
Automatic Synthesis Using Genetic Programming of an Improved
General-Purpose Controller for Industrially Representative Plants

Martin A. Keane

Econometrics Inc.
Chicago, Illinois

makeane@ix.netcom.com

John R. Koza
Stanford University
Stanford, California

koza@stanford.edu

Matthew J. Streeter
Genetic Programming Inc.
Mountain View, California

mjs@tmolp.com

Abstract

Most real-world controllers are composed of
proportional, integrative, and derivative signal
processing blocks. The so-called PID controller was
invented and patented by Callender and Stevenson in
1939. In 1942, Ziegler and Nichols developed
mathematical rules for automatically selecting the
parameter values for PID controllers. In their
influential 1995 book, Astrom and Hagglund
developed a world-beating PID controller that
outperforms the 1942 Ziegler-Nichols rules on an
industrially representative set of plants. In this
paper, we approached the problem of automatic
synthesis of a controller using genetic programming
without requiring in advance that the topology of the
plant be the conventional PID topology. We present
a genetically evolved controller that outperforms the
automatic tuning rules developed by Astrom and
Hagglund in 1995 for the industrially representative
set of plants specified by Astrom and Hagglund.

1 Introduction

Automatic controllers are ubiquitous in the real world
(Astrom and Hagglund 1995; Dorf and Bishop 1998;
Bryson and Ho 1975; Boyd and Barratt 1991). The
purpose of a controller is to force, in a meritorious
way, the response of a system (conventionally called
the plant) to match a desired response (the reference
signal or setpoint). For example, the cruise control
device in a car continuously adjusts the engine (the
plant) based on the difference between the speed
specified by the driver (the reference signal) and the
car's actual speed (the plant response).

The input to a controller typically consists of
reference signal(s) and plant response(s). The output
of a controller consists of control variable(s) that are
passed from the controller to the plant. The
individual signal-processing blocks of a controller
are coupled to one another in a particular topological
arrangement.

Over 90% of all real-world controllers are PID
controllers. PID controllers are composed of a
proportional (P), an integrative (I), and a derivative
(D) block. The PID controller was invented and
patented by Albert Callender and Allan Stevenson of

Imperial Chemical Limited of Northwich, England in
1939. In 1942, Ziegler and Nichols developed
mathematical rules for automatically selecting the
parameter values associated with the proportional,
integrative, and derivative blocks of a PID controller.

In their influential 1995 book PID Controllers:
Theory, Design, and Tuning, Astrom and Hagglund
(1995) identified four families of plants

"that are representative for the dynamics of
typical industrial processes."

The first of the four families of plants in Astrom
and Hagglund 1995 consists of plants represented by
transfer functions of the form

2

-

)+1(
=)(

sT
e

sG
s

 (A)

where T = 0.1, … , 10.
The second family consists of the n-lag plants

represented by transfer functions of the form

ns
sG

)1(
1)(
+

= (B)

where n = 3, 4, and 8.
The third family consists of plants represented by

transfer functions of the form

)1)(1)(1)(1(
1)(32 ssss

sG
ααα ++++

= (C)

where α = 0.2, 0.5, and 0.7.
The fourth family consists of plants represented by

transfer functions of the form

31
-1

=)(
)(s+
αs

sG (D)

where α = 0.1, 0.2, 0.5, 1.0, and 2.0.
Astrom and Hagglund developed a method in their

1995 book for automatically tuning PID controllers
for all the plants in all four of these industrially
representative families of plants. They employed the
widely used Ziegler-Nichols rules (Ziegler and
Nichols 1942) as a “starting point.” The tuning rules
developed by Astrom and Hagglund in their 1995
book outperform the widely used Ziegler-Nichols
tuning rules on all 16 industrially representative
plants used by Astrom and Hagglund. As Astrom-
Hagglund observe,

“[Our] new methods give substantial
improvements in control performance while
retaining much of the simplicity of the
Ziegler-Nichols rules.”

The methods developed by Astrom and Hagglund
use several parameters representing the overall
characteristics of a plant. These parameters are not,
of course, a complete representation of the behavior
of the plant. However, these parameters offer the
practical advantage of being readily obtainable for
real-world plants by means of relatively
straightforward testing in the field.

