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1. Introduction 
It would be desirable if computers could solve problems without the need for a human to 
write the detailed programmatic steps.  That is, it would be desirable to have a domain-
independent automatic programming technique in which "What You Want Is What You Get" 
("WYWIWYG" – pronounced "wow-eee-wig").  Indeed, automatic programming is one of 
the central problems of computer science.  

Paraphrasing Arthur Samuel in 1959 [41], this goal concerns 
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How can computers be made to do what needs to be done, without being told 
exactly how to do it? 

The term "automatic programming" does not have a generally accepted definition.  
However, a system for automatic programming should reasonably be expected to have the 
following attributes:  

• It starts from a high-level statement of the requirements for a solution to the problem 
and produces a satisfactory solution to the problem.   
• It produces an entity that runs on a computer (i.e., a computer program or other entity 
that can be easily be translated into a computer program).  
• It is problem-independent in the sense that the user does not have to modify the basic 
operation of the system for each new problem.   
• It solves a wide variety of problems from many different fields. 
• It has a mechanism for implementing the full range of useful programming constructs 
(or suitable surrogates of them) including internal memory, data structures, 
parameterizable subroutines, hierarchical calling of subroutines, iteration, recursion, 
macros, libraries, multiple inputs, multiple outputs, logical functions, integer functions, 
floating-point functions, conditional operations, and typing.  
• It requires the human user to provide a minimum of information about the nature of 
the solution in advance.   
• It produces the size and shape of the solution to the problem in the sense that it does 
not require the user to prespecify the exact number of primitive steps that must be 
performed, the exact sequence of primitive steps, or the arrangement of primitive steps 
into groups.   
• It has a mechanism for automatically organizing sequences of primitive steps into 
useful groups representing subproblems and of creating a hierarchical organization of 
the groups of steps. 
• It has a mechanism for automatically reusing useful sequences of primitive steps.  
• Its scales well to larger versions of the same problem. 
• It unmistakably distinguishes between what the user must provide and what the 
system delivers.  
• It operates in a well-defined and automatic way that does not rely on any hidden steps.  
• It produces results that are competitive with those produced by human programmers, 
engineers, mathematicians, and designers.  

The last criterion of the above list is especially important because it reminds us that the 
ultimate goal of automatic programming is to produce useful programs (not merely programs 
that solve "proof of principle" or "toy" problems).  As Samuel said in 1983 [42], 

[T]he aim [is] ... to get machines to exhibit behavior which if done by humans 
would be assumed to involve the use of intelligence.  

An automatically created result can reasonably be viewed as being competitive with one 
produced by human engineers, designers, mathematicians, or programmers if it satisfies one 
of the following criteria: 

• The result is equal to or better than a recognized human-written algorithm for the same 
problem. 
• The result was patented as an invention in the past, is an improvement over a patented 
invention, or qualifies today as a patentable new invention.  
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• The result is equal to or better than a human-produced result accepted and published 
by a peer-reviewed journal.  
• The result was considered an achievement in its field when it was first discovered.  
• The result solves a problem that is widely recognized as being difficult by 
practitioners in the field. 
• The result is an improvement over a result produced by an internationally recognized 
group of experts.  
• The result is publishable in its own right (i.e., independent of the fact that the result 
was mechanically created). 
• The result ranks highly or wins a judged competition involving human contestants.   

As shown in table 1, this paper refers to 14 instances where genetic programming has 
produced results that are competitive with those produced by human engineers, designers, 
mathematicians, or programmers.  

The two main points of this paper are as follows: 
• POINT 1:  There are numerous instances (14 of which are shown in table 1)  where 

genetic programming has succeeded in automatically producing computer programs that are 
competitive with human-produced results.  

• POINT 2:  Genetic programming has all 13 of the above attributes of a system for 
automatic programming and therefore it can reasonably be asserted that genetic 
programming is automatic programming.   

Table 1  Fourteen instances where genetic programming has produced results that are 
competitive with human-produced results.   

 Claimed instance Basis for the claim Reference 
1 Automatic creation of the 

four algorithms for the 
transmembrane segment 
identification problem 

The result is equal to or 
better than a recognized 
human-written algorithm 
for the same problem. 

[18] 

2  Automatic creation of a 
sorting network for seven 
items with only 16 steps 

The result is an 
improvement over a 
patented invention.  

[29] 

3 Automatic synthesis of the 
recognizable ladder 
topology of Butterworth or 
Chebychev lowpass and 
highpass filters 

The result was considered 
an achievement in its field 
when it was discovered.  

Problems 1 and 2 in this 
paper and [25] 

4 Automatic synthesis of the 
recognizable "bridged T" 
topology for filters 

The result was considered 
an achievement in its field 
when it was discovered.  

[25] 

5 Automatic synthesis of the 
recognizable elliptic 
topology for filters 

The result was patented as 
an invention in the past. 

[20] 
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6 Automatic synthesis of a 
difficult-to-design 
asymmetric bandpass filter 

The result is equal to or 
better than a human-
produced result accepted 
and published by a peer-
reviewed journal.  

[26] 

7 Automatic synthesis of a 
recognizable voltage gain 
stage and a Darlington 
emitter-follower section of 
an ampifier 

The result was considered 
an achievement in its field 
when it was discovered.  

[26] 

8 Automatic synthesis of 60 
dB and 96 dB amplifiers 

The result was considered 
an achievement in its field 
when it was discovered.  

Problem 6 in this paper 
and [6], [7], [27] 

9 Automatic synthesis of 
analog computational 
circuits for squaring, 
cubing, square root, cube 
root, and logarithm 

The result solves a 
problem that is widely 
recognized as being 
difficult by experts in the 
field. 

Problem 4 in this paper 
and [31] 

10 Automatic synthesis of a 
real-time analog 
computational circuit for 
time-optimal control of a 
robot 

The result solves a 
problem that is widely 
recognized as being 
difficult by practitioners in 
the field. 

Problem 5 in this paper 
and [30]  

11 Automatic synthesis of a 
voltage reference circuit 

The result solves a 
problem that is widely 
recognized as being 
difficult by practitioners in 
the field. 

[28] 

12 Automatic creation of a 
cellular automaton rule for 
the majority classification 
problem that is better than 
the Gacs-Kurdyumov-
Levin (GKL) rule and 
better than all other known 
rules written by humans 
over the past 20 years 

The result is equal to or 
better than a recognized 
human-written algorithm 
for the same problem. 

