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1. THE PROBLEM OF AUTOMATIC 
PROGRAMMING 

One of the central challenges of computer science is to get a 
computer to solve a problem without explicitly programming it.  
In particular, it would be desirable to have a problem-
independent system whose input is a high-level statement of a 
problem's requirements and whose output is a working computer 
program that solves the given problem.  The challenge is to 
make computers do what needs to be done, without having to 
tell the computer exactly how to do it.  

Alan Turing recognized that machine intelligence may be 
realized using a biological approach.  In his 1948 essay 
"Intelligent Machines" [9], Turing made the connection between 
search techniques and the challenge of getting a computer to 
solve a problem without explicitly programming it.   

Further research into intelligence of machinery will 
probably be very greatly concerned with “searches” 
...  



 

Turing then identified three broad approaches by which 
search techniques might be used to automatically create an 
intelligent computer program.   

One approach that Turing identified is a search through the 
space of integers representing candidate computer programs.  
This approach reflects the orientation of much of Turing’s own 
work on the logical basis for computer algorithms.  

A second approach that Turing identified is the "cultural 
search" which relies on knowledge and expertise acquired over a 
period of years from others.  This approach is akin to present-
day knowledge-based systems and expert systems.   

The third approach that Turing identified is “genetical or 
evolutionary search.”  Turing said, 

There is the genetical or evolutionary search by 
which a combination of genes is looked for, the 
criterion being the survival value. The remarkable 
success of this search confirms to some extent the 
idea that intellectual activity consists mainly of 
various kinds of search. 

Turing did not specify in this essay how to conduct the 
"genetical or evolutionary search" for a computer program.  
However, his 1950 paper "Computing Machinery and 
Intelligence" [24] suggested how natural selection and evolution 
might be incorporated into the search for intelligent machines.   

We cannot expect to find a good child-machine at the 
first attempt.  One must experiment with teaching one 
such machine and see how well it learns.  One can 
then try another and see if it is better or worse.  There 
is an obvious connection between this process and 
evolution, by the identifications 

Structure of the child machine = Hereditary material 

Changes of the child machine = Mutations 

Natural selection = Judgment of the experimenter 
Since the 1940s, an enormous amount of research effort has 

been expended on trying to achieve machine intelligence using 
what Turing called the “logical” approach and the “cultural” 
approach.  In contrast, Turing’s third way to achieve machine 
intelligence – namely, “genetical or evolutionary” approach – 
has received comparatively less effort.   

This paper is about genetic programming – a way to 
implement Turing’s third way to achieve machine intelligence.  
Genetic programming is a “genetical or evolutionary” technique 
that automatically creates a computer program from a high-level 
statement of a problem's requirements.  In particular, genetic 
programming is an extension of the genetic algorithm described 
in John Holland's pioneering 1975 book Adaptation in Natural 
and Artificial Systems [7].  Starting with a primordial ooze of 
thousands of randomly created computer programs, genetic 



 

programming progressively breeds a population of computer 
programs over a series of generations.  Genetic programming 
employs the Darwinian principle of survival of the fittest, 
analogs of naturally occurring operations such as sexual 
recombination (crossover), mutation, gene duplication, and gene 
deletion, and certain mechanisms of developmental biology [2, 
3, 4, 10,12 – 19, 23].  

When we talk about a computer program (fig. 1), we mean 
an entity that receives inputs, performs computations, and 
produces outputs.  Computer programs perform basic arithmetic 
and conditional computations on variables of various types 
(including integer, floating-point, and Boolean variables), 
perform iterations and recursions, store intermediate results in 
memory, contain reusable groups of operations that are 
organized into subroutines, pass information to subroutines in 
the form of dummy variables (formal parameters), receive 
information from subroutines in the form of return values (or 
through side effects). The subroutines and main program are 
typically organized into a hierarchy.  

 

---Fig. 1 is at end of paper and is also provided as a separate file 
in EPS format 

 
Fig. 1  A computer program.  

We think that it is reasonable to expect that a system for 
automatically creating computer programs should be able to 
create entities that possess most or all of the above capabilities 
(or reasonable equivalents of them).  A list of attributes for a 
system for automatically creating computer programs might 
include the following 16 items:  

• Attribute No. 1 (Starts with "What needs to be done"): 
It starts from a high-level statement specifying the 
requirements of the problem.   
• Attribute No. 2 (Tells us "How to do it"): It produces a 
result in the form of a sequence of steps that satisfactorily 
solves the problem.  
• Attribute No. 3 (Produces a computer program): It 
produces an entity that can run on a computer.   
• Attribute No. 4 (Automatic determination of program 
size):  It has the ability to automatically determine the 
number of steps that must be performed and thus does not 
require the user to prespecify the exact size of the solution.   