In one version of their method, Astrom and
Hagglund use two frequency-domain parameters,
namely the ultimate gain, Ku (the minimum value of
the gain that must be introduced into the feedback
path to cause the system to oscillate) and the ultimate
period, Tu (the period of this lowest frequency
oscillation). In another version, Astrom and
Hagglund use two time-domain parameters, namely
the plant’s time constant, Tr, and the dead time, L (the
period before the plant output begins to respond to a
change in the reference signal). Astrom and
Hagglund describe a procedure for estimating these
parameters from the plant's response to a step input.

Table 2 shows the characteristics of a total of 26
different plants that are discussed in this paper. All
26 plants are members of Astrom and Hagglund’s
four families of plants. Columns 3, 4, 5, and 6 of the
table describe the plants in terms of their ultimate
gain, Ku; ultimate period, Tu; dead time, L; and the
time constant, Tr; respectively. Column 7 identifies
the 16 plants that Astrom and Hagglund included in
their test bed. Column 8 refers to two runs described
in this paper and indicates the plants that were
employed in these two runs.

Figure 3 shows the world-beating solution
developed by Astrom and Hagglund in their 1995
book for the 16 industrially representative plants.
This controller is a PID controller.

Equation 1 in the figure is

0.56 0.12
+ 2

0.25*
Ku Kue

Equation 2 is

1.6 1.2
+ 2

0.72* *
Ku Ku

uK e

Equation 3 is

1.6 1.2
+ 2

1.3 0.38
+ 2

0.72* *

0.59* *

Ku Ku
u

Ku Ku
u

K e

T e

Equation 4 is

1.6 1.2 1.4 0.56
+ +2 2

0.108* * * *
K Ku uK Ku u

u uK T e e

The tuning developed by Astrom and Hagglund in

their 1995 book outperforms the widely used Ziegler-
Nichols tuning rules (Ziegler and Nichols 1942) on
all 16 industrially representative plants used by
Astrom and Hagglund.

The topology of a controller entails the
specification of

• the total number of processing blocks to be
employed in the controller,
• the type of each block (e.g., gain, lead, lag,
integrator, differentiator, adder, subtractor), and
• the connections (directed lines) between the
input point(s) and the output point of each block
in the controller,
• the connections (directed lines) between blocks
of the controller and the external input(s) to the
controller, and
• the connections (directed lines) between blocks
of the controller and the external output(s) of the
controller.

Astrom and Hagglund were, of course, seeking a
PID controller that would outperform the Ziegler-
Nichols rules. They prespecified the PID topology.

The question arises as to whether it is possible to
find a yet better controller. An improved controller
(if it exists) might possibly be a PID controller. An
improved general-purpose controller would possibly
employ a novel topology that is different and more
complex than the PID controller shown in figure 3.

Genetic programming (Koza, Bennett, Andre, and
Keane 1999; Koza, Bennett, Andre, Keane, and
Brave 1999) is a method for automatically creating a
computer program to solve a problem. Genetic
programming has previously been used to
automatically create both the topology and parameter
values (tuning) for a controller for a particular two-
lag plant and a particular three-lag plant (Koza,
Keane, Yu, Bennett, and Mydlowec 2000). However,
the two (different) evolved controllers in that work
applied only to particular plants (each belonging to
the same family). Genetic programming has also
been used to automatically create both the topology
and parameter values of a controller for plants
belonging to two families (Keane, Yu, and Koza
2000).

In this paper, we approach the problem of creating
an improved controller using genetic programming
by building on the 1995 Astrom and Hagglund rules.
We do this by inserting a terminal into the terminal
set representing the output of the Astrom and

Hagglund 1995 controller (figure 3). This terminal
returns the time-domain signal produced by a PID
controller tuned using the Astrom and Hagglund
rules. That is, the terminal causes a connection to be
made to a PID controller that has been tuned for the
specific plant under consideration using the current
instantiations of the free variables for ultimate gain,
Ku, and ultimate period, Tu. The instantiations of the
values of Ku and Tu, of course, vary from fitness case
to fitness case.

Genetic programming automatically creates its
controller using a fitness measure built from the same
elements used in Astrom and Hagglund 1995. That
is, our fitness measure attempts to optimize for the
integral of the time-weighted absolute error (ITAE)
for a step input and also to optimize for maximum
sensitivity and sensor noise attenuation.

In this paper, we present designs for both the
topology and tuning for parameterized general-
purpose controllers for industrially representative
plants belonging to all four families of plants
described by equations (A), (B), (C), and (D). These
are the same industrially representative set of plants
specified by Astrom and Hagglund.

The automatically designed controllers in this
paper outperform the controller designed using the
techniques of Astrom and Hagglund using the
performance criteria of Astrom and Hagglund.