[3] 
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13 Automatic creation by 
genetic programming of 
motifs that detect the D–
E–A-D box family of 
proteins and the 
manganese superoxide 
dismutase family as well, 
or slightly better than, the 
human-written motifs 
found in the PROSITE 
database 

The result is an 
improvement over a result 
produced by an 
internationally recognized 
group of experts.  

[19] 

14 Automatic creation of 
classification programs for 
identifying extracellular 
proteins and membrane 
proteins using 
programming motifs 

The result is equal to or 
better than a human-
produced result accepted 
and published by a peer-
reviewed journal.  

[23] 

 
 
 
Over the past four decades, the field of artificial intelligence has been dominated by the 

belief that the goal of getting a computer to solve a problem from a high-level statement of 
the problem can be achieved by designing a knowledge representation, collecting knowledge 
from an expert, codifying that knowledge, depositing the codified knowledge into a 
computer in the form of a knowledge base, and then manipulating the knowledge base using 
logic.  As Lenat [37] stated in 1983,  

All our experiences in AI research have led us to believe that for automatic 
programming, the answer lies in knowledge, in adding a collection of expert 
rules which guide code synthesis and transformation. (Emphasis in original).  

However, the existence of a strongly asserted belief for more than four decades does not 
preclude the possibility that there may be alternative ways of achieving the goal of automatic 
programming that do not rely on knowledge or logic.  Genetic programming is such an 
alternative.  Genetic programming differs from conventional approaches to artificial 
intelligence, machine learning, adaptive systems, automated logic, expert systems, and 
neural networks in the following five fundamental ways:   

• Representation: Genetic programming operates directly in the space of computer 
programs. 
• Role of knowledge: Genetic programming operates without a knowledge base. 
• Role of logic: None. 
• Reliance on transformations of a single point in the search space of the problem to 
another single point: Genetic programming explicitly exploits a population of candidate 
approaches (usually contradictory ones) in its search for a solution.  
• Mechanism for searching the space of possible solutions: Genetic programming 
creates programs by means of the Darwinian principle of survival of the fittest, 



____________________J. R. Koza, F. H Bennett III, D. Andre, and M. A. Keane 

naturally occurring operations such as sexual recombination (crossover), mutation, gene 
duplication, gene deletion, and the mechanisms of developmental biology.  

As to representation, genetic programming operates in the space of possible computer 
programs.  It does not employ the surrogate structures typically used by other techniques of 
artificial intelligence and machine learning, such as if-then rules, Horn clauses, decision 
trees, propositional logic, frames, formal grammars, conceptual clusters, concept sets, 
numerical weight vectors (for neural nets), vectors of numerical coefficients for polynomials 
(or other fixed expressions), classifier system rules, binary decision diagrams, production 
rules, expert system rules, or linear chromosome strings (as used in the genetic algorithm).  
Tellingly, computers are not commonly programmed using any of these surrogate structures.  
Human programmers do not commonly regard any of them as being useful or suitable for 
ordinary programming.  Our view is that if we are really interested in getting computers to 
solve problems without explicitly programming them, then the structures that we should be 
using are computer programs.  That is, we should be conducting the search for a solution to 
the problem of automatic programming in the space of computer programs.  Computer 
programs offer the flexibility to perform computations on variables of many different types, 
perform iterations and recursions, store intermediate results in data structures of various 
types (named memory, indexed memory, matrices, stacks, lists, rings, queues, relational 
memory), perform alternative calculations conditionally based on the outcome of other 
calculations, perform groups of operations in a hierarchical way, and to employ 
parameterizable, reusable, hierarchically callable subprograms (i.e., subroutines).  
Subroutines and iterations are particularly important because they involve reusing code and 
we believe that reusing code is the precondition for scalability in automatic programming as 
well as other areas of artificial intelligence and machine learning.  Of course, once we say 
that what we really want and need is a computer program, we are immediately faced with the 
problem of how to locate the desired program in the space of possible programs.  That is, we 
need a way to fruitfully search program space.  As will be seen, genetic programming 
provides a problem-independent way to automatically search the space of programs in order 
to create a computer program to solve a problem.   

Knowledge has no explicit role in genetic programming.  There is no knowledge 
representation; there is no explicit knowledge base in genetic programming; and there is no 
manipulation of knowledge in genetic programming – by logic or any other means.  The 
practitioners of genetic programming are not against knowledge; they simply say that no one 
seems to know how, in general, to effectively represent it or to productively manipulate it 
across a broad range of problems.  In any event, an explicit knowledge base is not needed 
when using genetic programming.   

Most research in artificial intelligence is based on methods that are logically sound, 
correct, consistent, justifiable, deterministic, orderly, parsimonious, and unequivocal.  Since 
computer science is founded on logic, it is almost second nature for computer scientists to 
unquestioningly assume that every problem-solving technique should be logically sound, 
correct, consistent, justifiable, deterministic, orderly, parsimonious, and unequivocal.  
However, logic has no role in evolution in nature and it has no role in genetic programming.  
Genetic programming is not guided by logic.  It operates by cultivating clearly inconsistent 
and contradictory approaches to solving the problem.  When the goal is automatic 
programming, we believe that the non-logical principles of evolution and natural selection 
should be used instead of the conventional logic-driven and knowledge-based principles of 
artificial intelligence.  We do not say, "knowledge and logic considered harmful," but simply 



Genetic Programming_______________________________________________________________ 

that neither logic nor any knowledge base are necessary to achieve the goal of automatic 
programming.   

Almost every method in artificial intelligence, machine learning, and neural networks and 
almost every non-genetic search procedure operates by transforming a single point in the 
search space of possible solutions to another single point.  Because most methods in artificial 
intelligence, machine learning, and neural networks rely on such point-to-point 
transformations, they appropriately employ hill-climbing.  Genetic programming does not 
rely on a single point.  Instead, genetic programming transforms a population of candidate 
points into a new (and, on average, better) population of points.  Because genetic 
programming operates on a population, it is free to allocate a certain number of trials to 
points that, based on the evidence it has at hand, are seemingly inferior.  This allocation of a 
certain measured number of trials to seemingly inferior individuals means that regions of the 
search space that do not immediately deliver higher payoff are given some attention during 
the search in the hope that they may lead to regions that do provide ultimately higher payoff.   

