 
terminated when the fitness of many successive best-
of-generation individuals appeared to have reached a 
plateau. The best-so-far individual was harvested.  

2.7 Parallel Implementation 

This problem was run on a home-built Beowulf-style 
(Sterling, Salmon, Becker, and Savarese 1999) 
parallel cluster computer system consisting of 1,000 
350 MHz Pentium II processors (each accompanied 

by 64 megabytes of RAM). The system has a 350 
MHz Pentium II computer as host. The processing 
nodes are connected with a 100 megabit-per-second 
Ethernet. The processing nodes and the host use the 
Linux operating system. The distributed genetic 
algorithm with unsynchronized generations and semi-
isolated subpopulations was used with a 
subpopulation size of Q = 100 at each of D = 1,000 
demes. Two processors are housed in each of the 500 
physical boxes of the system. As each processor 
(asynchronously) completes a generation, four 
boatloads of emigrants from each subpopulation 
(selected probabilistically based on fitness) are 
dispatched to each of the four toroidally adjacent 
processors. The migration rate is 2% (but 10% if the 
toroidally adjacent node is in the same physical box).  

3 Results 

3.1 First Run 

The fitness measure for the first run entailed eight 
separate invocations of the SPICE simulator for each 
of 20 plants (for a total of 160 separate invocations of 
the SPICE simulator for each individual). The 
average total time to evaluate the fitness of each 
individual was 2 minutes and 10 seconds.  The 
population size at each node of the 1,000-Pentium 
Beowulf-style parallel computer was 100 (for a total 
population size of 100,000). It took 320 hours (13.3 
days) to reach generation 88 and produce a best-of-
run individual (figure 4) that equals or outperforms 
the Astrom and Hagglund controller on 100% of the 
fitness cases. Equation 1 in figure 4 is  
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Averaged over 20 plants from all four families of 
plants, the best-of-run genetically evolved 
parameterized general-purpose controller from 
generation 88 of the first run has 

• 78.6% of the ITAE of the Astrom-Hagglund 
controller,   
• 59.1% of the stability penalty involving 
maximum sensitivity, Ms, of the Astrom-
Hagglund controller,  and 
• 81.1% of the sensitivity penalty involving 
sensor noise attenuation of the Astrom-Hagglund 
controller.  

Figure 2 compares the time-domain response of 
the best-of-run genetically evolved parameterized 
general-purpose controller from generation 88 of the 
first run (solid line) and the Astrom and Hagglund 
controller (dotted line) for the three-lag plant (one of 
the 20 plants) with a 1 volt reference signal.  As can 
be seen, the Astrom and Hagglund controller 
overshoots the target value and takes longer to settle 
than the best-of-run controller from generation 88.  
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Figure 2 Comparison of time-domain response for 

the best-of-run controller from generation 88 of the first 
run (solid line) and the Astrom and Hagglund 

controller (dotted line) for the three-lag plant with a 1-
volt reference signal. 

 

3.2 Second Run 

This second run was based on 24 plants. In addition, 
this run further differed from the first run in that, 
after all fitness cases first outperformed or equaled 
the Astrom  and Hagglund controller, the fitness 
measure began to take parsimony into account.  

Figure 5 shows the best-of-run genetically evolved 
parameterized general-purpose controller from 
generation 38 of the second run. It equals or 
outperforms the Astrom and Hagglund controller on 
100% of the fitness cases. 
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Equation 8 is  
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Averaged over all 24 plants from all four families 
of plants, the best-of-run genetically evolved 
parameterized general-purpose controller from 
generation 38 of the second run has  

• 98.6% of the ITAE (integral of time-weighted 
absolute error) of the Astrom-Hagglund 
controller,   



• 78.1% of the stability penalty involving 
maximum sensitivity, Ms, of the Astrom-
Hagglund controller,  and 
• 96.1% of the sensitivity penalty involving 
sensor noise attenuation of the Astrom-Hagglund 
controller.  

The second run took 397 hours (16.5 days) to 
produce a best-of-run individual that equals or 
outperforms the Astrom and Hagglund controller on 
100% of the 24 plants. Unfortunately, this run was 
interrupted by a multi-hour power outage a few hours 
after the fitness measure started considering 
parsimony.  Therefore, this second run primarily 
demonstrates that genetic programming is capable of 
solving this problem repeatedly and in slightly 
different ways.  

