
The Importance of Reuse and Development in Evolvable Hardware

John R. Koza
Stanford University
Stanford, California
koza@stanford.edu

Martin A. Keane
Econometrics Inc.
Chicago, Illinois

mak@sportsmrkt.com

Matthew J. Streeter
Genetic Programming Inc.
Mountain View, California

matt@genetic-
programming.com

Abstract

Reuse will become increasingly important as larger
digital and analog circuits are created by the
techniques of the field of evolvable hardware. This
paper discusses the ways by which genetic
programming can facilitate reuse and the associated
advantages of using a developmental process.

1 Introduction

The field of digital and analog evolvable hardware
(Higuchi, Niwa, Tanaka, Iba, de Garis, and Furuya
1993; Grimbleby 1995; Thompson 1996; Kruiskamp
1996; Koza, Bennett, Andre, and Keane 1996a,
1996b; Stoica, Zebulum, and Keymeulen 2001) has
produced a progression of successful results,
including those described in

• edited collections of papers (Sanchez and
Tomassini 1996; Mazumder and Rudnick 1999),
• books (Kruiskamp 1996; Thompson 1998;
Drechsler 1998; Zebulum, Pacheco, and Vellasco
2002),
• the proceedings of the International Conference
on Evolvable Systems starting in 1996 (Higuchi,
Iwata, and Lui 1997) and later conferences, and
• the proceedings of the NASA/DoD Conference
on Evolvable Hardware starting in 1999 (Stoica,
Keymeulen, and Lohn 1999) and later
conferences.

In generating this progression of successful
results, the field of evolvable hardware has employed
a variety of different techniques of genetic and
evolutionary computation, including

• genetic algorithms (Holland 1975),
• evolution strategies (Rechenberg 1973), and
• genetic programming (Koza 1992, 1994; Koza,
Bennett, Andre, and Keane 1999; Koza, Keane,
Streeter, Mydlowec, Yu, and Lanza 2003).

1.1 The Importance of Reuse

Anyone who has ever looked at a blueprint for a
building, a corporate organization chart, a musical
score, a city map, a protein molecule, a computer
program, or an electrical circuit will be struck by the
massive reuse of certain basic substructures within

the overall structure. Indeed, complex structures in
the real world are almost always replete with
modularities, symmetries, and regularities.

Reuse is important because it avoids the need to
reinvent the wheel on each occasion when an
already-learned substructure can be used. Reuse thus
provides a means to accelerate the evolutionary
process for problems entailing considerable
modularity, symmetry, and regularity.

As the complexity of the problems solved by the
field of evolvable hardware increases, the
opportunities for profitable reuse will increase. As
this occurs, genetic programming may be especially
advantageous because of its ability to facilitate

(1) reusing substructures,
(2) discovering the number of substructures,
(3) discovering the nature of the hierarchical
references among substructures,
(4) passing parameters to a substructure, and
(5) discovering the dimensionality of a
substructure (i.e., the number of arguments
possessed by the substructure).

The developmental process is of particular use in
conjunction with genetic programming because of its
ability to maintain syntactic validity and locality.

Section 2 discusses reuse and section 3 discusses
the developmental process.

2 Reuse

2.1.1 Reuse of Substructures
Larger analog electrical circuits almost always
contain multiple occurrences of certain subcircuits
(e.g., voltage gain stages, Darlington emitter-follower
sections, current mirrors, cascodes, voltage divider
subcircuits). At a higher level, analog circuits
typically contain multiple occurrences of more
complex entities, such as filters, op amps, oscillators,
and voltage-controlled current sources.

Similarly, large digital circuits almost always
contain multiple occurrences of certain standard
cells. And, large digital circuits typically contain
multiple occurrences of higher-level entities (e.g.,
multiplexers, counters, registers).

The design of large circuits would be considerably
more difficult—perhaps completely impractical—if
the designer had to separately think through the

design of each subcircuit from first principles on
each occasion when the subcircuit is needed. Reuse
enables the designer to solve a particular problem
once and, thereafter, simply reuse the solution.

Reuse of a subcircuit can be realized in the context
of genetic programming in several different ways.

First, the circuit-constructing functions responsible
for a useful subcircuit may reside in an automatically
defined function (ADF). In this kind of reuse, the
automatically defined function resembles a
subroutine in an ordinary computer program.
Multiple occurrences of the subcircuit result when
the automatically defined function is repeatedly
invoked. (see chapters 27 and 28 of Koza, Bennett,
Andre, and Keane 1999).