Concerning its mechanism for searching the space of possible solutions, genetic 
programming uses the only method that has ever produced highly complex systems and 
intelligence – the time-tested method of evolution and natural selection.  Starting with a 
primordial ooze of thousands of randomly created computer programs, genetic programming 
breeds a population of computer programs over many generations by applying the Darwinian 
principle of survival of the fittest, sexual recombination (crossover), mutation, gene 
duplication, gene deletion, and the mechanisms of developmental biology.  

The basic principles of genetic programming are described in the books Genetic 
Programming: On the Programming of Computers by Means of Natural Selection [14] and 
Genetic Programming II: Automatic Discovery of Reusable Programs [15].  See [35] and 
[16] for videotape versions of these books.  Since l992, over 200 authors have published 
over 950 papers that have described numerous creative and innovative extensions to the 
basic idea of genetic programming.  The book Genetic Programming III [21] is forthcoming.   

Since the design process entails creation of a complex structure to satisfy user-defined 
requirements, the technique of genetic programming will be explained in terms of problems 
of synthesizing analog electrical circuits in table 1.  

The design of analog electrical circuits is particularly challenging because it is generally 
viewed as requiring human intelligence and because it is a major activity of practicing 
analog electrical engineers.   

The design process for analog circuits begins with a high-level description of the circuit's 
desired behavior and entails creation of both the topology and the sizing of a satisfactory 
circuit. The topology comprises the gross number of components in the circuit, the type of 
each component (e.g., a resistor), and a list of all connections between the components. The 
sizing involves specifying the values (typically numerical) of each of the circuit's 
components. 

Considerable progress has been made in automating the design of certain categories of 
purely digital circuits; however, the design of analog circuits and mixed analog-digital 
circuits has not proved as amenable to automation [40].  Describing "the analog dilemma," 
Aaserud and Nielsen [1] noted, 

"Analog designers are few and far between.  In contrast to digital design, most 
of the analog circuits are still handcrafted by the experts or so-called 'zahs' of 
analog design.  The design process is characterized by a combination of 
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experience and intuition and requires a thorough knowledge of the process 
characteristics and the detailed specifications of the actual product.  

"Analog circuit design is known to be a knowledge-intensive, multiphase, 
iterative task, which usually stretches over a significant period of time and is 
performed by designers with a large portfolio of skills.  It is therefore 
considered by many to be a form of art rather than a science."  

There has been extensive previous work on the problem of circuit design using simulated 
annealing, artificial intelligence, and other techniques (as outlined in [28]), including work 
using genetic algorithms ([36],  [9], [43]).  However, there has previously been no general 
automated technique for synthesizing, from scratch, an analog electrical circuit from a high-
level statement of the desired behavior of the circuit.  

This paper presents a uniform approach to the automatic design of both the topology and 
sizing of analog electrical circuits. Section 2 presents design problems involving six 
prototypical analog circuits.  Section 3 describes the method.  Section 4 details required 
preparatory steps. Section 5 shows the results for the six problems.  

2. Six Problems of Analog Electrical Circuit Design 
This paper applies genetic programming to a suite of six problems of analog circuit design.  
The circuits comprise a variety of types of components, including transistors, diodes, 
resistors, inductors, and capacitors.  The circuits have varying numbers of inputs and 
outputs.   

(1) Design a one-input, one-output lowpass filter composed of capacitors and inductors 
that passes all frequencies below 1,000 Hz and suppresses all frequencies above 2,000 Hz.  

(2) Design a one-input, one-output highpass filter composed of capacitors and inductors 
that suppresses all frequencies below 1,000 Hz and passes all frequencies above 2,000 Hz.  

(3) Design a one-input, one-output tri-state frequency discriminator (source 
identification) circuit that is composed of resistors, capacitors, and inductors and that 
produces an output of 1/2 volt and 1 volt for incoming signals whose frequencies are within 
10% of 256 Hz and within 10% of 2,560 Hz, respectively, but produces an output of 0 volts 
otherwise.   

(4) Design a one-input, one-output computational circuit that is composed of transistors, 
diodes, resistors, and capacitors and that produces an output voltage equal to the square root 
of its input voltage.  

(5) Design a two-input, one-output time-optimal robot controller circuit that is composed 
of the above components and that navigates a constant-speed autonomous mobile robot with 
nonzero turning radius to an arbitrary destination in minimal time.  

(6) Design a one-input, one-output amplifier composed of the above components and that 
delivers amplification of 60 dB (i.e., 1,000 to 1) with low distortion and low bias.  

3. Automated Design by Genetic Programming 
The circuits are developed using genetic programming ([14], [35]), an extension of the 
genetic algorithm [11] in which the population consists of computer programs. Multipart 
programs consisting of a main program and one or more reusable, parametrized, 
hierarchically-called subprograms can be evolved using automatically defined functions 
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([15], [16]). Architecture-altering operations ([17]) automatically determine the number of 
such subprograms, the number of arguments that each possesses, and the nature of the 
hierarchical references, if any, among such automatically defined functions. For current 
research in genetic programming, see [12], [4], [34], [33], [22], and [5].  

A computer program is not a design.  Genetic programming can be applied to circuits if a 
mapping is established between the program trees (rooted, point-labeled trees – that is, 
acyclic graphs – with ordered branches) used in genetic programming and the line-labeled 
cyclic graphs germane to electrical circuits.  The principles of developmental biology, the 
creative work of Kitano [13] on using genetic algorithms to evolve neural networks, and the 
innovative work of Gruau [10] on using genetic programming to evolve neural networks 
provide the motivation for mapping trees into circuits by means of a growth process that 
begins with an embryo. For circuits, the embryo typically includes fixed wires that connect 
the inputs and outputs of the particular circuit being designed and certain fixed components 
(such as source and load resistors). The embryo also contains modifiable wires.  The circuit 
does not produce interesting output until these modifiable wires are modified.  A circuit is 
developed by progressively applying the functions in a program tree to the modifiable wires 
of the embryo (and, during the developmental process, new modifiable wires and 
components).  See also [8]. 

The functions in the circuit-constructing program trees are divided into four categories: 
(1) topology-modifying functions that alter the circuit topology, (2) component-creating 
functions that insert components into the circuit, (3) arithmetic-performing functions that 
appear in subtrees as argument(s) to the component-creating functions and specify the 
numerical value of the component, and (4) automatically defined functions that appear in the 
function-defining branches and potentially enable certain substructures of the circuit to be 
reused (with parameterization). 

