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Abstract:  As newly sequenced proteins are deposited into the world's ever-
growing archives, they are typically immediately tested by various 
algorithms for clues as to their biological structure and function.  One 
question about a new protein involves its cellular location – that is, where 
the protein resides in a living organism (e.g., extracellular, membrane, 
nuclear).  A human-created five-way algorithm for cellular location using 
statistical techniques with 76% accuracy was recently reported.  This paper 
describes a two-way algorithm that was evolved using genetic programming 

with 83% accuracy for determining whether a 
protein is an extracellular protein, 84% for nuclear 

proteins, 89% for membrane proteins, and 83% for anchored 
membrane proteins.  Unlike the statistical calculation, the genetically 

evolved programs employ a large and varied arsenal of 
computational capabilities, including arithmetic functions, conditional 

operations, subroutines, iterations, named memory, indexed 
memory, set-creating operations, and look-ahead.  
The genetically evolved classification program can be viewed as an 
extension (which we call a programmatic motif) of the conventional notion 
of a protein motif.  
 



1.  Background and Introduction 
Proteins are responsible for such a wide variety of biological structures and functions 
that it can be said that the structure and functions of living organisms are primarily 
determined by proteins (Stryer 1995).   

Proteins are composed of a chain of amino acid residues in a linear arrangement.  
The same 20 amino acid residues (denoted by the letters A, C, D, E, F, G, H, I, K, L, 
M, N, P, Q, R, S, T, V, W, and Y) are used for virtually all proteins of all species.  
Thus, a protein can be viewed as a linear sequence over a 20-letter alphabet (called the 
primary structure of the protein).  The length of protein sequences vary widely, with 
the average being about 300.  For example, the primary structure of bovine pancreatic 
trypsin inhibitor (BPTI) contains only 58 amino acid residues, as shown below:   

 
RPDFCLEPPY TGPCKARIIR YFYNAKAGLC QTFVYGGCRA KRNNFKSAED 50

58CMRTCGGA  
 
Figure 1 shows the three-dimensional arrangement of the non-hydrogen atoms of 

BPTI as a stick diagram (i.e., each intersection or endpoint represents an atom).  

 
Figure 1  Three-dimensional structure of bovine pancreatic trypsin inhibitor. 

Amazingly, subject to only a few minor qualifications, it is broadly true that the 
three-dimensional location of every atom of a protein molecule in a living organism 
(called its conformation or tertiary structure) is fully determined by this linear 
sequence over the 20-letter alphabet (Anfinsen 1973). The three-dimensional 
arrangement of the atoms, in turn, determines the biological function of a protein 
within a living organism.  That is, all of the information about the biological function 
of a protein is contained (albeit hidden) in the linear sequence over the 20-letter 
alphabet.  A major goal of the field of computational molecular biology is to determine 
the biological function of a protein by analyzing the sequence.  



Ever-growing numbers of primary sequences are being archived in computerized 
databases (e.g., the SWISS-PROT database of Bairoch and Boeckmann 1991 and the 
Protein Data Bank (Bernstein et al. 1977)) as a consequence of the various ongoing 
genome projects around the world.  As newly sequenced proteins are deposited into 
these archives, they are typically immediately tested by various computerized 
algorithms for clues as to their biological structure and function.   

One question about a new protein involves its cellular location – that is, where the 
protein resides in a living organism.  After a protein is produced inside the cell, it may 
perform its work from an intracellular location, it may be expelled from the cell and 
operate from an extracellular location, it may become embedded in the cell (or other) 
membrane, or it may reside in the cell's nucleus (if the cell has one). 
1.1. Single-Residue Statistics 
One very simple type of computation for studying the primary structure of a protein is 
to compute the protein's amino acid composition (i.e., the percentage of occurrence of 
each of the 20 amino acids in the protein).  Cedano et al. (1997) recently reported a 
single-residue statistical algorithm with 76% accuracy that used the protein's amino 
acid composition for classifying a protein sequence according to its cellular location 
using five classes – extracellular (E), intracellular (I), nuclear (N), membrane integral 
(M), and membrane anchored (A).   