The automatically designed controller is general in
the sense that it contains free variables and therefore
provides a solution to an entire category of problems
(i.e., all the plants in all four families).

Early controllers were built from mechanical,
pneumatic, or analog electrical components (e.g.,
inductors and capacitors implementing differentiation
and integration). Altering the basic topology of such
controllers was therefore cumbersome and expensive.
However, most present day controllers are electronic
devices that are programmed by means of software.
This means that a topology that is more complex than
a PID topology can be implemented today merely by
changing software.

Section 2 of this paper describes the preparatory
steps and section 3 presents the results.

2 Preparatory Steps

Six major preparatory steps are required to apply
genetic programming to controller synthesis.

2.1 Program Architecture

Since the to-be-synthesized controller has one output
(control variable), each program tree in the
population has one result-producing branch.

2.2 Terminal Set

The terminal set, T (except for the arithmetic-
performing subtrees described below) contains time-
domain signals.
T = {REFERENCE_SIGNAL,

CONTROLLER_OUTPUT,
PLANT_OUTPUT, LEFT_1, … , LEFT_4,
RIGHT_1, … , RIGHT_4}.

The REFERENCE_SIGNAL is the time-domain
signal representing the desired plant response.

The PLANT_OUTPUT is the time-domain signal
representing the plant output.

The CONTROLLER_OUTPUT is the time-domain
signal representing the output of the controller (i.e.,
the control variable).

The eight terminals LEFT_1, … , LEFT_4 and
RIGHT_1, … , RIGHT_4 are explained in the next
section in conjunction with the TAKEOFF function.

The numerical parameter value for each signal
processing block possessing a parameter is
established by an arithmetic-performing subtree
containing perturbable numerical terminals,
arithmetic operations, and the four parameters for
representing the overall characteristics of a plant. The
value returned by an entire arithmetic-performing
subtree is interpreted as a component value lying in a
range of (positive values) between 10-3 and 103. The
terminal set for the arithmetic-performing subtrees is
Taps = {ℜ, KU, TU, L, TR}.
where Ku is the ultimate gain; Tu is the ultimate
period; Tr is the plant’s time constant; and is L the
dead time.

Here ℜ denotes a perturbable numerical value. In
the initial random generation (generation 0) of a run,
each perturbable numerical value is set, individually
and separately, to a random value in a chosen range
(from -3.0 and +3.0 here). In later generations, a
perturbable numerical value may be changed by
adding or subtracting a relatively small number
drawn from a Gaussian probability distribution (with
standard deviation of 1.0).

A constrained syntactic structure maintains one
function and terminal set for the arithmetic-
performing subtrees and a different function and
terminal set (below) for the rest of the program tree.

2.3 Function Set

The function set, F (except for the arithmetic-
performing subtrees described below) contains
continuous-time signal processing functions.
F = {GAIN, INTEGRATOR, DIFFERENTIATOR,

DIFFERENTIAL_INPUT_
INTEGRATOR, LEAD, LAG, LAG2,

INVERTER, ADD_SIGNAL, SUB_SIGNAL,
MUL_SIGNAL, DIV_SIGNAL,
ADD_3_SIGNAL, TAKEOFF}.

The two-argument GAIN function multiplies the
time-domain signal represented by its first argument
by a constant numerical value represented by its
second argument. This numerical value is constant in
the sense that it is not a time-domain signal (like the
first argument) and in the sense that this numerical
value does not vary when the controller is operating.

The one-argument INTEGRATOR function
integrates the time-domain signal represented by its
one argument. That is, it applies the transfer function
1/s, where s is the Laplace transform variable.

The one-argument DIFFERENTIATOR function
differentiates the time-domain signal represented by
its argument. That is, it applies the transfer function
s.

The two-argument DIFFERENTIAL_INPUT_
INTEGRATOR function integrates the time-domain
signal representing the difference between its two
arguments.

The two-argument LEAD function applies the
transfer function 1 + τs, where τ is a real-valued
numerical parameter. The first argument is the time-
domain input signal. The second argument, τ, is a
numerical parameter representing the time constant
(usually expressed in seconds) of the LEAD.

The two-argument LAG function applies the
transfer function 1/(1 + τs), where τ is a numerical
parameter. The first argument is the time-domain
input signal while the second, τ, is the time constant.

The three-argument LAG2 function applies the
transfer function

2
00

2

2
0

2 ωζω
ω

++ ss
,

where ζ is the damping ratio, and ω0 is the corner
frequency.