Each branch of the program tree is created in accordance with a constrained syntactic 
structure. Branches are composed of construction-continuing subtrees that continue the 
developmental process and arithmetic-performing subtrees that determine the numerical 
value of components.  Topology-modifying functions have one or more construction-
continuing subtrees, but no arithmetic-performing subtree. Component-creating functions 
have one or more construction-continuing subtrees and typically have one arithmetic-
performing subtree. This constrained syntactic structure is preserved using structure-
preserving crossover with point typing (see [15]). 

3.1. The Embryonic Circuit 

An electrical circuit is created by executing a circuit-constructing program tree that contains 
various component-creating and topology-modifying functions. Each tree in the population 
creates one circuit. The specific embryo used depends on the number of inputs and outputs. 

Figure 1 shows a one-input, one-output embryonic circuit in which VSOURCE is the 
input signal and VOUT is the output signal (the probe point).  The circuit is driven by an 
incoming source VSOURCE. There is a fixed load resistor RLOAD and a fixed source 
resistor RSOURCE. In addition to the fixed components, there is a modifiable wire Z0 
between nodes 2 and 3. All development originates from this modifiable wire.   
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Figure 1  One-input, one-output embryo.  3.2. Component-Creating Functions 

Each program tree contains component-creating functions and topology-modifying 
functions. The component-creating functions insert a component into the developing circuit 
and assign component value(s) to the component.  

Each component-creating functions has a writing head that points to an associated 
highlighted component in the developing circuit and modifies that component in a specified 
manner. The construction-continuing subtree of each component-creating functions points to 
a successor function or terminal in the circuit-constructing program tree. 

The arithmetic-performing subtree of a component-creating functions consists of a 
composition of arithmetic functions (addition and subtraction) and random constants (in the 
range -1.000 to +1.000). The arithmetic-performing subtree specifies the numerical value of 
a component by returning a floating-point value that is interpreted on a logarithmic scale as 
the value for the component in a range of 10 orders of magnitude (using a unit of measure 
that is appropriate for the particular type of component). 

The two-argument resistor-creating R function causes the highlighted component to be 
changed into a resistor. The value of the resistor in kilo Ohms is specified by its arithmetic-
performing subtree.   

Figure 2 shows a modifiable wire Z0 connecting nodes 1 and 2 of a partial circuit 
containing four capacitors (C2, C3, C4, and C5). The circle indicates that Z0 has a writing 
head (i.e., is the highlighted component and that Z0 is subject to subsequent modification).  
Figure 3 shows the result of applying the R function to the modifiable wire Z0 of figure 2. 
The circle indicates that the newly created R1 has a writing head so that R1 remains subject 
to subsequent modification.  

 
Figure 2  Modifiable wire Z0.   
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Figure 3  Result of applying the R function.   

Similarly, the two-argument capacitor-creating C function causes the highlighted 
component to be changed into a capacitor whose value in micro Farads is specified by its 
arithmetic-performing subtrees.  

The one-argument Q_D_PNP diode-creating function causes a diode to be inserted in lieu 
of the highlighted component. This function has only one argument because there is no 
numerical value associated with a diode and thus no arithmetic-performing subtree.  In 
practice, the diode is implemented here using a pnp transistor whose collector and base are 
connected to each other. The Q_D_NPN function inserts a diode using an npn transistor in a 
similar manner. 

There are also six one-argument transistor-creating functions (Q_POS_COLL_NPN, 
Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, 
Q_NEG_COLL_PNP) that insert a bipolar junction transistor in lieu of the highlighted 
component and that directly connect the collector or emitter of the newly created transistor 
to a fixed point of the circuit (the positive power supply, ground, or the negative power 
supply). For example, the Q_POS_COLL_NPN function inserts a bipolar junction transistor 
whose collector is connected to the positive power supply.  

Each of the functions in the family of six different three-argument transistor-creating 
Q_3_NPN functions causes an npn bipolar junction transistor to be inserted in place of the 
highlighted component and one of the nodes to which the highlighted component is 
connected. The Q_3_NPN function creates five new nodes and three modifiable wires. There 
is no writing head on the new transistor, but there is a writing head on each of the three new 
modifiable wires. There are 12 members (called Q_3_NPN0, ..., Q_3_NPN11) in this family 
of functions because there are two choices of nodes (1 and 2) to be bifurcated and then there 
are six ways of attaching the transistor's base, collector, and emitter after the bifurcation. 
Similarly the family of 12 Q_3_PNP functions causes a pnp bipolar junction transistor to be 
inserted.  

3.3. Topology-Modifying Functions 

Each topology-modifying function in a program tree points to an associated highlighted 
component and modifies the topology of the developing circuit. 

The three-argument SERIES division function creates a series composition of the 
highlighted component (with a writing head), a copy of it (with a writing head), one new 
modifiable wire (with a writing head), and two new nodes.  

The four-argument PARALLEL0 parallel division function creates a parallel composition 
consisting of the original highlighted component (with a writing head), a copy of it (with a 
writing head), two new modifiable wires (each with a writing head), and two new nodes. 
Figure 4 shows the result of applying PARALLEL0 to the resistor R1 from figure 3.   
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Figure 4  Result of the PARALLEL0 function.The one-argument polarity-reversing FLIP 

function reverses the polarity of the highlighted component.  
There are six three-argument functions (T_GND_0, T_GND_1, T_POS_0, T_POS_1, 

T_NEG_0, T_NEG_1) that insert two new nodes and two new modifiable wires, and then 
make a connection to ground, positive power supply, or negative power supply, respectively.  

There are two three-argument functions (PAIR_CONNECT_0 and PAIR_CONNECT_1) 
that enable distant parts of a circuit to be connected together. The first PAIR_CONNECT to 
occur in the development of a circuit creates two new wires, two new nodes, and one 
temporary port. The next PAIR_CONNECT creates two new wires and one new node, 
connects the temporary port to the end of one of these new wires, and then removes the 
temporary port. 

The one-argument NOOP function has no effect on the highlighted component; however, 
it delays activity on the developmental path on which it appears in relation to other 
developmental paths in the overall program tree.  

The zero-argument END function causes the highlighted component to lose its writing 
head, thereby ending that particular developmental path.  

The zero-argument SAFE_CUT function causes the highlighted component to be 
removed from the circuit provided that the degree of the nodes at both ends of the 
highlighted component is three (i.e., no dangling components or wires are created).  