Second, the circuit-constructing functions
responsible for a useful subcircuit may reside in an
automatically defined copy (ADC). An automatically
defined copy is an iteration specialized to problems
of circuit synthesis. Multiple occurrences of the
subcircuit result when the copy body branch (CBB)
is repeatedly invoked by the copy control branch
(CCB) of the automatically defined copy, as
described in chapter 30 of Koza, Bennett, Andre, and
Keane 1999.

Third, although often overlooked, the ordinary
crossover operation often acts as a mechanism for
reusing a subtree that is responsible for a useful
subcircuit. Multiple occurrences of a useful
subcircuit may be created when the subtree
responsible for the useful subcircuit (being part of a
reasonably fit individual) is included in a crossover
fragment that crossover inserts into another
(reasonably fit) individual that already produces the
subcircuit.

The importance of reuse can be illustrated by
means of a problem of synthesizing a lowpass filter
composed of passive components with a passband
boundary of 1,000 Hz, a stopband boundary of 2,000
Hz, and with 1,000-to-1 (or better) attenuation of the
stopband voltage relative to the passband voltage (as
described in additional detail in section 4.7 of Koza,
Keane, Streeter, Mydlowec, Yu, and Lanza 2003).

A T-section of a lowpass filter is a T-shaped
subcircuit containing equally valued inductors on the
two arms of the “T” and a capacitor on the vertical
segment of the “T.” It is often advantageous to reuse
T-sections (and other sections, such as π-sections) in
constructing filter circuits.

Figure 1 shows a circuit consisting of one T-
section. This circuit contains a 105,500-microhenry
inductor on each arm of the “T” and a 186-nanofarad
capacitor on the vertical segment of the “T.”

Figure 2 shows the frequency-domain behavior of
the circuit (figure 1) consisting of one T-section. As
can be seen, a single T-section acts as a (very poor)
lowpass filter.

Figure 1 Circuit consisting of one T-section

0

0.5

1

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

Frequency
Vo
lta
ge

Figure 2 Frequency-domain behavior of a circuit
consisting of a single T-section

One way to construct a lowpass filter satisfying
this problem’s requirements is by means of a cascade
of identical T-sections in which each T-section
contains one 186-nanofarad capacitor and two equal
105,500-microhenry inductors (Koza, Bennett,
Andre, and Keane 1999, section 30.3.3). Figure 3
shows a circuit consisting of a cascade of two
identical T-sections.

Figure 4 shows the frequency-domain behavior of
a circuit (figure 3) consisting of a cascade of two
identical T-sections. Although this circuit does not
satisfy the problem’s stated requirements, the
important point is that its filtering performance is
distinctly better than of the circuit consisting of only
a single T-section (figures 1 and 2). That is, reuse of
the T-section enhances performance.

The addition of a third, fourth, and fifth identical
T-section further enhances filtering performance. For
example, figure 5 shows a circuit consisting of a
cascade of six identical T-sections. For reasons of
space in this figure, each series pair of two 105,500-
microhenry inductors is replaced by the equivalent
211,000-microhenry inductor.

Figure 6 shows the frequency-domain behavior of
a circuit (figure 5) consisting of six T-sections. The
filtering performance obtained from six T-sections is
considerably better than that obtained from fewer T-
sections (figures 2 and 4). In fact, this cascade of six
identical T-sections is a 100%-complaint solution to
the stated problem.

Figure 3 Circuit consisting of a cascade of two
identical T-sections

0

0.5

1

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

Frequency

Vo
lta
ge

Figure 4 Frequency-domain behavior of the
circuit consisting of a cascade of two identical T-
sections shown in figure 3

Figure 5 Circuit consisting of a cascade of six
identical T-sections.

0

0.5

1

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz
Frequency

V
ol
ta
ge

Figure 6 Frequency-domain behavior of the
circuit consisting of a cascade of six identical T-
sections shown in figure 5

Now consider how one might approach this
problem of circuit synthesis using the genetic
algorithm operating on fixed-length strings.

First, the human user would choose the maximum
number of components in the circuit. In practice, the
user would choose a generous maximum in order to
accommodate a circuit of any size that is reasonably
likely to solve the stated problem. For reasons of

space in the tables below, we use an artificially low
maximum (six).

