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Abstract 

Reuse will become increasingly important as larger 
digital and analog circuits are created by the 
techniques of the field of evolvable hardware. This 
paper discusses the ways by which genetic 
programming can facilitate reuse and the associated 
advantages of using a developmental process. 

1 Introduction 

The field of digital and analog evolvable hardware 
(Higuchi, Niwa, Tanaka, Iba, de Garis, and Furuya 
1993; Grimbleby 1995; Thompson 1996; Kruiskamp 
1996; Koza, Bennett, Andre, and Keane 1996a, 
1996b; Stoica, Zebulum, and Keymeulen 2001) has 
produced a progression of successful results, 
including those described in  

• edited collections of papers (Sanchez and 
Tomassini 1996; Mazumder and Rudnick 1999),  
• books (Kruiskamp 1996; Thompson 1998; 
Drechsler 1998; Zebulum, Pacheco, and Vellasco 
2002),  
• the proceedings of the International Conference 
on Evolvable Systems starting in 1996 (Higuchi, 
Iwata, and Lui 1997) and later conferences, and  
• the proceedings of the NASA/DoD Conference 
on Evolvable Hardware starting in 1999 (Stoica, 
Keymeulen, and Lohn 1999) and later 
conferences.  

In generating this progression of successful 
results, the field of evolvable hardware has employed 
a variety of different techniques of genetic and 
evolutionary computation, including  

• genetic algorithms (Holland 1975),  
• evolution strategies (Rechenberg 1973), and  
• genetic programming (Koza 1992, 1994; Koza, 
Bennett, Andre, and Keane 1999; Koza, Keane, 
Streeter, Mydlowec, Yu, and Lanza 2003).  

1.1 The Importance of Reuse 

Anyone who has ever looked at a blueprint for a 
building, a corporate organization chart, a musical 
score, a city map, a protein molecule, a computer 
program, or an electrical circuit will be struck by the 
massive reuse of certain basic substructures within 

the overall structure. Indeed, complex structures in 
the real world are almost always replete with 
modularities, symmetries, and regularities.  

Reuse is important because it avoids the need to 
reinvent the wheel on each occasion when an 
already-learned substructure can be used. Reuse thus 
provides a means to accelerate the evolutionary 
process for problems entailing considerable 
modularity, symmetry, and regularity.  

As the complexity of the problems solved by the 
field of evolvable hardware increases, the 
opportunities for profitable reuse will increase. As 
this occurs, genetic programming may be especially 
advantageous because of its ability to facilitate  

(1) reusing substructures,  
(2) discovering the number of substructures,  
(3) discovering the nature of the hierarchical 
references among substructures,  
(4) passing parameters to a substructure, and  
(5) discovering the dimensionality of a 
substructure (i.e., the number of arguments 
possessed by the substructure).  

The developmental process is of particular use in 
conjunction with genetic programming because of its 
ability to maintain syntactic validity and locality.  

Section 2 discusses reuse and section 3 discusses 
the developmental process.  

2 Reuse 

2.1.1 Reuse of Substructures 
Larger analog electrical circuits almost always 
contain multiple occurrences of certain subcircuits 
(e.g., voltage gain stages, Darlington emitter-follower 
sections, current mirrors, cascodes, voltage divider 
subcircuits). At a higher level, analog circuits 
typically contain multiple occurrences of more 
complex entities, such as filters, op amps, oscillators, 
and voltage-controlled current sources.  

Similarly, large digital circuits almost always 
contain multiple occurrences of certain standard 
cells. And, large digital circuits typically contain 
multiple occurrences of higher-level entities (e.g., 
multiplexers, counters, registers).  

The design of large circuits would be considerably 
more difficult—perhaps completely impractical—if 
the designer had to separately think through the 



design of each subcircuit from first principles on 
each occasion when the subcircuit is needed. Reuse 
enables the designer to solve a particular problem 
once and, thereafter, simply reuse the solution.  

Reuse of a subcircuit can be realized in the context 
of genetic programming in several different ways.  

First, the circuit-constructing functions responsible 
for a useful subcircuit may reside in an automatically 
defined function (ADF). In this kind of reuse, the 
automatically defined function resembles a 
subroutine in an ordinary computer program. 
Multiple occurrences of the subcircuit result when 
the automatically defined function is repeatedly 
invoked. (see chapters 27 and 28 of Koza, Bennett, 
Andre, and Keane 1999). 