4. Preparatory Steps 
Before applying genetic programming to a problem of circuit design, seven major 
preparatory steps are required: (1) identify the suitable embryonic circuit, (2) determine the 
architecture of the overall circuit-constructing program trees, (3) identify the terminals of the 
program trees, (4) identify the primitive functions contained in these program trees, (5) 
create the fitness measure, (6) choose parameters, and (7) determine the termination criterion 
and method of result designation.  

4.1. Embryonic Circuit 

The embryonic circuit used on a particular problem depends on the circuit's number of inputs 
and outputs.  

For example, in the robot controller circuit, the circuit has two inputs, VSOURCE1 and 
VSOURCE2, not just one.  Moreover, each input needs its own separate source resistor 
(RSOURCE1 and RSOURCE2).  Consequently, the embryo has three modifiable wires 
Z0, Z1, and Z2 in order to provide full connectivity between the two inputs and the one 
output.  All development then originates from these three modifiable wires.   
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There is often considerable flexibility in choosing the embryonic circuit.  For example, an 
embryo with two modifiable wires (Z0 and Z1) was used for the lowpass and highpass 
filters.  In some problems, such as the amplifier, the embryo contains additional fixed 
components because of additional problem-specific functionality of the harness (as described 
in [27] and [28]).   

4.2. Program Architecture 

Since there is one result-producing branch in the program tree for each modifiable wire in 
the embryo, the architecture of each circuit-constructing program tree depends on the 
embryonic circuit. One result-producing branch was used for the frequency discriminator 
and the computational circuit; two were used for lowpass and highpass filter problems; and 
three were used for the robot controller and amplifier. The architecture of each circuit-
constructing program tree also depends on the use, if any, of automatically defined 
functions. Automatically defined functions and architecture-altering operations were used in 
the frequency discriminator, robot controller, and amplifier. For these problems, each 
program in the initial population of programs had a uniform architecture with no 
automatically defined functions. In later generations, the number of automatically defined 
functions, if any, emerged as a consequence of the architecture-altering operations.   

4.3. Function and Terminal Sets 

The function set for each design problem depended on the type of electrical components that 
were used to construct the circuit.  Inductors and capacitors were used for the lowpass and 
highpass filter problems.  Capacitors, diodes, and transistors were used for the computational 
circuit, the robot controller, and the amplifier. Resistors (in addition to inductors and 
capacitors) were used for the frequency discriminator.  When transistors were used, 
functions to provide connectivity to the positive and negative power supplies were also 
included.   

For the computational circuit, the robot controller, and the amplifier, the function set, 
Fccs-initial, for each construction-continuing subtree was 
Fccs-initial = {R, C, SERIES, PARALLEL0, PARALLEL1, FLIP, NOOP, T_GND_0, 

T_GND_1, T_POS_0, T_POS_1, T_NEG_0, T_NEG_1, PAIR_CONNECT_0, 
PAIR_CONNECT_1, Q_D_NPN, Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11, 
Q_3_PNP0, ..., Q_3_PNP11, Q_POS_COLL_NPN, Q_GND_EMIT_NPN, 
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, 
Q_NEG_COLL_PNP}. 

For the npn transistors, the Q2N3904 model was used. For pnp transistors, the Q2N3906 
model was used. 

The initial terminal set, Tccs-initial, for each construction-continuing subtree was 
Tccs-initial = {END, SAFE_CUT}.  

The initial terminal set, Taps-initial, for each arithmetic-performing subtree consisted of 
Taps-initial = {←}, 
where ← represents floating-point random constants from –1.0 to +1.0.  

The function set, Faps, for each arithmetic-performing subtree was, 
Faps = {+, -}.  
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The terminal and function sets were identical for all result-producing branches for a 
particular problem. 

For the lowpass filter, highpass filter, and frequency discriminator, there was no need for 
functions to provide connectivity to the positive and negative power supplies.   

For the frequency discriminator, the robot controller, and the amplifier, the architecture-
altering operations were used and the set of potential new functions, Fpotential, was 
Fpotential = {ADF0, ADF1, ...}.  

The set of potential new terminals, Tpotential, for the automatically defined functions was 
Tpotential = {ARG0}.  

The architecture-altering operations change the function set, Fccs for each construction-
continuing subtree of all three result-producing branches and the function-defining branches, 
so that 
Fccs = Fccs-initial ≈ Fpotential. 

The architecture-altering operations generally change the terminal set for automatically 
defined functions, Taps-adf, for each arithmetic-performing subtree, so that 
Taps-adf = Taps-initial ≈ Tpotential.  

4.4. Fitness Measure 

The fitness measure varies for each problem. The high-level statement of desired circuit 
behavior is translated into a well-defined measurable quantity that can be used by genetic 
programming to guide the evolutionary process. The evaluation of each individual circuit-
constructing program tree in the population begins with its execution. This execution 
progressively applies the functions in each program tree to an embryonic circuit, thereby 
creating a fully developed circuit. A netlist is created that identifies each component of the 
developed circuit, the nodes to which each component is connected, and the value of each 
component. The netlist becomes the input to the 217,000-line SPICE (Simulation Program 
with Integrated Circuit Emphasis) simulation program ([38]).  SPICE then determines the 
behavior of the circuit. It was necessary to make considerable modifications in SPICE so that 
it could run as a submodule within the genetic programming system.  

 4.4.1. Lowpass Filter 
A simple filter is a one-input, one-output electronic circuit that receives a signal as its input 
and passes the frequency components of the incoming signal that lie in a specified range 
(called the passband) while suppressing the frequency components that lie in all other 
frequency ranges (the stopband).   

The desired lowpass LC filter should have a passband below 1,000 Hz and a stopband 
above 2,000 Hz. The circuit is driven by an incoming AC voltage source with a 2 volt 
amplitude. If the source (internal) resistance RSOURCE and the load resistance RLOAD in 
the embryonic circuit are each 1 kilo Ohm, the incoming 2 volt signal is divided in half.  

 The attenuation of the filter is defined in terms of the output signal relative to the 
reference voltage (half of 2 volt here). A decibel is a unitless measure of relative voltage that 
is defined as 20 times the common (base 10) logarithm of the ratio between the voltage at a 
particular probe point and a reference voltage.  