Because the components involved in this problem
have only two leads, each component can be
conveniently represented by one symbolic variable
and three numeric variables. The symbolic variable
specifies the type of component (with “L” denoting
an inductor, “C” denoting a capacitor, and “W”
denoting a nonmodifiable wire). The first of the three
numeric variables specifies the component’s sizing
(with inductors in millihenrys, capacitors in
nanofarads, and units being irrelevant for wires). The
other two numeric variables specify the nodes to
which the component’s leads are connected.

Of course, all symbolic and numeric variables
could, at the user’s option, be converted into bits.
However, we will proceed herein using a
chromosome in which symbolic variables (“L,” “C,”
and “W”) appear in chromosome positions of the
form 4i+1 (where i is an integer); floating-point
component values appear in positions of the form
4i+2; and integers representing nodes appear in
positions of the forms 4i+3 and 4i.

Table 1 shows one way of representing the circuit
consisting of one T-section (shown in figure 1) using
the genetic algorithm operating on fixed-length
strings. The first component is a 105.5-millihenry
(105,500-microhenry) inductor whose leads are
connected to nodes 2 (the incoming signal) and 6 (an
intermediate node). The second component is a 186-
nanofarad capacitor whose leads are connected to
node 6 and node 0 (ground). The third component is
a 105.5 millihenry inductor whose leads are
connected to node 6 and node 3 (the circuit’s output
port). The fourth component is a nonmodifiable wire
(with 0 as its component value) whose leads are
connected to node 0 and node 7 (another intermediate
point). The fifth component is a 100-nanofarad
capacitor whose leads are connected to nodes 0 and
7. The sixth component is a 100-nanofarad capacitor
whose leads are connected to node 0 and node 8 (yet
another intermediate point). Note that the fourth and
fifth components form an isolated loop and that the
sixth component is a dangling component. However,
in practice, isolated loops and dangling wires can be
easily edited out by routine preprocessing.

The circuit consisting of a single T-section
(represented by the chromosome in table 1 and
shown in figure 1) is a lowpass filter (albeit a very
poor one). It is precisely the kind of circuit that one
often encounters as a best-of-generation individual in
an early generation of a run of the genetic algorithm,
evolution strategy, or genetic programming. This
circuit, consisting of a single T-section (whose three
external points are at nodes 2, 0, and 3), does not, of
course, satisfy the problem’s requirements. However,

the T-section is a useful building block and
represents progress toward the eventual solution.

Table 2 shows one possible way of representing
the circuit consisting of two T-sections shown in
figure 3. The first, second, and third components in
this chromosome represent the first T-section. Node
6 is the internal point of the first T-section. The three
external points of this first T-section are nodes 2, 0,
and 7. The fourth, fifth, and sixth components in this
chromosome represent the second T-section. The
three external points of the second T-section are
nodes 7, 0, and 3 (with node 8 being the internal
point of the T-section). The fourth component is a
105.5-millihenry (105,500-microhenry) inductor
whose leads are connected to intermediate nodes 7
and 8. The fifth component is a 186-nanofarad
capacitor whose leads are connected to nodes 8 and
0. The sixth component is a 105.5-millihenry
inductor whose leads are connected to nodes 8 and 3
(the circuit’s output point). Notice that the third
component in table 2 is connected to node 7 (an
intermediate point), as opposed to being connected to
node 3 (the circuit’s output point) as it was in table 1.
This change reflects the fact that the output of the
first T-section in table 2 will be fed into the second
T-section. Also note that the final output of the
cascade of two identical T-sections is connected to
node 3 (the circuit’s output point).

Although the genetic algorithm operating on fixed-
length strings is capable of solving the stated
problem, notice that its discovery of the first T-
section will not aid in discovering the second T-
section. The reasons are that each T-section in the
chromosome is defined in terms of particular node
numbers and that the three external node numbers
associated with each new T-section are necessarily
different from those associated with the previous T-
section. In particular, after discovering the first T-
section (with external points 2, 0, and 7), the genetic
algorithm operating on fixed-length strings must
separately discover the second T-section (with
external points 7, 0, and 3).