Their single-residue statistical algorithm works reasonably well because there are 
several relatively simple relationships between a protein's cellular location and the 
frequency of occurrence of particular amino acids.  For example, extracellular proteins 
have a comparatively low percentages of hydrophobic (water-hating) or polar residues 
and a comparatively high percentage of cysteine residues, which often participate 
extremely stable extracellular disulfide bonds.  Integral membrane and anchored 
membrane proteins are comparatively rich in hydrophobic residues because portion(s) 
of the protein sequence are embedded in the lipid membrane and hydrophobic residues 
are congenial to nonpolar environments.  Nuclear proteins have comparatively very 
high percentages of positively charged residues to compensate for the negative charge 
of the DNA residing in the nucleus (Andrade, O'Donoghue, and Rost 1998), but 
comparatively low percentages of aromatic residues.  Intracellular proteins have a 
comparatively high percentages of negatively charged residues and aliphatic residues, 
but relatively low percentages of cysteine.   
1.2. Adjacent-Pair-Statistics 
Cedano et al. (1997) acknowledged that their single-residue statistical algorithm "is an 
apparently simple relationship between amino acid composition and protein class 
(location)" and that it alone cannot pinpoint the cellular location of a protein. For 
example, it is from known that augmenting single-residue percentages with two-
residue percentages can improve the accuracy of classification (Nakashima and 
Nishikawa 1994).  
1.3. Motifs 
Another type of computation for examining the primary structure of a protein is to 
scan a protein sequence for an occurrence of a biologically important short 
subsequence of consecutive amino acid residues (called a motif).  Motifs are defined 
by regular expressions, such as 



[LIVM]-[LIVM]-D-E-A-D-X-[LIVM]-[LIVM] 

A protein is said to satisfy this motif if there is a consecutive subsequence anywhere 
along the entire protein sequence that matches the defining expression in the following 
way:  The first pair of square brackets indicates that the first residue of the consecutive 
subsequence of length nine is either L, I, V, or M.  The second residue is chosen 
(independently from the first) from the same set of four.  The third, fourth, fifth, and 
sixth residues are mandatory and must be D, E, A, and D, respectively. The X indicates 
that the seventh residue can be any of the 20 possible amino acid residues.  Finally, the 
eighth and ninth residues of the motif are each chosen (independently) from the same 
set of four as before, namely L, I, V, or M.  The presence of this motif (called 
ATP_HELICASE_1 in the PROSITE database of motifs of Bairoch and Bucher 1994) 
almost perfectly determines whether a given protein is a member of a particular family 
of helicase proteins involved in the unwinding of the double helix of the DNA 
molecule during the DNA replication.  This family of proteins, called the "D-E-A-D 
box" family, gets its amusing name from the fact that the amino acid residues D 
(aspartic acid), E (glutamic acid),  A (alanine), and D appear, in that order, in this 
biologically critical subsequence (Linder et al. 1989).  See Koza and Andre (1997) for 
discovery of a motif for the "D-E-A-D box" family using genetic programming.   
1.4. Other Types of Computation 
Numerous other types of computation, including neural networks, decision trees, 
inductive logic programming, etc. have been productively applied to particular 
problems of computational biology.  For example, neural networks typically examine a 
protein sequence using a fixed-sized window and compute the familiar arithmetic 
weighted sum of signals (Rost and Sander  1993).  Each of these various types of 
computation can be used to receive the protein's linear sequence over the 20-letter 
alphabet as its input and emit a classification decision as its output.  However, for each 
of these types of computation, the allowable computation is highly constrained.   
1.5. Shortcomings of Highly Constrained Computations 
Highly constrained types of computations have many limitations in attempting to 
capture the exceedingly complex relationship that links a protein's primary sequence to 
its biological structure and function.  