 

• Attribute No. 5 (Code reuse): It has the ability to 
automatically organize useful groups of steps so that they 
can be reused.  
• Attribute No. 6 (Parameterized reuse):  It has the ability 
to reuse groups of steps with different instantiations of 
values (formal parameters or dummy variables).   
• Attribute No. 7 (Internal storage): It has the ability to use 
internal storage in the form of single variables, vectors, 
matrices, arrays, stacks, queues, lists, relational memory, and 
other data structures.  
• Attribute No. 8 (Iterations, loops, and recursions): It has 
the ability to implement iterations, loops, and recursions.  
• Attribute No. 9 (Self-organization of hierarchies): It has 
the ability to automatically organize groups of steps into a 
hierarchy.   
• Attribute No. 10 (Automatic determination of program 
architecture):  It has the ability to automatically determine 
whether to employ subroutines, iterations, loops, recursions, 
and internal storage, and the number of arguments possessed 
by each subroutine, iteration, loop, and recursion.   
• Attribute No. 11 (Wide range of programming 
constructs): It has the ability to implement analogs of the 
programming constructs that human computer programmers 
find useful, including macros, libraries, typing, pointers, 
conditional operations, logical functions, integer functions, 
floating-point functions, complex-valued functions, multiple 
inputs, multiple outputs, and machine code instructions.   
• Attribute No. 12 (Well-defined): It operates in a well-
defined way.  It unmistakably distinguishes between what 
the user must provide and what the system delivers.   
• Attribute No. 13 (Problem-independent): It is problem-
independent in the sense that the user does not have to 
modify the system's executable steps for each new problem.  
• Attribute No. 14 (Wide applicability): It produces a 
satisfactory solution to a wide variety of problems from 
many different fields.  
• Attribute No. 15 (Scalability): It scales well to larger 
versions of the same problem.   
• Attribute No. 16 (Competitive with human-produced 
results): It produces results that are competitive with those 
produced by human programmers, engineers, 
mathematicians, and designers.  
As shown in detail in Genetic Programming III: Darwinian 

Invention and Problem Solving [16], genetic programming 
currently unconditionally possesses 13 of the 16 attributes that 
can reasonably be expected of a system for automatically 
creating computer programs and that genetic programming at 
least partially possesses the remaining three attributes.   



 

Attribute No. 16 is especially important because it reminds 
us that the ultimate goal of a system for automatically creating 
computer programs is to produce useful programs – not merely 
programs that solve "toy" or "proof of principle" problems.  As 
Samuel [22] said,  

The aim [is] ... to get machines to exhibit behavior, 
which if done by humans, would be assumed to 
involve the use of intelligence.  

There are 14 specific instances reported in Genetic 
Programming III where genetic programming automatically 
created a computer program that is competitive with a human-
produced result.   

What do we mean when we say that an automatically created 
solution to a problem is competitive with a result produced by 
humans?  We are not referring to the fact that a computer can 
rapidly print ten thousand payroll checks or that a computer can 
compute π to a million decimal places.  As Fogel, Owens, and 
Walsh [6] said,  

Artificial intelligence is realized only if an inanimate 
machine can solve problems ... not because of the 
machine's sheer speed and accuracy, but because it 
can discover for itself new techniques for solving the 
problem at hand.   

We think it is fair to say that an automatically created result 
is competitive with one produced by human engineers, 
designers, mathematicians, or programmers if it satisfies any of 
the following eight criteria (or any other similarly stringent 
criterion):   

(A) The result was patented as an invention in the past, is an 
improvement over a patented invention, or would qualify 
today as a patentable new invention.  
(B) The result is equal to or better than a result that was 
accepted as a new scientific result at the time when it was 
published in a peer-reviewed journal.   
(C) The result is equal to or better than a result that was 
placed into a database or archive of results maintained by an 
internationally recognized panel of scientific experts.   
(D) The result is publishable in its own right as a new 
scientific result (independent of the fact that the result was 
mechanically created).  
(E) The result is equal to or better than the most recent 
human-created solution to a long-standing problem for 
which there has been a succession of increasingly better 
human-created solutions.  
(F) The result is equal to or better than a result that was 
considered an achievement in its field at the time it was first 
discovered.  
(G) The result solves a problem of indisputable difficulty in 
its field.   