In contrast, representations employed by genetic
programming have the ability to leverage the once-

learned T-section. Consider one way in which this
can happen. Suppose that a particular individual in an
early generation develops into a circuit with a single
T-section. During the early generations of the run,
this individual will be relatively fit (when compared
to cohorts lacking the T-section or some equally
good structure). Thus, this individual will probably
be selected (and, indeed, reselected) to participate in
crossover. On some of the occasions in which this
first individual is selected to participate in crossover,
the subtree that is responsible for the T-section will
be included in the crossover fragment. Meanwhile, a
relatively fit second individual will be selected to
mate with the first individual. Possibly, the second
individual may be reasonably fit because it too
already contains one occurrence of a T-section. Note
that because reselection is allowed, the first
individual may occasionally mate with itself. Thus,
the ordinary crossover operation will sometimes
create an offspring with two T-sections. At the
moment when this doubling-up occurs, the offspring
will probably have distinctly better fitness than its
cohorts in the population. The offspring with two T-
sections will thus immediately start winning future
tournaments in which it participates and will
therefore frequently participate in future
reproduction, mutation, and crossover operations.

Of course, this scenario does not occur on every
crossover. However, the vast majority (about 90%)
of the genetic operations on a typical run of genetic
programming are crossovers. Moreover, a run of
genetic programming involves a large population
bred over many generations, so there are numerous
opportunities for doubling-up of T-sections.

Figure 7 shows a circuit-constructing program tree
that develops into the single T-section shown in
figure 1. In this figure, the first and third arguments
of the three-argument THREE_GROUND function
(labeled 100) each create a 105,500-microhenry
inductor. The second argument of the
THREE_GROUND function creates a capacitor
connected to ground.

Table 1 A first illustrative chromosome for the circuit shown in figure 1
L 106 2 6 C 186 6 0 L 106 6 3 W 0 0 7 C 100 0 7 C 200 8 0
Table 2 Chromosome for circuit consisting of two identical T-sections shown in figure 3
L 106 2 6 C 186 6 0 L 106 6 7 L 106 7 8 C 186 8 0 L 106 8 3
Table 3 Sub-string producing a T-section
L 106 2 6 C 186 6 0 L 106 6 3
Table 4: Chromosome of first parent
L 106 2 6 W 0 6 7 C 186 7 0 W 0 7 8 L 106 8 9 W 0 9 3
Table 5: Chromosome of second parent
W 0 8 6 W 0 9 3 W 0 7 8 L 106 6 9 C 186 8 0 L 106 2 7
Table 6: Result of a crossover
L 106 2 6 W 0 6 7 C 186 7 0 L 106 6 9 C 186 8 0 L 106 2 7

SERIES

INPUT_0 OUTPUT_0

END ENDENDEND
THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

ENDL

105500

RPB0

PROGN

END

100

Figure 7 A circuit-constructing program tree that develops into the single T-section shown in figure 1

SERIES

INPUT_0 OUTPUT_0

END ENDENDEND
THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

ENDL

105500

RPB0

PROGN

THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

END ENDL

105500

200

Figure 8 A circuit-constructing program tree that develops into the two T-sections shown in figure 3

SERIES

INPUT_0 OUTPUT_0

END ENDENDEND

RPB0

PROGN

THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

END ENDL

105500

SERIES

ADF0 ADF0

ADF0

END

ADF0 ARG0

Figure 9 Circuit-constructing program tree containing automatically defined function ADF0 that develops

into the two T-sections shown in figure 3

The first argument of the three-argument SERIES
function is an INPUT_0 function that causes a
connection to be made between the incoming signal
(node 2 in figure 1) and the first inductor. The third
argument of the SERIES function is an OUPTUT_0
function that causes a connection to be made between
the circuit’s output point (node 3 in figure 1) and the
second inductor. The second argument of the
SERIES function is a THREE_GROUND function
that causes a connection to be made between the
ungrounded lead of the capacitor and the first and
second inductor. Figure 8 shows a circuit-
constructing program tree that develops into the two
T-sections shown in figure 3. The upper left portion
of figure 8 (i.e., everything above the point labeled
200) is identical to figure 7. As can be seen, the
subtree rooted at (that is, below) the point labeled
200 in figure 8 is identical to the subtree rooted at the
THREE_GROUND function labeled 100 in figure 7.
That is, the subtree that produces the T-section that is
responsible (during early generations of the run) for
the filtering ability of the individual of figure 7 is
embedded inside another individual that itself
produces a single T-section. Figure 8 shows a way by
which the ordinary crossover operation can create a
circuit consisting of a cascade of two identical T-
sections. The circuit consisting of a cascade of two
identical T-sections has better fitness than the circuit
consisting of just one T-section.