Single-residue statistics reduce the entire protein sequence to 20 percentages.  
Because single-residue statistics look at the protein through a window of a fixed size 
(one), they cannot take into account relationships between a combination of two or 
more residues.  Adjacent-pair-statistics similarly employ a fixed window size and 
similarly ignore relationships involving three of more adjacent residues.  They even 
ignore relationships between two or more non-adjacent residues.  Similarly, motifs 
have a fixed window size and are constrained to set-manipulating operations (e.g., 
matching, disjunction, conjunction) and cannot do any arithmetic or conditional 
calculations.  They are also narrowly focused on a short localized subsequence of 
consecutive residues.  Neural network approaches are limited to using a fixed window 
size and to performing a particular single type of arithmetic calculation (layers of 
weighted sums of inputs).   



In contrast, ordinary computer programs bring a large and varied arsenal of 
computational capabilities to bear in solving problems.  These capabilities include 
arithmetic functions, conditional operations, logical operations, internal memory, 
parameterizable subroutines, data structures (e.g., named memory, indexed memory, 
matrices, stacks, lists, rings, queues, relational memory), iteration, recursion, macro 
definitions, hierarchies of subprograms, multiple inputs, multiple outputs, etc.  

In addition, motifs, single-residue statistics, adjacent-pair-statistics, neural 
networks, decision trees, inductive logic programming, and other machine learning 
techniques are not open-ended in the sense that they all require that the human 
investigator decide, in advance, the detailed nature of the computation that is to be 
performed.  However, for most complex problems, deciding on the nature of the 
requisite computation is often, in fact, the problem (or at least a major part of it).  
1.6. Genetic Programming 
The problem of discovering biologically meaningful patterns in protein sequences can 
be recast as a search for a classification-performing computer program of unknown 
size and shape.  When recast in this way, genetic programming becomes a candidate 
for solving this type of problem.   Genetic programming is an extension of the genetic 
algorithm (Holland 1975) in which a computer program is automatically created to 
solve a problem (Koza 1992; Koza and Rice 1992).  The evolved programs may 
contain arithmetic functions, conditional operations, set-creating operations, 
automatically defined functions (Koza 1994a, 1994b, 1994c), iteration-performing 
branches (Koza 1994a, Koza and Andre 1996), named memory (Koza 1992, 1994a), 
indexed memory (Teller 1994), and most other constructs of ordinary computer 
programs. Various capabilities of genetic programming are described in Kinnear 
(1994), Angeline and Kinnear (1996), Koza et al. (1996), Koza et al. (1997), and 
Banzhaf, Nordin, Keller, and Francone (1998).   
1.7. Programmatic Motifs 
A computer program resembles a conventional motif (and the other highly constrained 
types of computation mentioned above) in that it is a deterministic computation that is 
performed on a protein sequence in order to decide whether or not the protein has a 
certain property.  We view a computer program as an extension of the conventional 
concept of motif.  We call the program that genetic programming produces for 
analyzing a protein a programmatic motif.   
1.8. Organization of This Paper 
This paper applies the concept of programmatic motif to the problem of classifying 
protein sequences as to their cellular location.  Section 2 describes the preparatory 
steps for applying genetic programming to this problem.  Section 3 presents the 
results.  

2. Preparatory Steps 
Before applying genetic programming to a problem, the user must perform six major 
preparatory steps, namely (1) identifying the primitive functions of the to-be-evolved 
programs, (2) identifying the terminals, (3) creating the fitness measure, (4) choosing 
certain control parameters for the run, (5) determining the termination criterion and 



method of result designation for the run, and (6) determining the architecture of the 
overall program.  
2.1. Architecture 
Considering first the architecture of each overall program in the population, we 
decided that each program would be a multi-part program with seven branches, 
including three set-creating automatically defined functions (ADF0, ADF1, and 
ADF2), and two arithmetic-performing automatically defined functions (ADF3 and 
ADF4), one iteration-performing branch (IPB), and one result-producing branch 
(RPB).  Figure 2 shows the overall architecture (with just one automatically defined 
function) of this program.   

progn

Body of ADF0
Function Definition

Argument
List valuesADF0

defun

Body of Iteration
Performing Branch

IPB0

looping-over-
known-finite-set values

Body of Result-
Producing Branch

RPB  
Figure 2  Multi-part program with one automatically defined function, an iteration-performing 

branch, and a result-producing branch.   