 

(H) The result holds its own or wins a regulated competition 
involving human contestants (in the form of either live 
human players or human-written computer programs).   
Table 1 shows 14 instances reported in Genetic 

Programming III [16],where we claim that genetic programming 
has produced results that are competitive with those produced by 
human engineers, designers, mathematicians, or programmers.  
Each claim is accompanied by the particular criterion that 
establishes the basis for the claim.  The instances in table 1 
include classification problems from the field of computational 
molecular biology, a long-standing problem involving cellular 
automata, a problem of synthesizing the design of a minimal 
sorting network, and several problems of synthesizing the 
design of analog electrical circuits.  As can be seen, 10 of the 14 
instances in the table involve previously patented inventions.  
Several of these items are discussed in a companion paper in this 
volume.   

Engineering design offers a practical yardstick for evaluating 
a method for automatically creating computer programs because 
the design process is usually viewed as requiring human 
intelligence.  Design is a major activity of practicing engineers.  
The process of design involves the creation of a complex 
structure to satisfy user-defined requirements.  For example, the 
design process for analog electrical circuits begins with a high-
level description of the circuit's desired behavior and 
characteristics and entails the creation of both the circuit's 
topology and the values of each of the circuit's components.  
The design process typically entails tradeoffs between 
competing considerations.  The design (synthesis) of analog 
electrical circuits is especially challenging because there is no 
previously known general automated technique for creating both 
the topology and sizing of an analog circuit from a high-level 
statement of the circuit's desired behavior and characteristics.   

Table 1  Fourteen instances where genetic programming has 
produced results that are competitive with human-produced 
results.  

 Claimed instance Basis 
for the 
claim 

Section in 
Genetic 
Programming 
III [16] 

1 Creation of four 
different algorithms for 
the transmembrane 
segment identification 
problem for proteins 

B, E 16.6 

2 Creation of a sorting 
network for seven items 
using only 16 steps 

A, D 21.4.4 



 

3 Rediscovery  of 
recognizable ladder 
topology for filters 

A, F 25.15.1 

4 Rediscovery  of “M-
derived half section” 
and “constant K” filter 
sections 

A, F 26.1.3 

5 Rediscovery  of the 
Cauer (elliptic) topology 
for filters 

A, F 27.3.7 

6 Automatic 
decomposition of the 
problem of synthesizing 
a crossover filter 

A, F 32.3 

7 Rediscovery of a 
recognizable voltage 
gain stage and a 
Darlington emitter-
follower section of an 
amplifier and other 
circuits 

A, F 42.3 

8 Synthesis of 60 and 
96 decibel amplifiers 

A, F 45.3 

9 Synthesis of analog 
computational circuits 
for  squaring, cubing, 
square root, cube root, 
logarithm, and Gaussian 
functions 

A, D, 
G 

47.5.3 

10 Synthesis of a real-
time analog circuit for 
time-optimal control of 
a robot 

G 48.3 

11 Synthesis of an 
electronic thermometer 

A, G 49.3 

12 Synthesis of a 
voltage reference circuit 

A, G 50.3 

13 Creation of a cellular 
automata rule for the 
majority classification 
problem that is better 
than the Gacs-
Kurdyumov-Levin 
(GKL) rule and better 
than all other known 
rules written by humans 
over the past 20 years 

D, E 58.4 



 

14 Creation of motifs 
that detect the D–E–A-D 
box family of proteins 
and the manganese 
superoxide dismutase 
family as well as, or 
slightly better than, the 
human-written motifs 
archived in the 
PROSITE database of 
protein motifs 

C 59.8 

There are. of course, additional instances where others have 
used genetic programming to evolve programs that are 
competitive with human-produced results. Other examples 
include Howley’s use of genetic programming to control a 
spacecraft's attitude maneuvers [8].  Two additional noteworthy 
recent examples are Sean Luke and Lee Spectors’ genetically 
evolved entry at the 1997 Robo Cup competition at the 
International Joint Conference on Artificial Intelligence in 
Nagoya, Japan [21] and the genetically evolved entry at the 
1998 Robo Cup competition in Paris [1].  Both of these entries 
consisted of soccer-playing programs that were evolved entirely 
by genetic programming.  The other entries in this annual 
competition consisted of programs written by teams of human 
programmers. Most were entirely human-written; however, 
minor elements of a few of the human-written programs were 
produced by machine learning.  Both of the genetically evolved 
entries held their own against the human-written programs and 
placed in the middle of the field (consisting of 16 and 34 total 
entries, respectively).   