Automatically defined functions provide a second
way by which genetic programming can leverage the
already-learned utility of a T-section. Figure 9 shows
a circuit-constructing program tree consisting of a
result-producing branch (RPB0) on the left and an
automatically defined function (ADF0) on the right.
The entire program tree develops into the two T-
sections shown in figure 3. Automatically defined
function ADF0 develops into one T-section. The
result-producing branch (RPB0) invokes ADF0
twice, thereby creating a circuit consisting of two
identical T-sections.

The automatically defined copy (described in
chapter 30 of Koza, Bennett, Andre, and Keane

1999) provides yet another way by which genetic
programming can leverage on the already-learned
utility of a T-section.

The genetic algorithm operating on fixed-length
strings cannot readily leverage a previously
discovered useful substructure in the just-described
ways. In fact, if the (usual) homologous crossover is
employed, there is no way to move a T-section
attached to, say, nodes 2, 0, and 3 to another part of
the chromosome. Thus, after discovering one T-
section, the genetic algorithm operating on fixed-
length strings must separately (and laboriously)
discover the second one.

Note that the genetic algorithm operating on
variable-length strings (Smith 1980) has the same
difficulty. It can easily create two identical T-sections
attached to the same set of nodes. For example, the
sub-string producing a T-section attached to nodes 2,
0, and 3 (table 3) could easily be inserted, by
crossover, into another chromosome that already
contains a T-section attached to nodes 2, 0, and 3.

However, the result would be two T-sections
attached to the same group of nodes (that is, 2, 0, and
3). The point is that the genetic algorithm operating
on variable-length strings does not readily yield a
series composition in which the one T-section is
attached to nodes 2, 0, and 7 and the second T-
section is attached to differently numbered nodes
(say, nodes 7, 0, and 3). In contrast, genetic
programming has the ability to easily produce, by
crossover, either a series or parallel composition of
T-sections (with the series composition being the
more useful here).
2.1.2 The Number of Substructures
If discovering the number of substructures is an
important part of the problem, genetic programming
may be well suited to the problem.

Consider the problem of automatically
synthesizing the double-bandpass filter described in
chapter 36 of Koza, Bennett, Andre, and Keane 1999.

Figure 10 Genetically evolved double-bandpass filter circuit.

The architecture-altering operations enable genetic
programming to automatically create the architecture
of the overall program during the run.

The genetically evolved double-bandpass filter
(figure 10) contains four occurrences of the three-
ported automatically defined function ADF0, two
occurrences of the four-ported automatically defined
function ADF3, and one occurrence of the three-
ported automatically defined function ADF1. The
architecture-altering operations dynamically
determined, during the run of genetic programming,
the number of automatically defined functions that
were used in solving this problem.

Automatically defined function ADF0 appears four
times in the program that produced the genetically
evolved double-bandpass filter (figure 10). Figure 11
shows the three-ported subcircuit produced by the
execution of ADF0. Automatically defined function
ADF3 appears twice in the this same program. Figure
12 shows the four-ported subcircuit produced by the
execution of ADF3.

Figure 11 Quadruply-used subcircuit produced by
automatically defined function ADF0

Figure 12 Twice-used four-ported subcircuit
produced by automatically defined function ADF3
2.1.3 Hierarchical References among the

Substructures
If discovering the nature of the hierarchical
references among the substructures is a major part of
the problem, genetic programming may be
appropriate.

The architecture-altering operations enable genetic
programming to automatically create the architecture

of the overall program during the run, including the
hierarchical arrangement of automatically defined
functions.

Figure 13 shows the call tree for the genetically
evolved crossover (woofer-tweeter) filter described
in detail in chapter 33 of Koza, Bennett, Andre, and
Keane 1999. This call tree shows that the circuit-
constructing program tree for this filter consists of
three result-producing branches (RPB0, RPB1, and
RPB2). It also shows that RPB0 contains a reference
to one-argument automatically defined function
ADF3 (the number of arguments being shown inside
the braces) and that ADF3 invokes one-argument
automatically defined function ADF2. Similarly, the
figure shows that RPB1 contains a reference to one-
argument automatically defined function ADF3 and
that ADF3 invokes two-argument automatically
defined function ADF2. The figure also shows that
RPB2 contains references to one-argument
automatically defined functions ADF4 and ADF2 and
that ADF4, in turn, invokes one-argument
automatically defined function ADF2.