2.2. Function and Terminal Sets 
The functions and terminals are the ingredients of the to-be-evolved computer 
program.  They are discussed below for the four types of branches used here – the set-
creating automatically defined functions, the arithmetic-performing automatically 
defined functions, the iteration-performing branch, and the result-producing branch.  

The three set-creating automatically defined functions (ADF0, ADF1, and ADF2) 
provide a mechanism for defining subsets of the 20 amino acids (that is, for reducing 
the 20-letter alphabet to a smaller alphabet).   

The terminal set for the set-creating automatically defined functions, Tadf-sc, 
contains the 20 zero-argument numerically valued residue-detecting functions:  
Tadf-sc = {(A?), (C?), …, (Y?)}.   
Here (A?) is the zero-argument residue-detecting function returning a numerical +1 if 
the ACTIVE residue (see below) is alanine (A) but otherwise returning a numerical –1 
(and similarly for the 19 other functions (C?), …, (Y?)).   

The function set for the set-creating automatically defined functions, Fadf, is  
Fadf-sc = {ORN}.   
Here ORN is the two-argument numerical-valued disjunctive function returning +1 if 
either or both of its arguments are positive, but returning –1 otherwise. 

The two arithmetic-performing automatically defined functions (ADF3 and ADF4) 
provide a mechanism for performing arithmetic (instead of set-creating) calculations.  

The function set for the arithmetic-performing automatically defined functions, 
Fadf-ap, is  
Fadf-ap = {+, –, *, %, IFGTZ, ORN}.  
Here the three-argument conditional branching operator IFGTZ ("If Greater Than 
Zero") evaluates and returns its second argument if its first argument (the condition) is 
greater than zero, but otherwise evaluates and returns its third argument.  The two-
argument protected division function, %, returns the number 1 when division by 0 is 
attempted (including 0 divided by 0), and, otherwise, returns the normal quotient.   



The terminal set for the arithmetic-performing automatically defined functions, 
Tadf-ap, contains the 20 zero-argument numerically valued residue-detecting functions:  
Tadf-ap = {(A?), (C?), …, (Y?), ←}.   
Here ← denotes floating-point random constants between –10.000 and +10.000.  

The iteration-performing branch provides a mechanism for performing an iterative 
calculation over the entire protein sequence.  The proteins are of different length.  The 
work-performing steps of the iteration-performing branch are performed iteratively for 
each of the amino acid residues of the given protein.  The iteration over the protein 
sequence is indexed by the iterative variable, INDEX.  At the beginning of each step of 
the iteration, the ACTIVE residue of the protein is the same as iterative variable, 
INDEX.  The distinction between the ACTIVE residue and the iterative variable, 
INDEX, is important because the ACTIVE residue can be incremented inside a given 
step (INDEX) of the iteration using the FORWARD function (described below).   

Memory cells can be used to store the intermediate and final results during the 
iterative calculation.  There are two types of memory – 5 cells of named memory and 
20 cells of indexed memory.  The contents of all cells of named and indexed memory 
are initialized to zero before execution of the iteration-performing branch for a 
particular fitness case.  

The calculation in the iteration-performing branch can involve arithmetic 
functions, conditional operations, the residue-detecting functions, the numerically 
valued disjunctive function, the contents of named memory, the contents of indexed 
memory, the memory-setting functions for the named memory, the memory-setting 
functions for the indexed memory, and the results produced by the set-creating and 
arithmetic-performing automatically defined functions.  