Of course, we do not claim that genetic programming is the 
only possible approach to the challenge of getting computers to 
solve problems without explicitly programming them.  
However, we are not aware at this time of any other method of 
artificial intelligence, machine learning, neural networks, 
adaptive systems, reinforcement learning, or automated logic 
that can be said to possess more than a few of the above 16 
attributes.   

Conspicuously, the above list of 16 attributes does not 
preordain that formal logic or an explicit knowledge base be the 
method used to achieve the goal of automatically creating 
computer programs.  Many artificial intelligence researchers and 
computer scientists unquestioningly assume that formal logic 
must play a preeminent role in any system for automatically 
creating computer programs.  Similarly, the vast majority of 
contemporary researchers in artificial intelligence believe that a 
system for automatically creating computer programs must 
employ an explicit knowledge base.  Indeed, over the past four 
decades, the field of artificial intelligence has been dominated 
by the strongly asserted belief that the goal of getting a 



 

computer to solve problems automatically can be achieved only 
by means of formal logic inference methods and knowledge.  
This approach typically entails the selection of a knowledge 
representation, the acquisition of the knowledge, the codification 
of the knowledge into a knowledge base, the depositing of the 
knowledge base into a computer, and the manipulation of the 
knowledge in the computer using the inference methods of 
formal logic.  As Lenat [20] stated,  

All our experiences in AI research have led us to 
believe that for automatic programming, the answer 
lies in knowledge, in adding a collection of expert 
rules which guide code synthesis and transformation. 
(Emphasis in original).   

However, the existence of a strenuously asserted belief for 
four decades does not, in itself, validate the belief.  Moreover, 
the popularity of a belief does not preclude the possibility that 
there might be an alternative way of achieving a particular goal.  
In particular, the popularity over the past four decades of the 
“logical” and the “cultural” (knowledge-based) approach does 
not preclude the possiblity that Turing’s third way to achieve 
machine intelligence may prove to be more fruitful.   

Genetic programming is different from all other approaches 
to artificial intelligence, machine learning, neural networks, 
adaptive systems, reinforcement learning, or automated logic in 
all (or most) of the following seven ways:   

(1) Representation: Genetic programming overtly conducts 
its search for a solution to the given problem in program 
space.   
(2) Role of point-to-point transformations in the search: 
Genetic programming does not conduct its search by 
transforming a single point in the search space into another 
single point, but instead transforms a set of points into 
another set (population) of points.   
(3) Role of hill climbing in the search: Genetic 
programming does not rely exclusively on greedy hill 
climbing to conduct its search, but instead allocates a certain 
number of trials, in a principled way, to choices that are 
known to be inferior.   
(4) Role of determinism in the search: Genetic 
programming conducts its search probabilistically.   
(5) Role of an explicit knowledge base: None.  
(6) Role of in the inference methods of formal logic in the 
search:  None. 
(7) Underpinnings of the technique: Biologically inspired.   
First, consider the issue of representation.  Most techniques 

of artificial intelligence, machine learning, neural networks, 
adaptive systems, reinforcement learning, or automated logic 
employ specialized structures in lieu of ordinary computer 
programs.  These surrogate structures include if-then production 



 

rules, Horn clauses, decision trees, Bayesian networks, 
propositional logic, formal grammars, binary decision diagrams, 
frames, conceptual clusters, concept sets, numerical weight 
vectors (for neural nets), vectors of numerical coefficients for 
polynomials or other fixed expressions (for adaptive systems), 
genetic classifier system rules, fixed tables of values (as in 
reinforcement learning), or linear chromosome strings (as in the 
conventional genetic algorithm).   

Tellingly, except in unusual situations, the world's several 
million computer programmers do not use any of these surrogate 
structures for writing computer programs.  Instead, for five 
decades, human programmers have persisted in writing 
computer programs that intermix a multiplicity of types of 
computations (e.g., arithmetic and logical) operating on a 
multiplicity of types of variables (e.g., integer, floating-point, 
and Boolean).  Programmers have persisted in using internal 
memory to store the results of intermediate calculations in order 
to avoid repeating the calculation on each occasion when the 
result is needed.  They have persisted in using iterations and 
recursions.  They have similarly persisted for five decades in 
organizing useful sequences of operations into reusable groups 
(subroutines) so that they avoid reinventing the wheel on each 
occasion when they need a particular sequence of operations.  
Moreover, they have persisted in passing parameters to 
subroutines so that they can reuse those subroutines with 
different instantiations of values.  And, they have persisted in 
organizing their subroutines and main program into hierarchies.   