The one-argument INVERTER function negates
the time-domain signal represented by its argument.

The two-argument ADD_SIGNAL,
SUB_SIGNAL, and MULT_SIGNAL functions
perform addition, subtraction, and multiplication,
respectively, on the two time-domain signals
represented by their two arguments. Note that the
MULT_SIGNAL function differs from the GAIN
function (described earlier) in that the second
argument of a GAIN function is a constant numerical
value (i.e., not a time-domain signal) whose value
does not vary when the controller is operating.

The three-argument ADD_3_SIGNAL adds three
time-domain signals.

For additional details on these functions and other
preparatory steps, see Keane, Yu, and Koza 2000,

Koza, Keane, Yu, Bennett, and Mydlowec 2000, and
Koza, Bennett, Andre, and Keane 1999.

The one-argument function into the function set
called TAKEOFF function acts as an identity function
in that it returns the value of its argument. At the
same time, it stores the value of its argument for
possible future use. Whenever one of the four
terminals (LEFT_1, … , LEFT_4) is encountered, it
returns the value stored by the first, second, third, or
fourth TAKEOFF function (if any), respectively,
occurring earlier (i.e., to the left) in the overall
program tree. For this purpose, the earlier TAKEOFF
function is determined on the basis of the usual
depth-first order of evaluation from the left used in
the LISP programming language. If there is no such
stored value, the terminal defaults to the value of the
root of the tree (i.e., the control variable). The value
returned by RIGHT_1, … , RIGHT_4 is based on
occurrences of the TAKEOFF function that occur
later (i.e., to the right) in the overall program tree.

The function set, Faps, for the arithmetic-
performing subtrees is
Faps = {ADD_NUMERIC, SUB_NUMERIC,

MUL_NUMERIC, DIV_NUMERIC, REXP,
RLOG, POW}.

The first three functions perform addition,
subtraction, and multiplication of numerical values.
The two-argument DIV_NUMERIC function divides
the first argument by the second argument, except
that the quotient is never allowed to exceed 105. The
one-argument REXP function is the exponential
function and the one-argument RLOG function is the
natural logarithm of the absolute value. The two-
argument POW function returns the value of its first
argument raised to the power of the value of its
second argument.

2.4 Fitness Measure

Genetic programming is a probabilistic algorithm that
searches the space of compositions of the available
functions and terminals under the guidance of a
fitness measure (Koza, Bennett, Andre, and Keane
1999; Koza, Bennett, Andre, Keane, and Brave
1999). The fitness measure is a mathematical
implementation of the problem's high-level
requirements. The fitness measure is couched in
terms of “what needs to be done.” The fitness
measure for most problems of controller design is
multi-objective in the sense that there are several
different (usually conflicting) requirements for the
controller.

The fitness of each individual in the population is
determined by executing the program tree. The
execution of the program tree produces an
interconnected sequence of signal processing blocks

 that is, a block diagram for the individual
controller. The controller is embedded into a
framework containing the (fixed) plant and the
(fixed) external feedback loop. A SPICE netlist is
then constructed to represent the block diagram of
the controller, the (fixed) plant, and the (fixed)
external feedback loop. This SPICE netlist is
wrapped inside an appropriate set of SPICE
commands to carry out various analyses in the time
domain and in the frequency domain (described
below). We also provide SPICE with subcircuit
definitions to implement all the signal processing
functions in the function set (described above) and all
the signal processing functions necessary to represent
the plant. The controller is then simulated using our
modified version of the original 217,000-line
SPICE3 simulator (Quarles, Newton, Pederson, and
Sangiovanni-Vincentelli 1994). Our modified version
of SPICE is run as a submodule within our genetic
programming system. The SPICE simulator returns
tabular output (representing the plant output in the
time domain). An interface communicates this
information to our genetic programming code. See
Koza, Keane, Yu, Bennett, and Mydlowec 2000 for
details.

The fitness of each controller in the population is
measured by means of eight separate invocations of
the SPICE simulator for each plant. This fitness
measure attempts to optimize step response and
disturbance rejection while simultaneously imposing
constraints on maximum sensitivity and sensor noise
attenuation. The fitness of an individual controller is
the sum of the detrimental contributions from each of
these elements of the fitness measure. The smaller the
sum, the better.

R(s)
Y(s)

+
Controller Plant

U(s)

D(s)

N(s)

+

+
+

Q(s)

Figure 1 Overall model.

