

Version 2 - Submitted ---, 1999 for EUROGEN workshop in
Jyvdskyld, Finland on May 30 – June 3, 1999.

Genetic Programming:
Turing’s Third Way to
Achieve Machine
Intelligence

J. R. KOZA1, F. H BENNETT2 III, D. ANDRE3, AND
M. A. KEANE4

1Stanford University
Stanford, California USA

2Genetic Programming Inc.
Los Altos, California USA

3University of California
Berkeley, California USA

4Econometrics Inc.
Chicago, Illinois USA

1. THE PROBLEM OF AUTOMATIC
PROGRAMMING

One of the central challenges of computer science is to get a
computer to solve a problem without explicitly programming it.
In particular, it would be desirable to have a problem-
independent system whose input is a high-level statement of a
problem's requirements and whose output is a working computer
program that solves the given problem. The challenge is to
make computers do what needs to be done, without having to
tell the computer exactly how to do it.

Alan Turing recognized that machine intelligence may be
realized using a biological approach. In his 1948 essay
"Intelligent Machines" [9], Turing made the connection between
search techniques and the challenge of getting a computer to
solve a problem without explicitly programming it.

Further research into intelligence of machinery will
probably be very greatly concerned with “searches”
...

Turing then identified three broad approaches by which
search techniques might be used to automatically create an
intelligent computer program.

One approach that Turing identified is a search through the
space of integers representing candidate computer programs.
This approach reflects the orientation of much of Turing’s own
work on the logical basis for computer algorithms.

A second approach that Turing identified is the "cultural
search" which relies on knowledge and expertise acquired over a
period of years from others. This approach is akin to present-
day knowledge-based systems and expert systems.

The third approach that Turing identified is “genetical or
evolutionary search.” Turing said,

There is the genetical or evolutionary search by
which a combination of genes is looked for, the
criterion being the survival value. The remarkable
success of this search confirms to some extent the
idea that intellectual activity consists mainly of
various kinds of search.

Turing did not specify in this essay how to conduct the
"genetical or evolutionary search" for a computer program.
However, his 1950 paper "Computing Machinery and
Intelligence" [24] suggested how natural selection and evolution
might be incorporated into the search for intelligent machines.

We cannot expect to find a good child-machine at the
first attempt. One must experiment with teaching one
such machine and see how well it learns. One can
then try another and see if it is better or worse. There
is an obvious connection between this process and
evolution, by the identifications

Structure of the child machine = Hereditary material

Changes of the child machine = Mutations

Natural selection = Judgment of the experimenter
Since the 1940s, an enormous amount of research effort has

been expended on trying to achieve machine intelligence using
what Turing called the “logical” approach and the “cultural”
approach. In contrast, Turing’s third way to achieve machine
intelligence – namely, “genetical or evolutionary” approach –
has received comparatively less effort.

This paper is about genetic programming – a way to
implement Turing’s third way to achieve machine intelligence.
Genetic programming is a “genetical or evolutionary” technique
that automatically creates a computer program from a high-level
statement of a problem's requirements. In particular, genetic
programming is an extension of the genetic algorithm described
in John Holland's pioneering 1975 book Adaptation in Natural
and Artificial Systems [7]. Starting with a primordial ooze of
thousands of randomly created computer programs, genetic

programming progressively breeds a population of computer
programs over a series of generations. Genetic programming
employs the Darwinian principle of survival of the fittest,
analogs of naturally occurring operations such as sexual
recombination (crossover), mutation, gene duplication, and gene
deletion, and certain mechanisms of developmental biology [2,
3, 4, 10,12 – 19, 23].

When we talk about a computer program (fig. 1), we mean
an entity that receives inputs, performs computations, and
produces outputs. Computer programs perform basic arithmetic
and conditional computations on variables of various types
(including integer, floating-point, and Boolean variables),
perform iterations and recursions, store intermediate results in
memory, contain reusable groups of operations that are
organized into subroutines, pass information to subroutines in
the form of dummy variables (formal parameters), receive
information from subroutines in the form of return values (or
through side effects). The subroutines and main program are
typically organized into a hierarchy.

---Fig. 1 is at end of paper and is also provided as a separate file
in EPS format

Fig. 1 A computer program.