The terminal set for the iteration-performing branch, Tipb, contains the five 
automatically defined functions (ADF0, ADF1, ADF2, ADF3, ADF4), 20 zero-
argument numerically valued residue-detecting functions, five settable named 
variables (M0, M1, M2, M3, and M4), the READ–RESIDUE function, and floating-point 
random constants, ←.  That is, 
Tipb  = {ADF0, ADF1, ADF2, ADF3, ADF4, (A?), (C?), …, (Y?), M0, M1, M2, M3, 

M4, READ–RESIDUE,  ←bigger-reals}. 
The terminal M0 returns the value contained in memory cell M0 (and similarly for 

the four other terminals M1, M2, M3, and M4).  
The terminal READ–RESIDUE returns the value contained in the cell of indexed 

memory implicitly indexed by the active residue.   
The function set for the iteration-performing branch, Fipb contains numerically 

valued Boolean disjunction ORN, IFGTZ, FORWARD, the five named setting functions 
(SETM0, SETM1, ..., SETM4), and the four arithmetic functions.  
Fipb = {ORN, SETM0, SETM1, SETM2, SETM3, SETM4, IFGTZ, WRITE–RESIDUE, 

+, -, *, %, FORWARD}. 
The one-argument setting function SETM0 sets settable memory cell M0 to a 

particular value (and similarly for the four other functions, SETM1, SETM2, SETM3, 
SETM4).   



The one-argument WRITE–RESIDUE function sets into the cell of indexed 
memory implicitly indexed by the active residue to the value of its argument.   

The one-argument FORWARD function increments the ACTIVE residue by one and 
returns the value of its one argument using the current value of ACTIVE.  Upon 
completion of the evaluation of the argument of the FORWARD function, the ACTIVE 
residue is restored to its previous value.  If the FORWARD function attempts to 
increment the ACTIVE residue beyond the length of the protein, the ACTIVE residue 
remains as the last residue of the protein.  Note that the values (+1 or –1) returned by 
the five automatically defined functions depend on the ACTIVE residue.   

The result-producing branch provides a mechanism for performing a final 
calculation that classifies the protein into one of two classes.  

The terminal set for the result-producing branch, Trpb, is 
Trpb = {M0, M1, M2, M3, M4, ←}. 

The function set for the result-producing branch, Frpb, is  
Frpb = {ORN, IFGTZ, +, -, *, %, READ}. 

The one-argument READ function returns the value stored in the indexed memory 
cell J where J is the value of its one argument modulo 20.   

The wrapper (output) interface for the result-producing branch consists of the 
IFGTZ function, so a positive return value is interpreted as YES and a zero or negative 
return value is interpreted as NO.   
2.3. Fitness Measure 
The fitness measure indicates how well a particular genetically evolved program 
classifies protein sequences.  Fitness is measured over a number of protein sequences 
(fitness cases).  When a classifying program is tested against a particular protein 
sequence, the outcome can be a true-positive, true-negative, false-positive, or false-
negative.  The total number of true-positives, true-negatives, false-positives, and false-
negatives for a set of protein sequences, in turn, can be used to compute the correlation 
coefficient, C, where 

C =
Ntp Ntn − Nfn Nfp

Ntn + Nfn( ) Ntn + Nfp( ) Ntp + Nfn( ) Ntp + Nfp( )
 

The fitness of a classifying program is then be defined as 
1 −C

2
.  Thus, fitness ranges 

between 0.0 and +1.0, so that lower values of fitness are better than higher values and 
a value of 0 corresponds to the best.   

Cedano et al. (1997) used 1,000 proteins (200 from each of five classes) as their in-
sample fitness cases.  We reduced computer time by about three-fourths by randomly 
choosing 50% of these proteins that were of length less than 600 (i.e., about twice the 
length of an average-sized protein) as our in-sample fitness cases.  This approach 
yielded 471 in-sample fitness cases  (88 membrane, 91 nuclear, 108 intracellular, 124 
extracellular, and 70 anchored proteins) having a total of 122,489 residues.  The true 
measure of performance for a predicting program is how well it generalizes to unseen 
additional (out-of-sample) fitness cases.  The results were first cross-validated using 



the remaining proteins of length less than 600.  Then, the results were further cross-
validated using the same 200 out-of-sample fitness cases as in Cedano et al. (1997) 
(specifically, 41 membrane, 46 nuclear, 55 intracellular, 33 extracellular, and 25 
anchored proteins) with 100,029 residues.   