Figure 1 presents a model for the entire system
containing the given plant and the to-be-evolved
controller. In this figure, R(s) is the reference signal;
Y(s) is the plant output; and U(s) is the controller's
output (control variable). Disturbance D(s) may be
added to the controller's output U(s). Sensor noise
N(s) may be added to the plant's output Y(s) yielding
Q(s). Here N(s) is an AC signal.

The first six elements of the fitness measure for
each plant are time-domain-based elements. These
elements represent six choices of values for the
height of the reference signal and disturbance signal

(shown in table 1). The reference signal is step
function that rises from 0 at time t = 0 to the
specified height at t = 1 millisecond. The disturbance
signal is a step function that rises from 0 at time t =
10Tu to the specified height at t = 10Tu + 1
millisecond. The disturbance signal is added to the
controller's output.
 Table 1 Six combinations
 Reference signal Disturbance signal
 1.0 1.0
 10-3 10-3
 -10-6 10-6
 1.0 -0.6
 -1.0 0.0
 0.0 1.0

For each of these first six elements of the fitness
measure, a transient analysis is performed in the time
domain using the SPICE simulator. The function e(t)
is the difference (error) at time t between the plant
output and the reference signal. The contribution to
fitness is based on the sum of two integrals of time-
weighted absolute error (ITAE). The first term of the
integral accounts for the controller's step response
while the second term accounts for disturbance
rejection.

22

20

10

10

0
)()10()(

u

u

u

u

u

T

T

Tt
u

T

T

t
CdtteTtBdttet ∫ −

+
∫

== .

The factor B in the first term of the integral
multiplies each value of e(t) by the reciprocal of the
amplitude of the reference signal (so that all
reference signals are equally influential). The factor
C in the second term of the integral multiplies value
of e(t) by the reciprocal of the amplitude of the
disturbance signals. When the amplitude of either the
reference signal or the disturbance signal is zero, the
appropriate factor (B or C) is set to zero. The ITAE
component of fitness is such that, all other things
being equal, changing the time scale by a factor of F
changes the ITAE by F2. The division of the integral
by Tu

2 is an attempt to eliminate this artifact of the
time scale and equalize the influence of each of the
plants in the overall fitness measure. For these
elements of the fitness measure, the contribution to
fitness is multiplied by 20 if the element is greater
than for the Astrom and Hagglund (1995).

The seventh element of the fitness measure for
each plant is a frequency-domain-based element. An
AC sweep is performed using the SPICE simulator
from 1/(1000Tu) to 1000/Tu while holding the
reference signal R(s) and the disturbance signal D(s)
at zero. The maximum sensitivity, Ms, is a measure of
the stability margin. It is desirable to minimize the
maximum sensitivity (and therefore maximize the
stability margin). The quantity 1/Ms is the minimum

distance between the Nyquist plot and the point (-
1,0) and is the stability margin incorporating both
gain and phase margin. The maximum sensitivity is
the maximum amplitude of Q(s). The contribution to
fitness is 0 if Ms < 1.5; 2(Ms - 1.5) for 1.5 ≤ Ms ≤ 2.0;
and 20(Ms - 2.0) + 1 for Ms > 2.0. For these elements
of the fitness measure (as well as the elements
below), the contribution to fitness is multiplied by 10
if the element is greater than for the Astrom and
Hagglund controller (1995).

The eighth element of the fitness measure for each
plant is a frequency-domain-based element
measuring sensor noise attenuation. Achieving
favorable sensor noise attenuation is often in direct
conflict with the goal of achieving a rapid response
to setpoint changes and rejection of plant
disturbances. An AC sweep is performed using the
SPICE simulator from 10/Tu to 1000/Tu while holding
both the reference signal R(s) and the disturbance
signal D(s) at zero. The attenuation of the sensor
noise is measured at plant output at Y(s). Amin is the
minimum attenuation in decibels within this
frequency range. It is desirable to maximize the
minimum attenuation. The contribution to fitness for
sensor noise attenuation is 0 if Amin > 40 dB; (40 -
Amin)/10 if 20 dB ≤ Amin ≤ 40 dB; and 2 + (20 - Amin)
if Amin < 20 dB.

A controller that cannot be simulated by SPICE is
assigned a high penalty value of fitness (10

8
).