We think that it is reasonable to expect that a system for
automatically creating computer programs should be able to
create entities that possess most or all of the above capabilities
(or reasonable equivalents of them). A list of attributes for a
system for automatically creating computer programs might
include the following 16 items:

• Attribute No. 1 (Starts with "What needs to be done"):
It starts from a high-level statement specifying the
requirements of the problem.
• Attribute No. 2 (Tells us "How to do it"): It produces a
result in the form of a sequence of steps that satisfactorily
solves the problem.
• Attribute No. 3 (Produces a computer program): It
produces an entity that can run on a computer.
• Attribute No. 4 (Automatic determination of program
size): It has the ability to automatically determine the
number of steps that must be performed and thus does not
require the user to prespecify the exact size of the solution.

• Attribute No. 5 (Code reuse): It has the ability to
automatically organize useful groups of steps so that they
can be reused.
• Attribute No. 6 (Parameterized reuse): It has the ability
to reuse groups of steps with different instantiations of
values (formal parameters or dummy variables).
• Attribute No. 7 (Internal storage): It has the ability to use
internal storage in the form of single variables, vectors,
matrices, arrays, stacks, queues, lists, relational memory, and
other data structures.
• Attribute No. 8 (Iterations, loops, and recursions): It has
the ability to implement iterations, loops, and recursions.
• Attribute No. 9 (Self-organization of hierarchies): It has
the ability to automatically organize groups of steps into a
hierarchy.
• Attribute No. 10 (Automatic determination of program
architecture): It has the ability to automatically determine
whether to employ subroutines, iterations, loops, recursions,
and internal storage, and the number of arguments possessed
by each subroutine, iteration, loop, and recursion.
• Attribute No. 11 (Wide range of programming
constructs): It has the ability to implement analogs of the
programming constructs that human computer programmers
find useful, including macros, libraries, typing, pointers,
conditional operations, logical functions, integer functions,
floating-point functions, complex-valued functions, multiple
inputs, multiple outputs, and machine code instructions.
• Attribute No. 12 (Well-defined): It operates in a well-
defined way. It unmistakably distinguishes between what
the user must provide and what the system delivers.
• Attribute No. 13 (Problem-independent): It is problem-
independent in the sense that the user does not have to
modify the system's executable steps for each new problem.
• Attribute No. 14 (Wide applicability): It produces a
satisfactory solution to a wide variety of problems from
many different fields.
• Attribute No. 15 (Scalability): It scales well to larger
versions of the same problem.
• Attribute No. 16 (Competitive with human-produced
results): It produces results that are competitive with those
produced by human programmers, engineers,
mathematicians, and designers.
As shown in detail in Genetic Programming III: Darwinian

Invention and Problem Solving [16], genetic programming
currently unconditionally possesses 13 of the 16 attributes that
can reasonably be expected of a system for automatically
creating computer programs and that genetic programming at
least partially possesses the remaining three attributes.

Attribute No. 16 is especially important because it reminds
us that the ultimate goal of a system for automatically creating
computer programs is to produce useful programs – not merely
programs that solve "toy" or "proof of principle" problems. As
Samuel [22] said,

The aim [is] ... to get machines to exhibit behavior,
which if done by humans, would be assumed to
involve the use of intelligence.

There are 14 specific instances reported in Genetic
Programming III where genetic programming automatically
created a computer program that is competitive with a human-
produced result.

What do we mean when we say that an automatically created
solution to a problem is competitive with a result produced by
humans? We are not referring to the fact that a computer can
rapidly print ten thousand payroll checks or that a computer can
compute π to a million decimal places. As Fogel, Owens, and
Walsh [6] said,

Artificial intelligence is realized only if an inanimate
machine can solve problems ... not because of the
machine's sheer speed and accuracy, but because it
can discover for itself new techniques for solving the
problem at hand.

We think it is fair to say that an automatically created result
is competitive with one produced by human engineers,
designers, mathematicians, or programmers if it satisfies any of
the following eight criteria (or any other similarly stringent
criterion):

(A) The result was patented as an invention in the past, is an
improvement over a patented invention, or would qualify
today as a patentable new invention.
(B) The result is equal to or better than a result that was
accepted as a new scientific result at the time when it was
published in a peer-reviewed journal.
(C) The result is equal to or better than a result that was
placed into a database or archive of results maintained by an
internationally recognized panel of scientific experts.
(D) The result is publishable in its own right as a new
scientific result (independent of the fact that the result was
mechanically created).
(E) The result is equal to or better than the most recent
human-created solution to a long-standing problem for
which there has been a succession of increasingly better
human-created solutions.
(F) The result is equal to or better than a result that was
considered an achievement in its field at the time it was first
discovered.
(G) The result solves a problem of indisputable difficulty in
its field.