All of the above tools of ordinary computer programming 
have been in use since the beginning of the era of electronic 
computers in the l940s.  Significantly, none has fallen into 
disuse by human programmers.  Yet, in spite of the manifest 
utility of these everyday tools of computer programming, these 
tools are largely absent from existing techniques of automated 
machine learning, neural networks, artificial intelligence, 
adaptive systems, reinforcement learning, and automated logic.  
On one of the relatively rare occasions when one or two of these 
everyday tools of computer programming is available within the 
context of one of these automated techniques, it is usually 
available only in a hobbled and barely recognizable form.  In 
contrast, genetic programming draws on the full arsenal of tools 
that human programmers have found useful for five decades.  It 
conducts its search for a solution to a problem overtly in the 
space of computer programs.  Our view is that computer 
programs are the best representation of computer programs.  We 
believe that the search for a solution to the challenge of getting 
computers to solve problems without explicitly programming 
them should be conducted in the space of computer programs.   

Of course, once one realizes that the search should be 
conducted in program space, one is immediately faced with the 
task of finding the desired program in the enormous space of 
possible programs.  As will be seen, genetic programming 



 

performs this task of program discovery.  It provides a problem-
independent way to productively search the space of possible 
computer programs to find a program that satisfactorily solves 
the given problem.   

Second, another difference between genetic programming 
and almost every other automated technique concerns the nature 
of the search conducted in the technique's chosen search space.  
Almost all of these non-genetic methods employ a point-to-point 
strategy that transforms a single point in the search space into 
another single point.  Genetic programming is different in that it 
operates by explicitly cultivating a diverse population of often-
inconsistent and often-contradictory approaches to solving the 
problem.  Genetic programming performs a beam search in 
program space by iteratively transforming one population of 
candidate computer programs into a new population of 
programs.  

Third, consider the role of hill climbing.  When the 
trajectory through the search space is from one single point to 
another single point, there is a nearly irresistible temptation to 
extend the search only by moving to a point that is known to be 
superior to the current point.  Consequently, almost all 
automated techniques rely exclusively on greedy hill climbing to 
make the transformation from the current point in the search 
space to the next point.  The temptation to rely on hill climbing 
is reinforced because many of the toy problems in the literature 
of the fields of machine learning and artificial intelligence are so 
simple that they can, in fact, be solved by hill climbing.  
However, popularity cannot cure the innate tendency of hill 
climbing to become trapped on a local optimum that is not a 
global optimum.  Interesting and non-trivial problems generally 
have high-payoff points that are inaccessible to greedy hill 
climbing.  In fact, the existence of points in the search space that 
are not accessible to hill climbing is a good working definition 
of non-triviality.  The fact that genetic programming does not 
rely on a point-to-point search strategy helps to liberate it from 
the myopia of hill climbing.  Genetic programming is free to 
allocate a certain measured number of trials to points that are 
known to be inferior.  This allocation of trials to known-inferior 
individuals is not motivated by charity, but in the expectation 
that it will often unearth an unobvious trajectory through the 
search space leading to points with an ultimately higher payoff.  
The fact that genetic programming operates from a population 
enables it to make a small number of adventurous moves while 
simultaneously pursuing the more immediately gratifying 
avenues of advance through the search space.  Of course, 
genetic programming is not the only search technique that 
avoids mere hill climbing.  For example, both simulated 
annealing [11] and genetic algorithms [7] allocate a certain 
number of trials to inferior points in a similar principled way.  
However, most of the techniques currently used in the fields of 
artificial intelligence, machine learning, neural networks, 



 

adaptive systems, reinforcement learning, or automated logic are 
trapped on the local optimum of hill climbing.   

Fourth, another difference between genetic programming 
and almost every other technique of artificial intelligence and 
machine learning is that genetic programming conducts a 
probabilistic search.  Again, genetic programming is not unique 
in this respect.  For example, simulated annealing and genetic 
algorithms are also probabilistic.  However, most existing 
techniques in the fields of artificial intelligence and machine 
learning are deterministic.   