Second, the circuit-constructing functions 
responsible for a useful subcircuit may reside in an 
automatically defined copy (ADC). An automatically 
defined copy is an iteration specialized to problems 
of circuit synthesis. Multiple occurrences of the 
subcircuit result when the copy body branch (CBB) 
is repeatedly invoked by the copy control branch 
(CCB) of the automatically defined copy, as 
described in chapter 30 of Koza, Bennett, Andre, and 
Keane 1999.  

Third, although often overlooked, the ordinary 
crossover operation often acts as a mechanism for 
reusing a subtree that is responsible for a useful 
subcircuit. Multiple occurrences of a useful 
subcircuit may be created when the subtree 
responsible for the useful subcircuit (being part of a 
reasonably fit individual) is included in a crossover 
fragment that crossover inserts into another 
(reasonably fit) individual that already produces the 
subcircuit.  

The importance of reuse can be illustrated by 
means of a problem of synthesizing a lowpass filter 
composed of passive components with a passband 
boundary of 1,000 Hz, a stopband boundary of 2,000 
Hz, and with 1,000-to-1 (or better) attenuation of the 
stopband voltage relative to the passband voltage (as 
described in additional detail in section 4.7 of Koza, 
Keane, Streeter, Mydlowec, Yu, and Lanza 2003).  

A T-section of a lowpass filter is a T-shaped 
subcircuit containing equally valued inductors on the 
two arms of the “T” and a capacitor on the vertical 
segment of the “T.” It is often advantageous to reuse 
T-sections (and other sections, such as π-sections) in 
constructing filter circuits.  

Figure 1 shows a circuit consisting of one T-
section. This circuit contains a 105,500-microhenry 
inductor on each arm of the “T” and a 186-nanofarad 
capacitor on the vertical segment of the “T.”  

Figure 2 shows the frequency-domain behavior of 
the circuit (figure 1) consisting of one T-section. As 
can be seen, a single T-section acts as a (very poor) 
lowpass filter.  

 
Figure 1 Circuit consisting of one T-section   
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Figure 2 Frequency-domain behavior of a circuit 
consisting of a single T-section   

One way to construct a lowpass filter satisfying 
this problem’s requirements is by means of a cascade 
of identical T-sections in which each T-section 
contains one 186-nanofarad capacitor and two equal 
105,500-microhenry inductors (Koza, Bennett, 
Andre, and Keane 1999, section 30.3.3). Figure 3 
shows a circuit consisting of a cascade of two 
identical T-sections.  

Figure 4 shows the frequency-domain behavior of 
a circuit (figure 3) consisting of a cascade of two 
identical T-sections. Although this circuit does not 
satisfy the problem’s stated requirements, the 
important point is that its filtering performance is 
distinctly better than of the circuit consisting of only 
a single T-section (figures 1 and 2). That is, reuse of 
the T-section enhances performance.  

The addition of a third, fourth, and fifth identical 
T-section further enhances filtering performance. For 
example, figure 5 shows a circuit consisting of a 
cascade of six identical T-sections. For reasons of 
space in this figure, each series pair of two 105,500-
microhenry inductors is replaced by the equivalent 
211,000-microhenry inductor.  

Figure 6 shows the frequency-domain behavior of 
a circuit (figure 5) consisting of six T-sections. The 
filtering performance obtained from six T-sections is 
considerably better than that obtained from fewer T-
sections (figures 2 and 4). In fact, this cascade of six 
identical T-sections is a 100%-complaint solution to 
the stated problem.  



 
Figure 3 Circuit consisting of a cascade of two 
identical T-sections   
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Figure 4 Frequency-domain behavior of the 
circuit consisting of a cascade of two identical T-
sections shown in figure 3   

 
Figure 5 Circuit consisting of a cascade of six 
identical T-sections.   
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Figure 6 Frequency-domain behavior of the 
circuit consisting of a cascade of six identical T-
sections shown in figure 5   

Now consider how one might approach this 
problem of circuit synthesis using the genetic 
algorithm operating on fixed-length strings.  

First, the human user would choose the maximum 
number of components in the circuit. In practice, the 
user would choose a generous maximum in order to 
accommodate a circuit of any size that is reasonably 
likely to solve the stated problem. For reasons of 

space in the tables below, we use an artificially low 
maximum (six).  