(H) The result holds its own or wins a regulated competition
involving human contestants (in the form of either live
human players or human-written computer programs).
Table 1 shows 14 instances reported in Genetic

Programming III [16],where we claim that genetic programming
has produced results that are competitive with those produced by
human engineers, designers, mathematicians, or programmers.
Each claim is accompanied by the particular criterion that
establishes the basis for the claim. The instances in table 1
include classification problems from the field of computational
molecular biology, a long-standing problem involving cellular
automata, a problem of synthesizing the design of a minimal
sorting network, and several problems of synthesizing the
design of analog electrical circuits. As can be seen, 10 of the 14
instances in the table involve previously patented inventions.
Several of these items are discussed in a companion paper in this
volume.

Engineering design offers a practical yardstick for evaluating
a method for automatically creating computer programs because
the design process is usually viewed as requiring human
intelligence. Design is a major activity of practicing engineers.
The process of design involves the creation of a complex
structure to satisfy user-defined requirements. For example, the
design process for analog electrical circuits begins with a high-
level description of the circuit's desired behavior and
characteristics and entails the creation of both the circuit's
topology and the values of each of the circuit's components.
The design process typically entails tradeoffs between
competing considerations. The design (synthesis) of analog
electrical circuits is especially challenging because there is no
previously known general automated technique for creating both
the topology and sizing of an analog circuit from a high-level
statement of the circuit's desired behavior and characteristics.

Table 1 Fourteen instances where genetic programming has
produced results that are competitive with human-produced
results.

 Claimed instance Basis
for the
claim

Section in
Genetic
Programming
III [16]

1 Creation of four
different algorithms for
the transmembrane
segment identification
problem for proteins

B, E 16.6

2 Creation of a sorting
network for seven items
using only 16 steps

A, D 21.4.4

3 Rediscovery of
recognizable ladder
topology for filters

A, F 25.15.1

4 Rediscovery of “M-
derived half section”
and “constant K” filter
sections

A, F 26.1.3

5 Rediscovery of the
Cauer (elliptic) topology
for filters

A, F 27.3.7

6 Automatic
decomposition of the
problem of synthesizing
a crossover filter

A, F 32.3

7 Rediscovery of a
recognizable voltage
gain stage and a
Darlington emitter-
follower section of an
amplifier and other
circuits

A, F 42.3

8 Synthesis of 60 and
96 decibel amplifiers

A, F 45.3

9 Synthesis of analog
computational circuits
for squaring, cubing,
square root, cube root,
logarithm, and Gaussian
functions

A, D,
G

47.5.3

10 Synthesis of a real-
time analog circuit for
time-optimal control of
a robot

G 48.3

11 Synthesis of an
electronic thermometer

A, G 49.3

12 Synthesis of a
voltage reference circuit

A, G 50.3

13 Creation of a cellular
automata rule for the
majority classification
problem that is better
than the Gacs-
Kurdyumov-Levin
(GKL) rule and better
than all other known
rules written by humans
over the past 20 years

D, E 58.4

14 Creation of motifs
that detect the D–E–A-D
box family of proteins
and the manganese
superoxide dismutase
family as well as, or
slightly better than, the
human-written motifs
archived in the
PROSITE database of
protein motifs

C 59.8

There are. of course, additional instances where others have
used genetic programming to evolve programs that are
competitive with human-produced results. Other examples
include Howley’s use of genetic programming to control a
spacecraft's attitude maneuvers [8]. Two additional noteworthy
recent examples are Sean Luke and Lee Spectors’ genetically
evolved entry at the 1997 Robo Cup competition at the
International Joint Conference on Artificial Intelligence in
Nagoya, Japan [21] and the genetically evolved entry at the
1998 Robo Cup competition in Paris [1]. Both of these entries
consisted of soccer-playing programs that were evolved entirely
by genetic programming. The other entries in this annual
competition consisted of programs written by teams of human
programmers. Most were entirely human-written; however,
minor elements of a few of the human-written programs were
produced by machine learning. Both of the genetically evolved
entries held their own against the human-written programs and
placed in the middle of the field (consisting of 16 and 34 total
entries, respectively).