Fifth, consider the role of a knowledge base in the pursuit of 
the goal of automatically creating computer programs.  In 
genetic programming, there is no explicit knowledge base.  
While there are numerous optional ways to incorporate domain 
knowledge into a run of genetic programming, genetic 
programming does not require (or usually use) an explicit 
knowledge base to guide its search.   

Sixth, consider the role of the inference methods of formal 
logic.  Many computer scientists unquestioningly assume that 
every problem-solving technique must be logically sound, 
deterministic, logically consistent, and parsimonious.  
Accordingly, most conventional methods of artificial 
intelligence and machine learning possess these characteristics.  
However, logic does not govern two of the most important types 
of complex problem solving processes, namely the invention 
process performed by creative humans and the evolutionary 
process occurring in nature.   

A new idea that can be logically deduced from facts that are 
known in a field, using transformations that are known in a 
field, is not considered to be an invention.  There must be what 
the patent law refers to as an "illogical step" (i.e., an unjustified 
step) to distinguish a putative invention from that which is 
readily deducible from that which is already known.  Humans 
supply the critical ingredient of “illogic” to the invention 
process.  Interestingly, everyday usage parallels the patent law 
concerning inventiveness:  People who mechanically apply 
existing facts in well-known ways are summarily dismissed as 
being uncreative.  Logical thinking is unquestionably useful for 
many purposes.  It usually plays an important role in setting the 
stage for an invention.  But, at the end of the day, logical 
thinking is the antithesis of invention and creativity.  

Recalling his invention in 1927 of the negative feedback 
amplifier, Harold S. Black of Bell Laboratories [5] said, 

Then came the morning of Tuesday, August 2, 1927, 
when the concept of the negative feedback amplifier 
came to me in a flash while I was crossing the 
Hudson River on the Lackawanna Ferry, on my way 
to work.  For more than 50 years, I have pondered 
how and why the idea came, and I can't say any more 
today than I could that morning.  All I know is that 



 

after several years of hard work on the problem, I 
suddenly realized that if I fed the amplifier output 
back to the input, in reverse phase, and kept the 
device from oscillating (singing, as we called it then), 
I would have exactly what I wanted: a means of 
canceling out the distortion of the output.  I opened 
my morning newspaper and on a page of The New 
York Times I sketched a simple canonical diagram of 
a negative feedback amplifier plus the equations for 
the amplification with feedback.  

Of course, inventors are not oblivious to logic and 
knowledge.  They do not thrash around using blind random 
search.  Black did not try to construct the negative feedback 
amplifier from neon bulbs or doorbells.  Instead, "several years 
of hard work on the problem" set the stage and brought his 
thinking into the proximity of a solution.  Then, at the critical 
moment, Black made his “illogical” leap.  This unjustified leap 
constituted the invention.   

The design of complex entities by the evolutionary process 
in nature is another important type of problem-solving that is not 
governed by logic.  In nature, solutions to design problems are 
discovered by the probabilistic process of evolution and natural 
selection.  There is nothing logical about this process.  Indeed, 
inconsistent and contradictory alternatives abound.  In fact, such 
genetic diversity is necessary for the evolutionary process to 
succeed.  Significantly, the solutions evolved by evolution and 
natural selection almost always differ from those created by 
conventional methods of artificial intelligence and machine 
learning in one very important respect.  Evolved solutions are 
not brittle; they are usually able to easily grapple with the 
perpetual novelty of real environments.   

Similarly, genetic programming is not guided by the 
inference methods of formal logic in its search for a computer 
program to solve a given problem.  When the goal is the 
automatic creation of computer programs, all of our experience 
has led us to conclude that the non-logical approach used in the 
invention process and in natural evolution are far more fruitful 
than the logic-driven and knowledge-based principles of 
conventional artificial intelligence.  In short, "logic considered 
harmful."  

Seventh, the biological metaphor underlying genetic 
programming is very different from the underpinnings of all 
other techniques that have previously been tried in pursuit of the 
goal of automatically creating computer programs.  Many 
computer scientists and mathematicians are baffled by the 
suggestion biology might be relevant to their fields. In contrast, 
we do not view biology as an unlikely well from which to draw 
a solution to the challenge of getting a computer to solve a 
problem without explicitly programming it.  Quite the contrary – 
we view biology as a most likely source.  Indeed, genetic 



 

programming is based on the only method that has ever 
produced intelligence – the time-tested method of evolution and 
natural selection.  As Stanislaw Ulam said in his l976 
autobiography [25],  

[Ask] not what mathematics can do for biology, but 
what biology can do for mathematics. 
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