Because the components involved in this problem 
have only two leads, each component can be 
conveniently represented by one symbolic variable 
and three numeric variables. The symbolic variable 
specifies the type of component (with “L” denoting 
an inductor, “C” denoting a capacitor, and “W” 
denoting a nonmodifiable wire). The first of the three 
numeric variables specifies the component’s sizing 
(with inductors in millihenrys, capacitors in 
nanofarads, and units being irrelevant for wires). The 
other two numeric variables specify the nodes to 
which the component’s leads are connected.  

Of course, all symbolic and numeric variables 
could, at the user’s option, be converted into bits. 
However, we will proceed herein using a 
chromosome in which symbolic variables (“L,” “C,” 
and “W”) appear in chromosome positions of the 
form 4i+1 (where i is an integer); floating-point 
component values appear in positions of the form 
4i+2; and integers representing nodes appear in 
positions of the forms 4i+3 and 4i.  

Table 1 shows one way of representing the circuit 
consisting of one T-section (shown in figure 1) using 
the genetic algorithm operating on fixed-length 
strings. The first component is a 105.5-millihenry 
(105,500-microhenry) inductor whose leads are 
connected to nodes 2 (the incoming signal) and 6 (an 
intermediate node). The second component is a 186-
nanofarad capacitor whose leads are connected to 
node 6 and node 0 (ground). The third component is 
a 105.5 millihenry inductor whose leads are 
connected to node 6 and node 3 (the circuit’s output 
port). The fourth component is a nonmodifiable wire 
(with 0 as its component value) whose leads are 
connected to node 0 and node 7 (another intermediate 
point). The fifth component is a 100-nanofarad 
capacitor whose leads are connected to nodes 0 and 
7. The sixth component is a 100-nanofarad capacitor 
whose leads are connected to node 0 and node 8 (yet 
another intermediate point). Note that the fourth and 
fifth components form an isolated loop and that the 
sixth component is a dangling component. However, 
in practice, isolated loops and dangling wires can be 
easily edited out by routine preprocessing.  

The circuit consisting of a single T-section 
(represented by the chromosome in table 1 and 
shown in figure 1) is a lowpass filter (albeit a very 
poor one). It is precisely the kind of circuit that one 
often encounters as a best-of-generation individual in 
an early generation of a run of the genetic algorithm, 
evolution strategy, or genetic programming. This 
circuit, consisting of a single T-section (whose three 
external points are at nodes 2, 0, and 3), does not, of 
course, satisfy the problem’s requirements. However, 



the T-section is a useful building block and 
represents progress toward the eventual solution.  

Table 2 shows one possible way of representing 
the circuit consisting of two T-sections shown in 
figure 3. The first, second, and third components in 
this chromosome represent the first T-section. Node 
6 is the internal point of the first T-section. The three 
external points of this first T-section are nodes 2, 0, 
and 7. The fourth, fifth, and sixth components in this 
chromosome represent the second T-section. The 
three external points of the second T-section are 
nodes 7, 0, and 3 (with node 8 being the internal 
point of the T-section). The fourth component is a 
105.5-millihenry (105,500-microhenry) inductor 
whose leads are connected to intermediate nodes 7 
and 8. The fifth component is a 186-nanofarad 
capacitor whose leads are connected to nodes 8 and 
0. The sixth component is a 105.5-millihenry 
inductor whose leads are connected to nodes 8 and 3 
(the circuit’s output point). Notice that the third 
component in table 2 is connected to node 7 (an 
intermediate point), as opposed to being connected to 
node 3 (the circuit’s output point) as it was in table 1. 
This change reflects the fact that the output of the 
first T-section in table 2 will be fed into the second 
T-section. Also note that the final output of the 
cascade of two identical T-sections is connected to 
node 3 (the circuit’s output point).  

Although the genetic algorithm operating on fixed-
length strings is capable of solving the stated 
problem, notice that its discovery of the first T-
section will not aid in discovering the second T-
section. The reasons are that each T-section in the 
chromosome is defined in terms of particular node 
numbers and that the three external node numbers 
associated with each new T-section are necessarily 
different from those associated with the previous T-
section. In particular, after discovering the first T-
section (with external points 2, 0, and 7), the genetic 
algorithm operating on fixed-length strings must 
separately discover the second T-section (with 
external points 7, 0, and 3).  