Of course, we do not claim that genetic programming is the
only possible approach to the challenge of getting computers to
solve problems without explicitly programming them.
However, we are not aware at this time of any other method of
artificial intelligence, machine learning, neural networks,
adaptive systems, reinforcement learning, or automated logic
that can be said to possess more than a few of the above 16
attributes.

Conspicuously, the above list of 16 attributes does not
preordain that formal logic or an explicit knowledge base be the
method used to achieve the goal of automatically creating
computer programs. Many artificial intelligence researchers and
computer scientists unquestioningly assume that formal logic
must play a preeminent role in any system for automatically
creating computer programs. Similarly, the vast majority of
contemporary researchers in artificial intelligence believe that a
system for automatically creating computer programs must
employ an explicit knowledge base. Indeed, over the past four
decades, the field of artificial intelligence has been dominated
by the strongly asserted belief that the goal of getting a

computer to solve problems automatically can be achieved only
by means of formal logic inference methods and knowledge.
This approach typically entails the selection of a knowledge
representation, the acquisition of the knowledge, the codification
of the knowledge into a knowledge base, the depositing of the
knowledge base into a computer, and the manipulation of the
knowledge in the computer using the inference methods of
formal logic. As Lenat [20] stated,

All our experiences in AI research have led us to
believe that for automatic programming, the answer
lies in knowledge, in adding a collection of expert
rules which guide code synthesis and transformation.
(Emphasis in original).

However, the existence of a strenuously asserted belief for
four decades does not, in itself, validate the belief. Moreover,
the popularity of a belief does not preclude the possibility that
there might be an alternative way of achieving a particular goal.
In particular, the popularity over the past four decades of the
“logical” and the “cultural” (knowledge-based) approach does
not preclude the possiblity that Turing’s third way to achieve
machine intelligence may prove to be more fruitful.

Genetic programming is different from all other approaches
to artificial intelligence, machine learning, neural networks,
adaptive systems, reinforcement learning, or automated logic in
all (or most) of the following seven ways:

(1) Representation: Genetic programming overtly conducts
its search for a solution to the given problem in program
space.
(2) Role of point-to-point transformations in the search:
Genetic programming does not conduct its search by
transforming a single point in the search space into another
single point, but instead transforms a set of points into
another set (population) of points.
(3) Role of hill climbing in the search: Genetic
programming does not rely exclusively on greedy hill
climbing to conduct its search, but instead allocates a certain
number of trials, in a principled way, to choices that are
known to be inferior.
(4) Role of determinism in the search: Genetic
programming conducts its search probabilistically.
(5) Role of an explicit knowledge base: None.
(6) Role of in the inference methods of formal logic in the
search: None.
(7) Underpinnings of the technique: Biologically inspired.
First, consider the issue of representation. Most techniques

of artificial intelligence, machine learning, neural networks,
adaptive systems, reinforcement learning, or automated logic
employ specialized structures in lieu of ordinary computer
programs. These surrogate structures include if-then production

rules, Horn clauses, decision trees, Bayesian networks,
propositional logic, formal grammars, binary decision diagrams,
frames, conceptual clusters, concept sets, numerical weight
vectors (for neural nets), vectors of numerical coefficients for
polynomials or other fixed expressions (for adaptive systems),
genetic classifier system rules, fixed tables of values (as in
reinforcement learning), or linear chromosome strings (as in the
conventional genetic algorithm).

Tellingly, except in unusual situations, the world's several
million computer programmers do not use any of these surrogate
structures for writing computer programs. Instead, for five
decades, human programmers have persisted in writing
computer programs that intermix a multiplicity of types of
computations (e.g., arithmetic and logical) operating on a
multiplicity of types of variables (e.g., integer, floating-point,
and Boolean). Programmers have persisted in using internal
memory to store the results of intermediate calculations in order
to avoid repeating the calculation on each occasion when the
result is needed. They have persisted in using iterations and
recursions. They have similarly persisted for five decades in
organizing useful sequences of operations into reusable groups
(subroutines) so that they avoid reinventing the wheel on each
occasion when they need a particular sequence of operations.
Moreover, they have persisted in passing parameters to
subroutines so that they can reuse those subroutines with
different instantiations of values. And, they have persisted in
organizing their subroutines and main program into hierarchies.