3.3 Cross-Validation 

Both of the best-of-run controllers for the two runs 
described above were cross-validated using 18 
additional previously unseen plants (six  plants from 
each of families A, C, and D).  We did not create any 
out-of-sample plants for family B since for this 
family all of the possible integer values within the 
range specified by Astrom and Hagglund (1995) 
were already covered by plants used in our fitness 
evaluation.  The parameter values associated with the 
out-of-sample plants were spread approximately 
evenly across the range of possible parameter values 
used by Astrom and Hagglund (1995).  For each of 
the 18 plants, we computed the values of eight fitness 
cases, as described above.  
     The best-of-run controller from the first run 
outperforms the Astrom and Hagglund controller in 
142 out of the 144 new fitness cases and has 82.9% 
of the average ITAE of the Astrom and Hagglund 
controller.  The best-of-run controller from the 
second run outperforms the Astrom and Hagglund 
controller in 143 out of 144 cases, and has 91.7% of 
the average ITAE of the Astrom and Hagglund 
controller.  The few cases in which the evolved 
controllers do not do better than the Astrom and 
Hagglund controller involve measures of either 
stability or sensitivity.  In each of these cases, the 
performance of the evolved controller, although 
worse than that of the Astrom and Hagglund 
controller, is still acceptable in terms of real world 
control applications.  

4 Conclusion 

We  presented a genetically evolved controller that 
outperforms the automatic tuning rules developed by 
Astrom and Hagglund in 1995 for an industrially 
representative set of plants  The genetically evolved 
controller employs a novel topology that differs from 

the PID topology commonly used for practical 
controllers.  

5 Future Work 

The authors are actively continuing to work in this 
area and will report additional results and analysis in 
their forthcoming book Genetic Programming IV.  
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Figure 3  PID controller developed by Astrom and Hagglund (1995) for 16 plants from four industrially representative 

families of plants. 
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Figure 4 Best-of-run evolved parameterized general-purpose controller from generation 88 of the first run. Genetic 

programming produced this controller’s overall topology consisting of 20 addition (or subtraction) blocks as well as the 
eight mathematical expressions containing free variables. 
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Figure 5 Best-of-run evolved parameterized general-purpose controller from generation 38 of the second run. 

 
Table 2 Characteristics of the 26 plants 

Family Parameter value Ku Tu L Tr 16 plant set Runs 
A T = 0.1 1.07 2.37 1.00 0.10 X 1,2 
A T = 0.3 1.40 3.07 1.01 0.29 X 1,2 
A T = 1 2.74 4.85 1.00 1.00 X 1,2 
A T = 3 6.80 7.87 1.02 2.99 X 1,2 
A T = 6 12.7 11.1 1.00 6.00 X 1,2 
A T = 10 20.8 14.2 0.92 10.1 X 2 
B n = 3 8.08 3.62 0.52 1.24 X 1,2 
B n = 4 4.04 6.27 1.13 1.44 X 1,2 
B n = 5 2.95 8.62 1.79 1.61  2 
B n = 6 2.39 10.9 2.45 1.78  1,2 
B n = 7 2.09 13.0 3.17 1.92  1,2 
B n = 8 1.89 15.2 3.88 2.06 X 1,2 
C α = 0.1 113 0.198 -0.244 0.674  1 
C α = 0.2 30.8 0.56 -0.14 0.69 X 1,2 
C α = 0.3 15.0 1.04 -0.02 0.72  2 
C α = 0.4 9.62 1.59 0.11 0.76  2 
C α = 0.5 6.85 2.23 0.27 0.80 X 1,2 
C α = 0.6 5.41 2.92 0.43 0.87  2 
C α = 0.7 4.68 3.67 0.60 0.96 X 1,2 
C α = 0.9 4.18 5.31 3.44 0.685  1 
D α = 0.1 6.21 4.06 0.64 1.22 X 1,2 
D α = 0.2 5.03 4.44 0.74 1.23 X 1,2 
D α = 0.5 3.23 5.35 1.15 1.17 X 1,2 
D α = 0.7 2.59 5.81 1.38 1.16  2 
D α = 1 2.02 6.30 1.85 1.07 X 1,2 
D α = 2 1.15 7.46 3.46 0.765 X 1,2 

 