RPB2

execute

ADF4 {1}

RPB1RPB0

ADF3 {1} ADF2 {1}ADF3 {1}

ADF2 {1} ADF2 {1} ADF2 {1}
Figure 13 Call tree for a genetically evolved
crossover (woofer-tweeter) filter.
2.1.4 Passing Parameters to Substructures
If passing parameters to a substructure is likely to be
useful in solving the problem, genetic programming
may be appropriate.

Continuing the discussion of the crossover filter
from the previous section, consider the subcircuit
produced by the three-ported automatically defined
function ADF3 (figure 14) that appears in the
genetically evolved crossover (woofer-tweeter) filter.
In addition to the mundane matter of inserting an
ordinary 5,130-nanofarad capacitor C112, the
execution of automatically defined function ADF3
has the following two noteworthy consequences:

• ADF3 inserts a parameterized capacitor C39
whose component value is dependent on the
dummy variable ARG0 that is passed into
automatically defined function ADF3 from the
program that calls ADF3 (namely the result-
producing branch RPB0 shown in figure 13).
• ADF3 calls automatically defined function
ADF2. A dummy variable ARG0 is passed along
from ADF3 to ADF2. In turn, ADF2 creates a

parameterized inductor whose component value
is dependent on this dummy variable.

Once a dummy variable (formal parameter) is
passed from one part of a genetically evolved
hierarchy into another, different instantiations of the
dummy variable may be passed.

Figure 14 Subcircuit produced by the execution of
three-ported automatically defined function ADF3
of the genetically evolved crossover (woofer-
tweeter) filter.
2.1.5 Number of Arguments Possessed by

Substructures
If discovering the dimensionality of a substructure
(that is, the number of arguments possessed by the
substructure) is an important part of the problem,
genetic programming may be appropriate.

The architecture-altering operations of argument
duplication, argument creation, and argument
deletion can automatically and dynamically
determine, during a run of genetic programming, the
number of arguments possessed by a substructure
(Koza, Bennett, Andre, and Keane 1999).

3 The Developmental Process

If a developmental process is a desirable way to
represent a solution to the problem, genetic
programming may be appropriate.

The developmental approach has several
advantages in automatically synthesizing complex
structures such as circuits.

For one thing, the developmental approach has the
specific advantage of preserving locality. Because
most of the component-creating, topology-
modifying, and development-controlling functions
operate on a small local area of the circuit, the
subtrees that are transplanted by the crossover
operation generally operate locally. Thus, when a
crossover replaces a subtree in one individual with a
subtree from another individual, it (usually) replaces
a local structure in the circuit created by the first
individual with a local structure in the circuit created
by the second individual. The developmental process

works in conjunction with the crossover operation in
preserving locality.

The developmental process has the additional
advantage of preserving electrical connectivity.
There are no unconnected leads in the initial circuit.
Each component-creating, topology-modifying, and
development-controlling function preserves
connectivity at each stage of the developmental
process. The result is that there are no unconnected
leads in the fully developed circuit.

Also, the developmental approach enables useful
parts of a circuit-constructing program tree to be
reused (as already illustrated by figures 7, 8, and 9
and tables 1 and 2). Reuse eliminates the need to
“reinvent the wheel” on each occasion when a
particular sequence of steps may be useful. Reuse
makes it possible to exploit a problem’s modularities,
symmetries, and regularities (and thereby potentially
accelerate the problem-solving process).

The preservation of syntactic validity and
executablity of the circuit-constructing program trees
during all genetic operations, the preservation of the
constrained syntactic structure during all genetic
operations, the preservation of electrical connectivity,
the preservation of locality during crossover, and the
facilitation of reuse together contribute to the
efficiency by which developmental genetic
programming is able to synthesize circuits.

In contrast, the ordinary crossover operation in the
genetic algorithm operating on fixed-length character
strings rarely preserves syntactic validity when
chromosome strings are used to represent complex
structures (e.g., electrical circuits).