All of the above tools of ordinary computer programming
have been in use since the beginning of the era of electronic
computers in the l940s. Significantly, none has fallen into
disuse by human programmers. Yet, in spite of the manifest
utility of these everyday tools of computer programming, these
tools are largely absent from existing techniques of automated
machine learning, neural networks, artificial intelligence,
adaptive systems, reinforcement learning, and automated logic.
On one of the relatively rare occasions when one or two of these
everyday tools of computer programming is available within the
context of one of these automated techniques, it is usually
available only in a hobbled and barely recognizable form. In
contrast, genetic programming draws on the full arsenal of tools
that human programmers have found useful for five decades. It
conducts its search for a solution to a problem overtly in the
space of computer programs. Our view is that computer
programs are the best representation of computer programs. We
believe that the search for a solution to the challenge of getting
computers to solve problems without explicitly programming
them should be conducted in the space of computer programs.

Of course, once one realizes that the search should be
conducted in program space, one is immediately faced with the
task of finding the desired program in the enormous space of
possible programs. As will be seen, genetic programming

performs this task of program discovery. It provides a problem-
independent way to productively search the space of possible
computer programs to find a program that satisfactorily solves
the given problem.

Second, another difference between genetic programming
and almost every other automated technique concerns the nature
of the search conducted in the technique's chosen search space.
Almost all of these non-genetic methods employ a point-to-point
strategy that transforms a single point in the search space into
another single point. Genetic programming is different in that it
operates by explicitly cultivating a diverse population of often-
inconsistent and often-contradictory approaches to solving the
problem. Genetic programming performs a beam search in
program space by iteratively transforming one population of
candidate computer programs into a new population of
programs.

Third, consider the role of hill climbing. When the
trajectory through the search space is from one single point to
another single point, there is a nearly irresistible temptation to
extend the search only by moving to a point that is known to be
superior to the current point. Consequently, almost all
automated techniques rely exclusively on greedy hill climbing to
make the transformation from the current point in the search
space to the next point. The temptation to rely on hill climbing
is reinforced because many of the toy problems in the literature
of the fields of machine learning and artificial intelligence are so
simple that they can, in fact, be solved by hill climbing.
However, popularity cannot cure the innate tendency of hill
climbing to become trapped on a local optimum that is not a
global optimum. Interesting and non-trivial problems generally
have high-payoff points that are inaccessible to greedy hill
climbing. In fact, the existence of points in the search space that
are not accessible to hill climbing is a good working definition
of non-triviality. The fact that genetic programming does not
rely on a point-to-point search strategy helps to liberate it from
the myopia of hill climbing. Genetic programming is free to
allocate a certain measured number of trials to points that are
known to be inferior. This allocation of trials to known-inferior
individuals is not motivated by charity, but in the expectation
that it will often unearth an unobvious trajectory through the
search space leading to points with an ultimately higher payoff.
The fact that genetic programming operates from a population
enables it to make a small number of adventurous moves while
simultaneously pursuing the more immediately gratifying
avenues of advance through the search space. Of course,
genetic programming is not the only search technique that
avoids mere hill climbing. For example, both simulated
annealing [11] and genetic algorithms [7] allocate a certain
number of trials to inferior points in a similar principled way.
However, most of the techniques currently used in the fields of
artificial intelligence, machine learning, neural networks,

adaptive systems, reinforcement learning, or automated logic are
trapped on the local optimum of hill climbing.

Fourth, another difference between genetic programming
and almost every other technique of artificial intelligence and
machine learning is that genetic programming conducts a
probabilistic search. Again, genetic programming is not unique
in this respect. For example, simulated annealing and genetic
algorithms are also probabilistic. However, most existing
techniques in the fields of artificial intelligence and machine
learning are deterministic.

Fifth, consider the role of a knowledge base in the pursuit of
the goal of automatically creating computer programs. In
genetic programming, there is no explicit knowledge base.
While there are numerous optional ways to incorporate domain
knowledge into a run of genetic programming, genetic
programming does not require (or usually use) an explicit
knowledge base to guide its search.