Considerable computer time was saved by caching the result of executing each set-
creating and arithmetic-performing branch for each of the 20 residues.  

The population size was 320,000 (the largest population size that could be run and 
stored in a reasonable amount of time and in the available amount of memory space).  
The control parameters for the run were the same as those in Koza 1994a, except (1) 
the maximum size, Hrpb, for the result-producing branch is 400 points, (2) the 
maximum size, Hadf, for each automatically defined function is 40 points, and (3) the 
maximum size, Hipb, for the iteration-performing branch is 400 points.   

The problem was run on a medium-grained parallel Parsytec computer system 
consisting of 64 80-MHz Power PC 601 processors arranged in a toroidal mesh with a 
host PC Pentium type computer.  The distributed genetic algorithm was used with a 
population size of Q =  5,000 at each of the D = 64 demes.  On each generation, four 
boatloads of emigrants, each consisting of B = 2% (the migration rate) of the node's 
subpopulation (selected on the basis of fitness) were dispatched to each of the four 
toroidally adjacent nodes (Andre and Koza 1996).  

3. Results 
The results below for four categories were each obtained on the first (and only) run of 
the problem.  Each run took about 3 days.  
3.1. Extracellular Proteins 
On generation 26, genetic programming evolved a two-way classification program for 
extracellular proteins with 82% in-sample accuracy, 87% out-of-sample accuracy (on-
line), and 83% accuracy on the 200 out-of-sample proteins of Cedano et al. (1997).   

The genetically evolved program referred once to its arithmetic-performing ADF4 
and repeatedly referred to its set-creating ADF1.  It twice used the FORWARD function 
to examine downstream residues.  It used one cell of named memory (M0) for 
communication between its iteration-performing branch and the result-producing 
branch.  
3.2. Nuclear Proteins 
On generation 7, genetic programming evolved a two-way classification program for 
nuclear proteins with 86% in-sample accuracy, 91% out-of-sample accuracy (on-line), 
and 84% accuracy on the 200 out-of-sample proteins of Cedano et al. (1997).   

The genetically evolved program actually invokes its result-producing branch and 
iteration-performing branch, but no automatically defined functions.  It uses three cells 
of named memory (M1, M2, and M4) for communication between its iteration-
performing branch and the result-producing branch.   



3.3. Membrane Proteins 
On generation 10, genetic programming evolved a two-way classification program for 
membrane proteins with 85% in-sample accuracy, 87% out-of-sample accuracy (on-
line), and 89% accuracy on the 200 out-of-sample proteins of Cedano et al. (1997).   

The iteration-performing branch wrote to indexed memory extensively (in seven 
different places) and also employed named memory to store intermediate results.  One 
set-creating automatically defined function (ADF0) was used.  One cell of named 
memory (M1) was then used for communication between the iteration-performing 
branch and the result-producing branch.  
3.4. Anchored Proteins 
On generation 11, genetic programming evolved a two-way classification program for 
anchored proteins with 80% in-sample accuracy, 85% out-of-sample accuracy (on-
line), and 83% accuracy on the 200 out-of-sample proteins of Cedano et al. (1997).   

4. Conclusion 
This paper describes four two-way classifying programs that were evolved using 
genetic programming.  The evolved programs have 83% accuracy for determining 
whether a protein is extracellular, 84% for nuclear proteins, 89% accuracy for 
membrane proteins, and 83% for anchored membrane proteins.  These levels of 
accuracy are slightly better than the 76% accuracy reported for the human-created 
five-way classification algorithm.  The genetically evolved programs constitute 
instances of an evolutionary computation technique producing a solution to a problem 
that is competitive with that produced using human intelligence.   

The evolved classifiers employed a large variety of types of computation (such as 

arithmetic functions, conditional operations, subroutines, iterations, named 
memory, indexed memory, set-creating operations, 
and look-ahead) that were available in genetic programming, but not available in more 
constrained techniques.  
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