In this problem, a voltage in the passband of exactly 1 volt and a voltage in the stopband 
of exactly 0 volts is regarded as ideal. The (preferably small) variation within the passband is 
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called the passband ripple. Similarly, the incoming signal is never fully reduced to zero in 
the stopband of an actual filer. The (preferably small) variation within the stopband is called 
the stopband ripple. A voltage in the passband of between 970 millivolts and 1 volt (i.e., a 
passband ripple of 30 millivolts or less) and a voltage in the stopband of between 0 volts and 
1 millivolts (i.e., a stopband ripple of 1 millivolts or less) is regarded as acceptable. Any 
voltage lower than 970 millivolts in the passband and any voltage above 1 millivolts in the 
stopband is regarded as unacceptable. 

A fifth-order elliptic (Cauer) filter with a modular angle Θ of 30 degrees (i.e., the arcsin 
of the ratio of the boundaries of the passband and stopband) and a reflection coefficient ρ of 
24.3% is required to satisfy these design goals.   

Since the high-level statement of behavior for the desired circuit is expressed in terms of 
frequencies, the voltage VOUT is measured in the frequency domain. SPICE performs an 
AC small signal analysis and report the circuit's behavior over five decades (between 1 Hz 
and 100,000 Hz) with each decade being divided into 20 parts (using a logarithmic scale), so 
that there are a total of 101 fitness cases.  

Fitness is measured in terms of the sum over these cases of the absolute weighted 
deviation between the actual value of the voltage that is produced by the circuit at the probe 
point VOUT and the target value for voltage. The smaller the value of fitness, the better. A 
fitness of zero represents an (unattainable) ideal filter. 

Specifically, the standardized fitness is 

F(t) = 
i=0

100
∑ (W (d ( f i ), f i )d ( f i )) 

where fi is the frequency of fitness case i; d(x) is the absolute value of the difference 
between the target and observed values at frequency x; and W(y,x) is the weighting for 
difference y at frequency x. 

The fitness measure is designed to not penalize ideal values, to slightly penalize every 
acceptable deviation, and to heavily penalize every unacceptable deviation. Specifically, the 
procedure for each of the 61 points in the 3-decade interval between 1 Hz and 1,000 Hz for 
the intended passband is as follows:  

• If the voltage equals the ideal value of 1.0 volt in this interval, the deviation is 0.0.  
• If the voltage is between 970 millivolts and 1 volt, the absolute value of the deviation 
from 1 volt is weighted by a factor of 1.0.  
• If the voltage is less than 970 millivolts, the absolute value of the deviation from 1 
volt is weighted by a factor of 10.0.   

The acceptable and unacceptable deviations for each of the 35 points from 2,000 Hz to 
100,000 Hz in the intended stopband are similarly weighed (by 1.0 or 10.0) based on the 
amount of deviation from the ideal voltage of 0 volts and the acceptable deviation of 1 
millivolts.  

For each of the five "don't care" points between 1,000 and 2,000 Hz, the deviation is 
deemed to be zero. 

The number of “hits” for this problem (and all other problems herein) is defined as the 
number of fitness cases for which the voltage is acceptable or ideal or that lie in the "don't 
care" band (for a filter).  

Many of the random initial circuits and many that are created by the crossover and 
mutation operations in subsequent generations cannot be simulated by SPICE. These circuits 
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receive a high penalty value of fitness (108) and become the worst-of-generation programs 
for each generation.  

For details, see Koza, Bennett, Andre, and Keane [25].  

4.4.2. Highpass Filter 
The fitness cases for the highpass filter are the same 101 points in the five decades of 
frequency between 1 Hz and 100,000 Hz as for the lowpass filter.  The fitness measure is 
substantially the same as that for the lowpass filter problem above, except that the locations 
of the passband and stopband are reversed.  

4.4.3. Tri-state Frequency Discriminator 
Fitness is the sum, over 101 fitness cases, of the absolute weighted deviation between the 
actual value of the voltage that is produced by the circuit and the target value.  

The three points that are closest to the band located within 10% of 256 Hz are 229.1 Hz, 
251.2 Hz, and 275.4 Hz.  The procedure for each of these three points is as follows: If the 
voltage equals the ideal value of 1/2 volts in this interval, the deviation is 0.0.  If the voltage 
is more than 240 millivolts from 1/2 volts, the absolute value of the deviation from 1/2 volts 
is weighted by a factor of 20.  If the voltage is more than 240 millivolts of 1/2 volts, the 
absolute value of the deviation from 1/2 volts is weighted by a factor of 200.  This 
arrangement reflects the fact that the ideal output voltage for this range of frequencies is 1/2 
volts, the fact that a 240 millivolts discrepancy is acceptable, and the fact that a larger 
discrepancy is not acceptable.   

Similar weighting was used for the three points (2,291 Hz, 2,512 Hz, and 2,754 Hz) that 
are closest to the band located within 10% of 2,560 ,Hz.  

The procedure for each of the remaining 95 points is as follows:  If the voltage equals the 
ideal value of 0 volts, the deviation is 0.0.  If the voltage is within 240 millivolts of 0 volts, 
the absolute value of the deviation from 0 volts is weighted by a factor of 1.0.  If the voltage 
is more than 240 millivolts from  0 volts, the absolute value of the deviation from 0 volts is 
weighted by a factor of 10.  For details, see [32]. 

4.4.4. Computational Circuit 
SPICE is called to perform a DC sweep analysis at 21 equidistant voltages between –250 
millivolts and +250 millivolts. Fitness is the sum, over these 21 fitness cases, of the absolute 
weighted deviation between the actual value of the voltage that is produced by the circuit 
and the target value for voltage. For details, see 31].   

4.4.5. Time-Optimal Robot Controller Circuit 
The goal in this time-optimal navigation problem is to find a strategy for continuously 
controlling the movement of a constant-speed moving object with a nonzero turning radius 
to an arbitrary destination point.  If the robot has a nonzero turning radius, this problem 
cannot be solved merely by executing a hill-climbing action that greedily improves the 
distance between the robot and the destination at every intermediate point along the robot's 
trajectory.  Instead, momentarily disadvantageous actions must be taken in the short term in 
order to achieve the long-term objective.  

An evolved computer program could be installed in an actual robot by writing a computer 
program for an embeded digital controller residing in the robot.  When the robot with this 
embeded digital computer is operating, the robot's current location would be sensed in 
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analog form.  This analog input would then be converted into digital form using an analog-
to-digital converter.  Then, the embeded digital processor would perform a digital 
calculation consisting of a sequence of arithmetic and conditional operations on the digital 
data.  Finally, the digital output would be passed to a digital-to-analog converter that would 
convert the program's digital output into an analog signal.  The resulting analog signal 
would, in turn, cause the robot to move in the specified direction.   