Sixth, consider the role of the inference methods of formal
logic. Many computer scientists unquestioningly assume that
every problem-solving technique must be logically sound,
deterministic, logically consistent, and parsimonious.
Accordingly, most conventional methods of artificial
intelligence and machine learning possess these characteristics.
However, logic does not govern two of the most important types
of complex problem solving processes, namely the invention
process performed by creative humans and the evolutionary
process occurring in nature.

A new idea that can be logically deduced from facts that are
known in a field, using transformations that are known in a
field, is not considered to be an invention. There must be what
the patent law refers to as an "illogical step" (i.e., an unjustified
step) to distinguish a putative invention from that which is
readily deducible from that which is already known. Humans
supply the critical ingredient of “illogic” to the invention
process. Interestingly, everyday usage parallels the patent law
concerning inventiveness: People who mechanically apply
existing facts in well-known ways are summarily dismissed as
being uncreative. Logical thinking is unquestionably useful for
many purposes. It usually plays an important role in setting the
stage for an invention. But, at the end of the day, logical
thinking is the antithesis of invention and creativity.

Recalling his invention in 1927 of the negative feedback
amplifier, Harold S. Black of Bell Laboratories [5] said,

Then came the morning of Tuesday, August 2, 1927,
when the concept of the negative feedback amplifier
came to me in a flash while I was crossing the
Hudson River on the Lackawanna Ferry, on my way
to work. For more than 50 years, I have pondered
how and why the idea came, and I can't say any more
today than I could that morning. All I know is that

after several years of hard work on the problem, I
suddenly realized that if I fed the amplifier output
back to the input, in reverse phase, and kept the
device from oscillating (singing, as we called it then),
I would have exactly what I wanted: a means of
canceling out the distortion of the output. I opened
my morning newspaper and on a page of The New
York Times I sketched a simple canonical diagram of
a negative feedback amplifier plus the equations for
the amplification with feedback.

Of course, inventors are not oblivious to logic and
knowledge. They do not thrash around using blind random
search. Black did not try to construct the negative feedback
amplifier from neon bulbs or doorbells. Instead, "several years
of hard work on the problem" set the stage and brought his
thinking into the proximity of a solution. Then, at the critical
moment, Black made his “illogical” leap. This unjustified leap
constituted the invention.

The design of complex entities by the evolutionary process
in nature is another important type of problem-solving that is not
governed by logic. In nature, solutions to design problems are
discovered by the probabilistic process of evolution and natural
selection. There is nothing logical about this process. Indeed,
inconsistent and contradictory alternatives abound. In fact, such
genetic diversity is necessary for the evolutionary process to
succeed. Significantly, the solutions evolved by evolution and
natural selection almost always differ from those created by
conventional methods of artificial intelligence and machine
learning in one very important respect. Evolved solutions are
not brittle; they are usually able to easily grapple with the
perpetual novelty of real environments.

Similarly, genetic programming is not guided by the
inference methods of formal logic in its search for a computer
program to solve a given problem. When the goal is the
automatic creation of computer programs, all of our experience
has led us to conclude that the non-logical approach used in the
invention process and in natural evolution are far more fruitful
than the logic-driven and knowledge-based principles of
conventional artificial intelligence. In short, "logic considered
harmful."

Seventh, the biological metaphor underlying genetic
programming is very different from the underpinnings of all
other techniques that have previously been tried in pursuit of the
goal of automatically creating computer programs. Many
computer scientists and mathematicians are baffled by the
suggestion biology might be relevant to their fields. In contrast,
we do not view biology as an unlikely well from which to draw
a solution to the challenge of getting a computer to solve a
problem without explicitly programming it. Quite the contrary –
we view biology as a most likely source. Indeed, genetic

programming is based on the only method that has ever
produced intelligence – the time-tested method of evolution and
natural selection. As Stanislaw Ulam said in his l976
autobiography [25],

[Ask] not what mathematics can do for biology, but
what biology can do for mathematics.

REFERENCES
[1] Andre, David and Teller, Astro. 1998. Evolving team

Darwin United. In Asada, Minoru (editor). RoboCup-98:
Robot Soccer World Cup II. Lecture Notes in Computer
Science. Berlin: Springer Verlag. In press.