In contrast, representations employed by genetic 
programming have the ability to leverage the once-

learned T-section. Consider one way in which this 
can happen. Suppose that a particular individual in an 
early generation develops into a circuit with a single 
T-section. During the early generations of the run, 
this individual will be relatively fit (when compared 
to cohorts lacking the T-section or some equally 
good structure). Thus, this individual will probably 
be selected (and, indeed, reselected) to participate in 
crossover. On some of the occasions in which this 
first individual is selected to participate in crossover, 
the subtree that is responsible for the T-section will 
be included in the crossover fragment. Meanwhile, a 
relatively fit second individual will be selected to 
mate with the first individual. Possibly, the second 
individual may be reasonably fit because it too 
already contains one occurrence of a T-section. Note 
that because reselection is allowed, the first 
individual may occasionally mate with itself. Thus, 
the ordinary crossover operation will sometimes 
create an offspring with two T-sections. At the 
moment when this doubling-up occurs, the offspring 
will probably have distinctly better fitness than its 
cohorts in the population. The offspring with two T-
sections will thus immediately start winning future 
tournaments in which it participates and will 
therefore frequently participate in future 
reproduction, mutation, and crossover operations.  

Of course, this scenario does not occur on every 
crossover. However, the vast majority (about 90%) 
of the genetic operations on a typical run of genetic 
programming are crossovers. Moreover, a run of 
genetic programming involves a large population 
bred over many generations, so there are numerous 
opportunities for doubling-up of T-sections.  

Figure 7 shows a circuit-constructing program tree 
that develops into the single T-section shown in 
figure 1. In this figure, the first and third arguments 
of the three-argument THREE_GROUND function 
(labeled 100) each create a 105,500-microhenry 
inductor. The second argument of the 
THREE_GROUND function creates a capacitor 
connected to ground.  

Table 1 A first illustrative chromosome for the circuit shown in figure 1 
L 106 2 6 C 186 6 0 L 106 6 3 W 0 0 7 C 100 0 7 C 200 8 0 
Table 2 Chromosome for circuit consisting of two identical T-sections shown in figure 3  
L 106 2 6 C 186 6 0 L 106 6 7 L 106 7 8 C 186 8 0 L 106 8 3 
Table 3 Sub-string producing a T-section  
L 106 2 6 C 186 6 0 L 106 6 3 
Table 4: Chromosome of first parent 
L 106 2 6 W 0 6 7 C 186 7 0 W 0 7 8 L 106 8 9 W 0 9 3 
Table 5: Chromosome of second parent 
W 0 8 6 W 0 9 3 W 0 7 8 L 106 6 9 C 186 8 0 L 106 2 7 
Table 6: Result of a crossover 
L 106 2 6 W 0 6 7 C 186 7 0 L 106 6 9 C 186 8 0 L 106 2 7 
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Figure 7 A circuit-constructing program tree that develops into the single T-section shown in figure 1   
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Figure 8 A circuit-constructing program tree that develops into the two T-sections shown in figure 3   
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Figure 9 Circuit-constructing program tree containing automatically defined function ADF0 that develops 

into the two T-sections shown in figure 3   



The first argument of the three-argument SERIES 
function is an INPUT_0 function that causes a 
connection to be made between the incoming signal 
(node 2 in figure 1) and the first inductor. The third 
argument of the SERIES function is an OUPTUT_0 
function that causes a connection to be made between 
the circuit’s output point (node 3 in figure 1) and the 
second inductor. The second argument of the 
SERIES function is a THREE_GROUND function 
that causes a connection to be made between the 
ungrounded lead of the capacitor and the first and 
second inductor. Figure 8 shows a circuit-
constructing program tree that develops into the two 
T-sections shown in figure 3. The upper left portion 
of figure 8 (i.e., everything above the point labeled 
200) is identical to figure 7. As can be seen, the 
subtree rooted at (that is, below) the point labeled 
200 in figure 8 is identical to the subtree rooted at the 
THREE_GROUND function labeled 100 in figure 7. 
That is, the subtree that produces the T-section that is 
responsible (during early generations of the run) for 
the filtering ability of the individual of figure 7 is 
embedded inside another individual that itself 
produces a single T-section. Figure 8 shows a way by 
which the ordinary crossover operation can create a 
circuit consisting of a cascade of two identical T-
sections. The circuit consisting of a cascade of two 
identical T-sections has better fitness than the circuit 
consisting of just one T-section.  