Notice that the above approach has two major phases.  First, the time-optimal computer 
program for controlling the robot must be created (say, by genetic programming).  Secondly, 
the computer program must be installed in a digital computer resident in the robot.  This 
section illustrates a more holistic approach to this problem in which there is one phase, 
instead of two.  The goal here to evolve the design for a real-time analog circuit for directly 
controlling a robot in the required time-optimal way.  There will be no intermediate 
computer program consisting of addition, subtraction, multiplication, division, or conditional 
branching operatons; and there will be no digital prcoessor resident in the robot.  More 
specifically, the goal here is to evolve the design for a real-time analog electrical circuit for 
controlling the trajectory of a robot with nonzero turning radius (moving at constant speed) 
such that the robot moves to an arbitrary destination point in minimal time.   

The fitness of a robot controller was evaluated using 72 randomly chosen fitness cases 
each representing a different target point. Fitness is the sum, over the 72 fitness cases, of the 
travel times. If the robot came within a capture radius of 0.28 meters of its target point 
before the end of the 80 time steps allowed for a particular fitness case, the contribution to 
fitness for that fitness case was the actual time. However, if the robot failed to come within 
the capture radius during the 80 time steps, the contribution to fitness was 0.160 hours (i.e., 
double the worst possible time).  

SPICE performs a nested DC sweep, which provides a way to simulate the DC behavior 
of a circuit with two inputs. It resembles a nested pair of FOR loops in a computer program 
in that both of the loops have a starting value for the voltage, an increment, and an ending 
value for the voltage. For each voltage value in the outer loop, the inner loop simulates the 
behavior of the circuit by stepping through its range of voltages. Specifically, the starting 
value for voltage is –4 volt, the step size is 0.2 volt, and the ending value is +4 volt. These 
values correspond to the dimensions of the robot's world of 64 square meters extending 4 
meters in each of the four directions from the origin of a coordinate system (i.e., 1 volt 
equals 1 meter).  For details, see [30]. 

4.4.6. 60 dB Amplifier 
SPICE was requested to perform a DC sweep analysis to determine the circuit's response for 
several different DC input voltages. An ideal inverting amplifier circuit would receive the 
DC input, invert it, and multiply it by the amplification factor. A circuit is flawed to the 
extent that it does not achieve the desired amplification, the output signal is not perfectly 
centered on 0 volts(i.e., it is biased), or the DC response is not linear.  Fitness is calculated 
by summing an amplification penalty, a bias penalty, and two non-linearity penalties – each 
derived from these five DC outputs.  For details, see [7]. 

4.5. Control Parameters 

The population size, M, was 640,000 for all problems.  Other parameters were substantially 
the same for each of the six problems and can be found in the references cited above.   
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4.6. Implementation on Parallel Computer 

Each problem was run on a medium-grained parallel Parsytec computer system [2] 
consisting of 64 80-MHz PowerPC 601 processors arranged in an 8 by 8 toroidal mesh with 
a host PC Pentium type computer. The distributed genetic algorithm was used with a 
population size of Q = 10,000 at each of the D = 64 demes (semi-isolated subpopulations). 
On each generation, four boatloads of emigrants, each consisting of B = 2% (the migration 
rate) of the node's subpopulation (selected on the basis of fitness) were dispatched to each of 
the four adjacent processing nodes.  

5. Results 
In all six problems, fitness was observed to improve over successive generations. A large 
majority of the randomly created initial circuits of generation 0 were not able to be simulated 
by SPICE; however, most were simulatable after only a few generations.  Satisfactory results 
were generated in every case on the first or second trial.  When two runs were required, the 
first produced an almost satisfactory result.  This rate of success suggests that the capabilities 
of the approach and current computing system have not been fully exploited.   

5.1. Lowpass Filter 

Many of the runs produced lowpass filters having a topology similar to that employed by 
human engineers. For example, in generation 32 of one run, a circuit (figure 5) was evolved 
with a near-zero fitness of 0.00781.  The circuit was 100% compliant with the design 
requirements in that it scored 101 hits (out of 101).  After the evolutionary run, this circuit 
(and all evolved circuits herein) were simulated anew using the commercially available 
MicroSim circuit simulator to verify performance.  As can be seen, inductors appear in series 
horizontally across the top of the figure, while capacitors appear vertically as shunts to 
ground. This circuit had the recognizable ladder topology (46) of a Butterworth or 
Chebychev lowpass filter.   

 
Figure 5  Evolved 7-rung ladder lowpass filter.  Figure 6 shows the behavior in the 

frequency domain of this evolved lowpass filter. As can be seen, the evolved circuit delivers 
about 1 volt for all frequencies up to 1,000 Hz and about 0 volts for all frequencies above 
2,000 Hz.   
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In another run, a 100% compliant recognizable "bridged T" arrangement was evolved.  In 
yet another run using automatically defined functions, a 100% compliant circuit emerged 
with the recognizable elliptic topology that was invented and patented by Cauer. When 
invented. the Cauer filter was a significant advance (both theoretically and commercially) 
over the Butterworth and Chebychev filters.   

Thus, genetic programming rediscovered the ladder topology of the Butterworth and 
Chebychev filters, the "bridged T" topology, and the elliptic topology.   

 
Figure  6  Frequency domain behavior of genetically evolved 7-rung ladder lowpass filter.  

It is important to note that when we performed the preparatory steps for applying genetic 
programming to the problem of synthesizing a lowpass filter, we did not employ any 
significant domain knowledge from the field of electrical engineering.  We did not 
incorporate knowledge of Kirchhoff's laws, integro-differential equations, Laplace 
transforms, poles, zeroes, or the other mathematical techniques and insights about filters that 
are known to electrical engineers who design analog filters.  In spite of this absence of 
explicit domain knowledge, genetic programming evolved a 100% compliant circuit for the 
problem of designing an LC lowpass filter that embodied the ladder topology that is well 
known in the field of electrical engineering.   

The reinvention by genetic programming of the recognizable ladder topology of 
Butterworth or Chebychev lowpass filters is an instance where genetic programming has 
produced a result that is competitive with those created by inventive and knowledgeable 
humans.  It satisfies Arthur Samuel's criterion [42] for artificial intelligence and machine 
learning, namely 

[T]he aim [is] ... to get machines to exhibit behavior which if done by humans 
would be assumed to involve the use of intelligence.  