2.5 Control Parameters

The population size, M, was 100,000. A (generous)
maximum size of 500 points (for functions and
terminals) was established for the single result-
producing branch. The percentages of the genetic
operations for each generation are 63% one-offspring
crossover on internal points of the program tree, 7%
one-offspring crossover on terminals, 1% subtree
mutation, 20% mutation on numerical constant
terminals, and 9% reproduction. Other parameters are
the same as used before (Koza, Bennett, Andre,
Keane 1999).

2.6 Termination

The run was manually monitored and manually
terminated when the fitness of many successive best-
of-generation individuals appeared to have reached a
plateau. The best-so-far individual was harvested.

2.7 Parallel Implementation

This problem was run on a home-built Beowulf-style
(Sterling, Salmon, Becker, and Savarese 1999)
parallel cluster computer system consisting of 1,000
350 MHz Pentium II processors (each accompanied

by 64 megabytes of RAM). The system has a 350
MHz Pentium II computer as host. The processing
nodes are connected with a 100 megabit-per-second
Ethernet. The processing nodes and the host use the
Linux operating system. The distributed genetic
algorithm with unsynchronized generations and semi-
isolated subpopulations was used with a
subpopulation size of Q = 100 at each of D = 1,000
demes. Two processors are housed in each of the 500
physical boxes of the system. As each processor
(asynchronously) completes a generation, four
boatloads of emigrants from each subpopulation
(selected probabilistically based on fitness) are
dispatched to each of the four toroidally adjacent
processors. The migration rate is 2% (but 10% if the
toroidally adjacent node is in the same physical box).

3 Results

3.1 First Run

The fitness measure for the first run entailed eight
separate invocations of the SPICE simulator for each
of 20 plants (for a total of 160 separate invocations of
the SPICE simulator for each individual). The
average total time to evaluate the fitness of each
individual was 2 minutes and 10 seconds. The
population size at each node of the 1,000-Pentium
Beowulf-style parallel computer was 100 (for a total
population size of 100,000). It took 320 hours (13.3
days) to reach generation 88 and produce a best-of-
run individual (figure 4) that equals or outperforms
the Astrom and Hagglund controller on 100% of the
fitness cases. Equation 1 in figure 4 is

*log(log() /)
10

K Lue L
e

Equation 2 is

1
1+ *rT s

Equation 3 is

log(log(*))
10

K Lue
Equation 4 is

log(/)K Lue
Equation 5 is

1
1+ *rT s

Equation 6 is

log(log(*))
10

K Lue
Equation 7 is

log()Kue

Equation 8 is

1
1+ *rT s

Averaged over 20 plants from all four families of
plants, the best-of-run genetically evolved
parameterized general-purpose controller from
generation 88 of the first run has

• 78.6% of the ITAE of the Astrom-Hagglund
controller,
• 59.1% of the stability penalty involving
maximum sensitivity, Ms, of the Astrom-
Hagglund controller, and
• 81.1% of the sensitivity penalty involving
sensor noise attenuation of the Astrom-Hagglund
controller.

Figure 2 compares the time-domain response of
the best-of-run genetically evolved parameterized
general-purpose controller from generation 88 of the
first run (solid line) and the Astrom and Hagglund
controller (dotted line) for the three-lag plant (one of
the 20 plants) with a 1 volt reference signal. As can
be seen, the Astrom and Hagglund controller
overshoots the target value and takes longer to settle
than the best-of-run controller from generation 88.

0V

0.2V

0.4V

0.6V

0.8V

1V

1.2V

0s 3s 6s 9s 12s 15s

Time

V
o
lt
a
g
e

Figure 2 Comparison of time-domain response for

the best-of-run controller from generation 88 of the first
run (solid line) and the Astrom and Hagglund

controller (dotted line) for the three-lag plant with a 1-
volt reference signal.

3.2 Second Run

This second run was based on 24 plants. In addition,
this run further differed from the first run in that,
after all fitness cases first outperformed or equaled
the Astrom and Hagglund controller, the fitness
measure began to take parsimony into account.

Figure 5 shows the best-of-run genetically evolved
parameterized general-purpose controller from
generation 38 of the second run. It equals or
outperforms the Astrom and Hagglund controller on
100% of the fitness cases.