Automatically defined functions provide a second 
way by which genetic programming can leverage the 
already-learned utility of a T-section. Figure 9 shows 
a circuit-constructing program tree consisting of a 
result-producing branch (RPB0) on the left and an 
automatically defined function (ADF0) on the right. 
The entire program tree develops into the two T-
sections shown in figure 3. Automatically defined 
function ADF0 develops into one T-section. The 
result-producing branch (RPB0) invokes ADF0 
twice, thereby creating a circuit consisting of two 
identical T-sections.  

The automatically defined copy (described in 
chapter 30 of Koza, Bennett, Andre, and Keane 

1999) provides yet another way by which genetic 
programming can leverage on the already-learned 
utility of a T-section.  

The genetic algorithm operating on fixed-length 
strings cannot readily leverage a previously 
discovered useful substructure in the just-described 
ways. In fact, if the (usual) homologous crossover is 
employed, there is no way to move a T-section 
attached to, say, nodes 2, 0, and 3 to another part of 
the chromosome. Thus, after discovering one T-
section, the genetic algorithm operating on fixed-
length strings must separately (and laboriously) 
discover the second one.  

Note that the genetic algorithm operating on 
variable-length strings (Smith 1980) has the same 
difficulty. It can easily create two identical T-sections 
attached to the same set of nodes. For example, the 
sub-string producing a T-section attached to nodes 2, 
0, and 3 (table 3) could easily be inserted, by 
crossover, into another chromosome that already 
contains a T-section attached to nodes 2, 0, and 3.  

However, the result would be two T-sections 
attached to the same group of nodes (that is, 2, 0, and 
3). The point is that the genetic algorithm operating 
on variable-length strings does not readily yield a 
series composition in which the one T-section is 
attached to nodes 2, 0, and 7 and the second T-
section is attached to differently numbered nodes 
(say, nodes 7, 0, and 3). In contrast, genetic 
programming has the ability to easily produce, by 
crossover, either a series or parallel composition of 
T-sections (with the series composition being the 
more useful here).  
2.1.2 The Number of Substructures 
If discovering the number of substructures is an 
important part of the problem, genetic programming 
may be well suited to the problem.  

Consider the problem of automatically 
synthesizing the double-bandpass filter described in 
chapter 36 of Koza, Bennett, Andre, and Keane 1999.  

 

 
Figure 10 Genetically evolved double-bandpass filter circuit.   



The architecture-altering operations enable genetic 
programming to automatically create the architecture 
of the overall program during the run. 

The genetically evolved double-bandpass filter 
(figure 10) contains four occurrences of the three-
ported automatically defined function ADF0, two 
occurrences of the four-ported automatically defined 
function ADF3, and one occurrence of the three-
ported automatically defined function ADF1. The 
architecture-altering operations dynamically 
determined, during the run of genetic programming, 
the number of automatically defined functions that 
were used in solving this problem. 

Automatically defined function ADF0 appears four 
times in the program that produced the genetically 
evolved double-bandpass filter (figure 10). Figure 11 
shows the three-ported subcircuit produced by the 
execution of ADF0. Automatically defined function 
ADF3 appears twice in the this same program. Figure 
12 shows the four-ported subcircuit produced by the 
execution of ADF3.  

 
Figure 11 Quadruply-used subcircuit produced by 
automatically defined function ADF0   

 
Figure 12 Twice-used four-ported subcircuit 
produced by automatically defined function ADF3   
2.1.3 Hierarchical References among the 

Substructures 
If discovering the nature of the hierarchical 
references among the substructures is a major part of 
the problem, genetic programming may be 
appropriate. 

The architecture-altering operations enable genetic 
programming to automatically create the architecture 

of the overall program during the run, including the 
hierarchical arrangement of automatically defined 
functions.  