5.2. Highpass Filter 

In generation 27 of one run, a 100% compliant circuit (figure 7) was evolved with a near-
zero fitness of 0.213. This circuit has four capacitors and five inductors (in addition to the 
fixed components of the embryo). Capacitors appear in series horizontally across the top of 
the figure, while inductors appear vertically as shunts to ground.  



____________________J. R. Koza, F. H Bennett III, D. Andre, and M. A. Keane 

 
Figure 7  Evolved four-rung ladder highpass filter.  Figure 8 shows the behavior in the 

frequency domain of this evolved highpass filter.  As desired, the evolved highpass delivers 
about 0 volts for all frequencies up to 1,000 Hz and about 1 volt for all frequencies above 
2,000 Hz.  

 
Figure  8  Frequency domain behavior of evolved four-rung ladder highpass filter.  The 

reversal of roles for the capacitors and inductors in lowpass and highpass ladder filters is 
well known to electrical engineers and can be elegantly explained based on the duality of the 
single terms (derivatives versus integrals) in the integro-differential equations that represent 
the voltages and currents of the inductors and capacitors in the loops and nodes of a circuit.  
However, genetic programming was not given any domain knowledge concerning the 
duality of anything.  In fact, the fitness measure was the only difference between the 
preparatory steps for the highpass and lowpass filters.  Thus, in spite of the absence of 
explicit domain knowledge about duality or electrical engineering, genetic programming 
evolved a 100% compliant highpass filter embodying the appropriate highpass ladder 
topology.  Using the fitness measure appropriate for highpass filters, genetic programming 
searched the same space (i.e., the space of circuit-constructing program trees composed of 
the same component-creating functions and the same topology-modifying functions) and 
discovered circuit-constructing program tree that yielded a 100%-complaint highpass filter.   

The rediscovery by genetic programming of the reversal of roles of capacitors and 
inductors in lowpass and filters is an instance where genetic programming has produced a 
result that is competitive with those created by inventive and knowledgeable humans.  This 
result (and all of the succeeding results in this paper) satisfies Arthur Samuel's criterion [42] 
for success in artificial intelligence and machine learning.   
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5.3. Tri-state Frequency Discriminator 

The evolved three-way tri-state frequency discriminator circuit from generation 106 scores 
101 hits (out of 101).  Figure 9 shows this circuit (after expansion of its automatically 
defined functions). The circuit produces the desired outputs of 1 volt and 1/2 volts (each 
within the allowable tolerance) for the two specified bands of frequencies and the desired 
near-zero signal for all other frequencies.   

5.4. Computational Circuit 

The genetically evolved computational circuit for the square root from generation 60 (figure 
10), achieves a fitness of 1.68, and has 36 transistors, two diodes, no capacitors, and 12 
resistors (in addition to the source and load resistors in the embryo).  The output voltages 
produced by this best-of-run circuit are almost exactly the required values.  

 
Figure 9  Evolved frequency discriminator.   
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Figure 10  Evolved square root circuit.  

 
Figure 11  Best circuit of generation 0.   
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Figure 12  Best circuit of generation 8.   

 
Figure 13  Best circuit of generation 17.   

5.5. Robot Controller Circuit 

The best circuit from generation 0 (figure 11) scores 61 hits (out of 72) and achieves a 
fitness of 3.005 hours and has seven transistors, one diode, and one resistor (not counting the 
three resistors of the harness and those contained in the power supplies).  Its circuit-
constructing program tree has four, 48, and 11 points, respectively, in its three result-
producing branches.   

The best circuit from generation 8 (figure 12) scores 67 hits and achieves a fitness of 2.57 
hours and has seven transistors, one diode, and one resistor.   

The best circuit (figure 13) from generation 17 scores 69 hits and achieves a fitness of 
2.06 hours and has 12 transistors, no diodes, and one resistor. .   

The best circuit of generation 20 scores 72 hits (out of 72) and achieves a fitness of 1.602 
hours.  This is the first robot controller circuit that reaches all 72 destinations within the 
alloted time.  
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The best-of-run time-optimal robot controller circuit (figure 14) appeared in generation 
31, scores 72 hits, and achieves a near-optimal fitness of 1.541 hours.  In comparison, the 
optimal value of fitness for this problem is known to be 1.518 hours.  This best-of-run circuit 
has 10 transistors and 4 resistors.  

 
Figure 14  Evolved real-time robot controller circuit.  5.6. 60 dB Amplifier 

The best circuit from generation 109 (figure 15) achieves a fitness of 0.178. Based on a DC 
sweep, the amplification is 60 dB here (i.e., 1,000-to-1 ratio) and the bias is 0.2 volt. Based 
on a transient analysis at 1,000 Hz, the amplification is 59.7 dB; the bias is 0.18 volts; and 
the distortion is very low (0.17%). Based on an AC sweep, the amplification at 1,000 Hz is 
59.7 dB; the flatband gain is 60 dB; and the 3 dB bandwidth is 79, 333 Hz. Thus, a high-gain 
amplifier with low distortion and acceptable bias has been evolved. 

5.7. Other Circuits 

Numerous other circuits have been similarly designed, including asymmetric bandpass filters 
[26], crossover filters [24], double passband filters [20], amplifiers with high power supply 
rejection ratio [6], other amplifiers [27], a temperature-sensing circuit, and a voltage 
reference circuit [28].  

5.8. Another Robotics-Related Genetically Evolved Program 

There are other instances where genetic programming has created a computer program that is 
competitive with humans.  For example, at the RoboCup97 competition at the International 
Joint Conference on Artificial Intelligence in Nagoya, Japan in August 1997, Sean Luke's 
entry [39] was a soccer-playing program that was evolved by genetic programming.  The 
other entries in the competition were computer programs written by teams of humans.  
Luke's entry came in third place in this international competition and received the Science 
award for the competition.  
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Figure 15  Evolved amplifier.  

6. Conclusion 
Genetic programming evolved the topology and sizing of six different prototypical analog 
electrical circuits, including a lowpass filter, a highpass filter, a tri-state frequency 
discriminator circuit, a 60 dB amplifier, a computational circuit for the square root, and a 
time-optimal robot controller circuit.  All six of these genetically evolved circuits constitute 
instances of an evolutionary computation technique solving a problem that is usually thought 
to require human intelligence.  
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