When syntactic validity is not preserved, the user
is usually faced with three choices concerning the
syntactically invalid offspring:

• deletion,
• penalization, or
• repair.

For complex structures such as circuits, deletion is
rarely a practical option because the percentage of
syntactically valid offspring after a crossover is so
low that virtually every individual would be deleted.
Penalization is rarely practical for the same reason.
Thus, in practice, repair is the most viable option.

The ordinary crossover operation used in the
genetic algorithm has the specific advantage that all
genetic material in the offspring comes from one or
the other parent. This is usually not the case when
repair is undertaken. That is, the offspring’s genetic
material does not come exclusively from its parents.

The parents come from the current generation of
the run. As such, the parents are likely to be
relatively fit individuals, and their genetic material is
likely to contribute to the solution of the problem.

The repair process does not confer this benefit on the
resultant offspring.

As an example of a crossover operation whose
offspring requires repair, consider the circuits
defined by the chromosomes in tables 4 and 5.

The chromosome of the first parent (table 4) codes
for the single T-section depicted in figure 15. This T-
section contains two inductors (L1 and L2) and one
capacitor (C1). This individual is functionally
equivalent to the circuit of figure 1 and therefore has
the same fitness and the same frequency-domain
behavior as shown in figure 2. As previously
mentioned, a single T-section acts as a (very poor)
lowpass filter; however, in an early generation of the
run, a single T-section may be among the best
individuals in the population at the time.

The chromosome of the second parent (table 5)
codes for the single T-section depicted in figure 16.
This T-section contains two inductors (L3 and L4)
and one capacitor (C2). This individual is
functionally equivalent to the first parent.

Now consider a crossover operation whose
offspring requires repair. In particular, consider a
crossover point at the right of the 12th gene. That is,
genes 1 through 12 come from the chromosome in
table 4 and genes 13 through 24 come from the
chromosome in table 5.

Table 6 shows the chromosome of the offspring
resulting from this crossover.

Figure 17 shows the offspring. The offspring
circuit contains three inductors and two capacitors.
Components L6 and C3 originate from the first
parent (where they were called L1 and C1,
respectively, in figure 15). Components L5, L7, and
C4 originate from the second parent (where they
were called L3, L4, and C2, respectively, in figure
16). After the crossover, one end (node 9) of the
inductor L7 is left dangling. Similarly, one end (node
8) of the capacitor C4 is also dangling. Moreover,
the offspring has no connection to the output probe
point VOUT. Because the offspring is syntactically
invalid, a mechanism must now be invoked to repair
it.

There are numerous methods in the literature for
repairing a syntactically invalid offspring. Some
overtly employ random steps. The ones that do not
employ random steps typically employ steps that are
so arbitrary that they might as well be random. The
point is not that these repair mechanisms fail to
create a syntactically valid offspring, but that they
succeed in a manner that resembles mutation.

When the genetic algorithm operating on fixed-
length character strings is being used for problems
involving complex structures, the probability is
exceedingly small that a syntactically valid
chromosome will result from a crossover that is
applied directly to the structure. Thus, virtually every

crossover requires repair. To the extent that the repair
mechanism is either random or arbitrary, virtually
every crossover becomes mutational in character.

In summary, the benefits of the developmental
process include

• reuse,
• preservation of locality,
• preservation of electrical validity (for circuits),
• preservation of syntactic validity and
executability (thereby alleviating the need for
repair and the consequent introduction of genetic
material from sources other than the two parents
from the current generation of the run).

Figure 15 First parent

Figure 16 Second parent

Figure 17 Offspring circuit

4 Conclusion

This paper has described the ways by which genetic
programming can facilitate reuse and the associated
advantages of using developmental processes.

References

Drechsler, Rolf. 1998. Evolutionary Algorithms for
VLSI CAD. Boston: Kluwer Academic Publishers.

Grimbleby, J. B. 1995. Automatic analogue network
synthesis using genetic algorithms. Proceedings of
the First International Conference on Genetic
Algorithms in Engineering Systems: Innovations
and Applications (GALESIA). London: Institution
of Electrical Engineers. Pages 53–58.

Higuchi, Tetsuya, Iwata, Masaya, and Lui, Weixin
(editors). 1997. Evolvable Systems: From Biology
to Hardware: First International Conference,
ICES-96, Tsukuba, Japan, October 1996
Proceedings. Lecture Notes in Computer Science,
Volume 1259. Berlin: Springer-Verlag.