 Equation 1 in figure 5 is

log 2 + L
r uT K

Equation 2 is

() ()

0.68631
()1

- -0.13031

- -

log log +

^
1

- -0.69897

++ ^^log(abs(+ ^))

LT Tr u
LTu LK Tu uLKuT Kr u

Ku
LT Tr u

LT Kr uT Kr uKu
r uT K

Equation 3 is

log +
log 2 +

LT Kr u
r uT K

Equation 4 is

log + L
r uT K

Equation 5 is

()log + log +1.2784r rT T

Equation 6 is

()()log log ^log + +
L

K Lu
r rT T x

where

log log +
= +

LT Kr u
r ux T K

Equation 7 is

()log + +
LL

r r uT T K

Equation 8 is

log 2 + L
r uT K

Averaged over all 24 plants from all four families
of plants, the best-of-run genetically evolved
parameterized general-purpose controller from
generation 38 of the second run has

• 98.6% of the ITAE (integral of time-weighted
absolute error) of the Astrom-Hagglund
controller,

• 78.1% of the stability penalty involving
maximum sensitivity, Ms, of the Astrom-
Hagglund controller, and
• 96.1% of the sensitivity penalty involving
sensor noise attenuation of the Astrom-Hagglund
controller.

The second run took 397 hours (16.5 days) to
produce a best-of-run individual that equals or
outperforms the Astrom and Hagglund controller on
100% of the 24 plants. Unfortunately, this run was
interrupted by a multi-hour power outage a few hours
after the fitness measure started considering
parsimony. Therefore, this second run primarily
demonstrates that genetic programming is capable of
solving this problem repeatedly and in slightly
different ways.

3.3 Cross-Validation

Both of the best-of-run controllers for the two runs
described above were cross-validated using 18
additional previously unseen plants (six plants from
each of families A, C, and D). We did not create any
out-of-sample plants for family B since for this
family all of the possible integer values within the
range specified by Astrom and Hagglund (1995)
were already covered by plants used in our fitness
evaluation. The parameter values associated with the
out-of-sample plants were spread approximately
evenly across the range of possible parameter values
used by Astrom and Hagglund (1995). For each of
the 18 plants, we computed the values of eight fitness
cases, as described above.
 The best-of-run controller from the first run
outperforms the Astrom and Hagglund controller in
142 out of the 144 new fitness cases and has 82.9%
of the average ITAE of the Astrom and Hagglund
controller. The best-of-run controller from the
second run outperforms the Astrom and Hagglund
controller in 143 out of 144 cases, and has 91.7% of
the average ITAE of the Astrom and Hagglund
controller. The few cases in which the evolved
controllers do not do better than the Astrom and
Hagglund controller involve measures of either
stability or sensitivity. In each of these cases, the
performance of the evolved controller, although
worse than that of the Astrom and Hagglund
controller, is still acceptable in terms of real world
control applications.

4 Conclusion

We presented a genetically evolved controller that
outperforms the automatic tuning rules developed by
Astrom and Hagglund in 1995 for an industrially
representative set of plants The genetically evolved
controller employs a novel topology that differs from

the PID topology commonly used for practical
controllers.

5 Future Work

The authors are actively continuing to work in this
area and will report additional results and analysis in
their forthcoming book Genetic Programming IV.

References

Astrom, Karl J. and Hagglund, Tore. 1995. PID
Controllers: Theory, Design, and Tuning. Second
Edition. Research Triangle Park, NC: Instrument
Society of America.

Boyd, S. P. and Barratt, C. H. 1991. Linear
Controller Design: Limits of Performance.
Englewood Cliffs, NJ: Prentice Hall.

Bryson, Arthur E., and Ho, Yu-Chi. 1975. Applied
Optimal Control. New York: Hemisphere
Publishing.

Callender, Albert and Stevenson, Allan Brown. 1939.
Automatic Control of Variable Physical
Characteristics. United States Patent 2,175,985.
Filed February 17, 1936 in United States. Filed
February 13, 1935 in Great Britain. Issued October
10, 1939 in United States.

Dorf, Richard C. and Bishop, Robert H. 1998.
Modern Control Systems. Eighth edition. Menlo
Park, CA: Addison-Wesley.

Keane, Martin A., Yu, Jessen, and Koza, John R.
2000. Automatic synthesis of both the topology
and tuning of a common parameterized controller
for two families of plants using genetic
programming. In Whitley, Darrell, Goldberg,
David, Cantu-Paz, Erick, Spector, Lee, Parmee,
Ian, and Beyer, Hans-Georg (editors). GECCO-
2000: Proceedings of the Genetic and
Evolutionary Computation Conference, July 10 -
12, 2000, Las Vegas, Nevada. San Francisco:
Morgan Kaufmann Publishers. Pages 496 - 504.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1999. Genetic Programming
III: Darwinian Invention and Problem Solving.
San Francisco, CA: Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David,
Keane, Martin A., and Brave, Scott. 1999. Genetic
Programming III Videotape: Human-Competitive
Machine Intelligence. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Keane, Martin A., Yu, Jessen,
Bennett, Forrest H III, and Mydlowec, William.
2000. Automatic creation of human-competitive
programs and controllers by means of genetic
programming. Genetic Programming and
Evolvable Machines. (1) 121 - 164.