Figure 13 shows the call tree for the genetically 
evolved crossover (woofer-tweeter) filter described 
in detail in chapter 33 of Koza, Bennett, Andre, and 
Keane 1999. This call tree shows that the circuit-
constructing program tree for this filter consists of 
three result-producing branches (RPB0, RPB1, and 
RPB2). It also shows that RPB0 contains a reference 
to one-argument automatically defined function 
ADF3 (the number of arguments being shown inside 
the braces) and that ADF3 invokes one-argument 
automatically defined function ADF2. Similarly, the 
figure shows that RPB1 contains a reference to one-
argument automatically defined function ADF3 and 
that ADF3 invokes two-argument automatically 
defined function ADF2. The figure also shows that 
RPB2 contains references to one-argument 
automatically defined functions ADF4 and ADF2 and 
that ADF4, in turn, invokes one-argument 
automatically defined function ADF2. 

RPB2

execute

ADF4 {1}

RPB1RPB0

ADF3 {1} ADF2 {1}ADF3 {1}

ADF2 {1} ADF2 {1} ADF2 {1}  
Figure 13 Call tree for a genetically evolved 
crossover (woofer-tweeter) filter.   
2.1.4 Passing Parameters to Substructures  
If passing parameters to a substructure is likely to be 
useful in solving the problem, genetic programming 
may be appropriate.  

Continuing the discussion of the crossover filter 
from the previous section, consider the subcircuit 
produced by the three-ported automatically defined 
function ADF3 (figure 14) that appears in the 
genetically evolved crossover (woofer-tweeter) filter. 
In addition to the mundane matter of inserting an 
ordinary 5,130-nanofarad capacitor C112, the 
execution of automatically defined function ADF3 
has the following two noteworthy consequences:  

• ADF3 inserts a parameterized capacitor C39 
whose component value is dependent on the 
dummy variable ARG0 that is passed into 
automatically defined function ADF3 from the 
program that calls ADF3 (namely the result-
producing branch RPB0 shown in figure 13).  
• ADF3 calls automatically defined function 
ADF2. A dummy variable ARG0 is passed along 
from ADF3 to ADF2. In turn, ADF2 creates a 



parameterized inductor whose component value 
is dependent on this dummy variable. 

Once a dummy variable (formal parameter) is 
passed from one part of a genetically evolved 
hierarchy into another, different instantiations of the 
dummy variable may be passed.  

 
Figure 14 Subcircuit produced by the execution of 
three-ported automatically defined function ADF3 
of the genetically evolved crossover (woofer-
tweeter) filter.   
2.1.5 Number of Arguments Possessed by 

Substructures 
If discovering the dimensionality of a substructure 
(that is, the number of arguments possessed by the 
substructure) is an important part of the problem, 
genetic programming may be appropriate.  

The architecture-altering operations of argument 
duplication, argument creation, and argument 
deletion can automatically and dynamically 
determine, during a run of genetic programming, the 
number of arguments possessed by a substructure 
(Koza, Bennett, Andre, and Keane 1999).  

3 The Developmental Process 

If a developmental process is a desirable way to 
represent a solution to the problem, genetic 
programming may be appropriate.  

The developmental approach has several 
advantages in automatically synthesizing complex 
structures such as circuits.  

For one thing, the developmental approach has the 
specific advantage of preserving locality. Because 
most of the component-creating, topology-
modifying, and development-controlling functions 
operate on a small local area of the circuit, the 
subtrees that are transplanted by the crossover 
operation generally operate locally. Thus, when a 
crossover replaces a subtree in one individual with a 
subtree from another individual, it (usually) replaces 
a local structure in the circuit created by the first 
individual with a local structure in the circuit created 
by the second individual. The developmental process 

works in conjunction with the crossover operation in 
preserving locality. 

The developmental process has the additional 
advantage of preserving electrical connectivity. 
There are no unconnected leads in the initial circuit. 
Each component-creating, topology-modifying, and 
development-controlling function preserves 
connectivity at each stage of the developmental 
process. The result is that there are no unconnected 
leads in the fully developed circuit.  

Also, the developmental approach enables useful 
parts of a circuit-constructing program tree to be 
reused (as already illustrated by figures 7, 8, and 9 
and tables 1 and 2). Reuse eliminates the need to 
“reinvent the wheel” on each occasion when a 
particular sequence of steps may be useful. Reuse 
makes it possible to exploit a problem’s modularities, 
symmetries, and regularities (and thereby potentially 
accelerate the problem-solving process). 

The preservation of syntactic validity and 
executablity of the circuit-constructing program trees 
during all genetic operations, the preservation of the 
constrained syntactic structure during all genetic 
operations, the preservation of electrical connectivity, 
the preservation of locality during crossover, and the 
facilitation of reuse together contribute to the 
efficiency by which developmental genetic 
programming is able to synthesize circuits.  