Higuchi, Tetsuya, Niwa, Tatsuya, Tanaka, Toshio,
Iba, Hitoshi, de Garis, Hugo, and Furuya, Tatsumi.
1993. Evolving hardware with genetic learning: A
first step towards building a Darwin machine. In
Meyer, Jean-Arcady, Roitblat, Herbert L. and
Wilson, Stewart W. (editors). From Animals to
Animats 2: Proceedings of the Second
International Conference on Simulation of
Adaptive Behavior. Cambridge, MA: The MIT
Press. 1993. Pages 417–424.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial
Intelligence. Ann Arbor, MI: University of
Michigan Press. Second edition. Cambridge, MA:
The MIT Press 1992.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1999. Genetic Programming
III: Darwinian Invention and Problem Solving.
San Francisco, CA: Morgan Kaufmann.

Koza, John R., Keane, Martin A., Streeter, Matthew
J., Mydlowec, William, Yu, Jessen, and Lanza,
Guido. 2003. Genetic Programming IV. Routine
Human-Competitive Machine Intelligence. Kluwer
Academic Publishers.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996a. Automated design of
both the topology and sizing of analog electrical
circuits using genetic programming. In Gero, John
S. and Sudweeks, Fay (editors). Artificial
Intelligence in Design ‘96. Dordrecht: Kluwer
Academic Publishers. Pages 151–170.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996b. Reuse,

parameterized reuse, and hierarchical reuse of
substructures in evolving electrical circuits using
genetic programming. In Higuchi, Tetsuya, Iwata,
Masaya, and Liu, Weixin (editors). 1997.
Proceedings of International Conference on
Evolvable Systems: From Biology to Hardware
(ICES-96). Lecture Notes in Computer Science,
Volume 1259. Berlin: Springer-Verlag. Berlin:
Springer-Verlag. Pages 312–326.

Kruiskamp, Marinum Wilhelmus. 1996. Analog
Design Automation using Genetic Algorithms and
Polytopes. Eindhoven, The Netherlands: Data
Library Technische Universiteit Eindhoven.

Mazumder, Pinaki and Rudnick, Elizabeth M.
(editors). 1999. Genetic Algorithms for VLSI
Design, Layout and Test Automation. Upper
Saddle River, NJ: Prentice Hall.

Rechenberg, Ingo. 1973. Evolutionsstrategie:
Optimierung Technischer Systeme nach Prinzipien
der Biolgischen Evolution. Stuttgart-Bad
Cannstatt: Verlag Frommann-Holzboog.

Sanchez, Eduardo and Tomassini, Marco (editors).
1996. Towards Evolvable Hardware. Lecture
Notes in Computer Science, Volume 1062. Berlin:
Springer-Verlag.

Smith, Steven F. 1980. A Learning System Based on
Genetic Adaptive Algorithms. Ph.D. dissertation.
Pittsburgh, PA: University of Pittsburgh.

Stoica, Adrian, Keymeulen, Didier, and Lohn, Jason
(editors). 1999. Proceedings of the First
NASA/DOD Workshop on Evolvable Hardware,
Pasadena, California, July 19–21, 1999. Los
Alamitos, CA. IEEE Computer Society.

Stoica, Adrian, Zebulum, Ricardo, and Keymeulen,
Didier. 2001. Polymorphic electronics. In Liu,
Yong, Tanaka, Kiyoshi, Iwata, Masaya, Higuchi,
Tetsuya, and Yasunaga, Moritoshi (editors).
Evolvable Systems: From Biology to Hardware,
4th International Conference, ICES 2001, Tokyo,
Japan, October 2001 Proceedings. Lecture Notes
in Computer Science, Volume 2210. Berlin:
Springer-Verlag. Pages 291–302.

Thompson, Adrian. 1996. Silicon evolution. In Koza,
John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). 1996. Genetic
Programming 1996: Proceedings of the First
Annual Conference, July 28–31, 1996, Stanford
University. Cambridge, MA: MIT Press. Pages
444–452.

Zebulum, Ricardo Salem, Pacheco, Marco Aurelio
C., and Vellasco, Marley Maria B. R. 2002.
Evolutionary Electronics: Automatic Design of
Electronic Circuits and Systems by Genetic
Algorithms. Boca Raton, FL: CRC Press.