Quarles, Thomas, Newton, A. R., Pederson, D. O.,
and Sangiovanni-Vincentelli, A. 1994. SPICE 3
Version 3F5 User's Manual. Department of
Electrical Engineering and Computer Science,
University of California. Berkeley, CA. March
1994.

Sterling, Thomas L., Salmon, John, Becker, Donald
J., and Savarese, Daniel F. 1999. How to Build a

Beowulf: A Guide to Implementation and
Application of PC Clusters. Cambridge, MA: MIT
Press.

Ziegler, J. G. and Nichols, N. B. 1942. Optimum
settings for automatic controllers. Transactions of
ASME. (64) 759-768.

1/s

Equation 1
Reference
Signal +

Plant
Feedback

-

+
- s

-1

+
+

+

Control
Variable

Equation 2

Equation 3

Equation 4
Figure 3 PID controller developed by Astrom and Hagglund (1995) for 16 plants from four industrially representative

families of plants.

Eq. 1
+

-

+

-

++

+

+
+

+

+
+

-+

+

-

+ +

-

+
+

+
+

++

-

+

++

+
+

+

-

+

+
+

+

+
+

+

+
+

+

+

-

+
+

Reference
Signal

Astrom-Hagglund
controller output

Eq. 2

Eq. 3 Eq. 4 Eq. 5

Eq. 6 Eq. 7 Eq. 8
-

Control variable

Figure 4 Best-of-run evolved parameterized general-purpose controller from generation 88 of the first run. Genetic

programming produced this controller’s overall topology consisting of 20 addition (or subtraction) blocks as well as the
eight mathematical expressions containing free variables.

Equation 1
Control variable

Astrom-Hagglund

controller output

15

3

Reference

Signal

Equation 2

Equation 3

Equation 4

Astrom-Hagglund

controller output

2

Equation 6

+

-

Equation 5

-

+

+ +

- -

Equation 7

+

-
Equation 8

Control variable+
+

+

+
+

+
-

-

+

+

Figure 5 Best-of-run evolved parameterized general-purpose controller from generation 38 of the second run.

Table 2 Characteristics of the 26 plants

Family Parameter value Ku Tu L Tr 16 plant set Runs
A T = 0.1 1.07 2.37 1.00 0.10 X 1,2
A T = 0.3 1.40 3.07 1.01 0.29 X 1,2
A T = 1 2.74 4.85 1.00 1.00 X 1,2
A T = 3 6.80 7.87 1.02 2.99 X 1,2
A T = 6 12.7 11.1 1.00 6.00 X 1,2
A T = 10 20.8 14.2 0.92 10.1 X 2
B n = 3 8.08 3.62 0.52 1.24 X 1,2
B n = 4 4.04 6.27 1.13 1.44 X 1,2
B n = 5 2.95 8.62 1.79 1.61 2
B n = 6 2.39 10.9 2.45 1.78 1,2
B n = 7 2.09 13.0 3.17 1.92 1,2
B n = 8 1.89 15.2 3.88 2.06 X 1,2
C α = 0.1 113 0.198 -0.244 0.674 1
C α = 0.2 30.8 0.56 -0.14 0.69 X 1,2
C α = 0.3 15.0 1.04 -0.02 0.72 2
C α = 0.4 9.62 1.59 0.11 0.76 2
C α = 0.5 6.85 2.23 0.27 0.80 X 1,2
C α = 0.6 5.41 2.92 0.43 0.87 2
C α = 0.7 4.68 3.67 0.60 0.96 X 1,2
C α = 0.9 4.18 5.31 3.44 0.685 1
D α = 0.1 6.21 4.06 0.64 1.22 X 1,2
D α = 0.2 5.03 4.44 0.74 1.23 X 1,2
D α = 0.5 3.23 5.35 1.15 1.17 X 1,2
D α = 0.7 2.59 5.81 1.38 1.16 2
D α = 1 2.02 6.30 1.85 1.07 X 1,2
D α = 2 1.15 7.46 3.46 0.765 X 1,2