In contrast, the ordinary crossover operation in the 
genetic algorithm operating on fixed-length character 
strings rarely preserves syntactic validity when 
chromosome strings are used to represent complex 
structures (e.g., electrical circuits).  

When syntactic validity is not preserved, the user 
is usually faced with three choices concerning the 
syntactically invalid offspring:  

• deletion, 
• penalization, or 
• repair.  

For complex structures such as circuits, deletion is 
rarely a practical option because the percentage of 
syntactically valid offspring after a crossover is so 
low that virtually every individual would be deleted. 
Penalization is rarely practical for the same reason. 
Thus, in practice, repair is the most viable option.  

The ordinary crossover operation used in the 
genetic algorithm has the specific advantage that all 
genetic material in the offspring comes from one or 
the other parent. This is usually not the case when 
repair is undertaken. That is, the offspring’s genetic 
material does not come exclusively from its parents.  

The parents come from the current generation of 
the run. As such, the parents are likely to be 
relatively fit individuals, and their genetic material is 
likely to contribute to the solution of the problem. 



The repair process does not confer this benefit on the 
resultant offspring.  

As an example of a crossover operation whose 
offspring requires repair, consider the circuits 
defined by the chromosomes in tables 4 and 5.  

The chromosome of the first parent (table 4) codes 
for the single T-section depicted in figure 15. This T-
section contains two inductors (L1 and L2) and one 
capacitor (C1). This individual is functionally 
equivalent to the circuit of figure 1 and therefore has 
the same fitness and the same frequency-domain 
behavior as shown in figure 2. As previously 
mentioned, a single T-section acts as a (very poor) 
lowpass filter; however, in an early generation of the 
run, a single T-section may be among the best 
individuals in the population at the time.  

The chromosome of the second parent (table 5) 
codes for the single T-section depicted in figure 16. 
This T-section contains two inductors (L3 and L4) 
and one capacitor (C2). This individual is 
functionally equivalent to the first parent. 

Now consider a crossover operation whose 
offspring requires repair. In particular, consider a 
crossover point at the right of the 12th gene. That is, 
genes 1 through 12 come from the chromosome in 
table 4 and genes 13 through 24 come from the 
chromosome in table 5.  

Table 6 shows the chromosome of the offspring 
resulting from this crossover.  

Figure 17 shows the offspring. The offspring 
circuit contains three inductors and two capacitors. 
Components L6 and C3 originate from the first 
parent (where they were called L1 and C1, 
respectively, in figure 15). Components L5, L7, and 
C4 originate from the second parent (where they 
were called L3, L4, and C2, respectively, in figure 
16). After the crossover, one end (node 9) of the 
inductor L7 is left dangling. Similarly, one end (node 
8) of the capacitor C4 is also dangling. Moreover, 
the offspring has no connection to the output probe 
point VOUT. Because the offspring is syntactically 
invalid, a mechanism must now be invoked to repair 
it.  

There are numerous methods in the literature for 
repairing a syntactically invalid offspring. Some 
overtly employ random steps. The ones that do not 
employ random steps typically employ steps that are 
so arbitrary that they might as well be random. The 
point is not that these repair mechanisms fail to 
create a syntactically valid offspring, but that they 
succeed in a manner that resembles mutation.  

When the genetic algorithm operating on fixed-
length character strings is being used for problems 
involving complex structures, the probability is 
exceedingly small that a syntactically valid 
chromosome will result from a crossover that is 
applied directly to the structure. Thus, virtually every 

crossover requires repair. To the extent that the repair 
mechanism is either random or arbitrary, virtually 
every crossover becomes mutational in character.  

In summary, the benefits of the developmental 
process include 

•  reuse,  
•  preservation of locality,  
•  preservation of electrical validity (for circuits),  
•  preservation of syntactic validity and 
executability (thereby alleviating the need for 
repair and the consequent introduction of genetic 
material from sources other than the two parents 
from the current generation of the run).  

 
Figure 15 First parent   

 
Figure 16 Second parent   

 
Figure 17 Offspring circuit   

4 Conclusion 

This paper has described the ways by which genetic 
programming can facilitate reuse and the associated 
advantages of using developmental processes.  
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