[2] Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors).
1996. Advances in Genetic Programming 2. Cambridge, MA:
The MIT Press.

[3] Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and
Francone, Frank D. 1998. Genetic Programming – An
Introduction. San Francisco, CA: Morgan Kaufmann and
Heidelberg: dpunkt.

[4] Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and
Fogarty, Terence C. 1998. Genetic Programming: First
European Workshop. EuroGP'98. Paris, France, April 1998
Proceedings. Paris, France. April l998. Lecture Notes in
Computer Science. Volume 1391. Berlin, Germany: Springer-
Verlag.

[5] Black, Harold S. 1977. Inventing the negative feedback
amplifier. IEEE Spectrum. December 1977. Pages 55 – 60.

[6] Fogel, Lawrence J., Owens, Alvin J., and Walsh, Michael. J.
1966. Artificial Intelligence through Simulated Evolution.
New York: John Wiley.

[7] Holland, John H. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan Press.

[8] Howley, Brian. 1996. Genetic programming of near-
minimum-time spacecraft attitude maneuvers. In Koza, John
R., Goldberg, David E., Fogel, David B., and Riolo, Rick L.
(editors). 1996. Genetic Programming 1996: Proceedings of
the First Annual Conference, July 28-31, 1996, Stanford
University. Cambridge, MA: MIT Press. Pages 98–106.

[9] Ince, D. C. (editor). 1992. Mechanical Intelligence:
Collected Works of A. M. Turing. Amsterdam: North Holland.

[10] Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic
Programming. Cambridge, MA: The MIT Press.

[11] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. 1983.
Optimization by simulated annealing. Science 220, pages
671-680.

[12] Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural Selection.
Cambridge, MA: MIT Press.

[13] Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

[14] Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press.

[15] Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar,
Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon,
Max H., Goldberg, David E., Iba, Hitoshi, and Riolo, Rick L.
(editors). Genetic Programming 1998: Proceedings of the
Third Annual Conference, July 22-25, 1998, University of
Wisconsin, Madison, Wisconsin. San Francisco, CA: Morgan
Kaufmann.

[16] Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1999. Genetic Programming III: Darwinian
Invention and Problem Solving. San Francisco, CA: Morgan
Kaufmann.

[17] Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel,
David B., Garzon, Max, Iba, Hitoshi, and Riolo, Rick L.
(editors). 1997. Genetic Programming 1997: Proceedings of
the Second Annual Conference San Francisco, CA: Morgan
Kaufmann.

[18] Koza, John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). 1996. Genetic Programming 1996:
Proceedings of the First Annual Conference. Cambridge,
MA: The MIT Press.

[19] Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

[20] Lenat, Douglas B. l983. The role of heuristics in learning
by discovery: Three case studies. In Michalski, Ryszard S.,
Carbonell, Jaime G., and Mitchell, Tom M. (editors) Machine
Learning: An Artificial Intelligence Approach, Volume I. Los
Altos, CA: Morgan Kaufmann. Pages 243-306.

[21] Luke, Sean and Spector, Lee. 1998. Genetic programming
produced competitive soccer softbot teams for RoboCup97.
In Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar,
Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon,
Max H., Goldberg, David E., Iba, Hitoshi, and Riolo, Rick.
(editors). Genetic Programming 1998: Proceedings of the
Third Annual Conference, July 22-25, 1998, University of
Wisconsin, Madison, Wisconsin. San Francisco, CA: Morgan
Kaufmann. Pages 214 – 222.

[22] Samuel, Arthur L. 1983. AI: Where it has been and where it
is going. Proceedings of the Eighth International Joint
Conference on Artificial Intelligence. Los Altos, CA: Morgan
Kaufmann. Pages 1152 – 1157.

[23] Spector, Lee, Langdon, William B., O'Reilly, Una-May,
and Angeline, Peter (editors). 1999. Advances in Genetic
Programming 3. Cambridge, MA: The MIT Press.

[24] Turing, Alan M. 1950. Computing machinery and
intelligence. Mind. 59(236) 433 – 460. Reprinted in Ince, D.
C. (editor). 1992. Mechanical Intelligence: Collected Works

of A. M. Turing. Amsterdam: North Holland. Pages 133 –
160.

[25] Ulam, Stanislaw M. 1991. Adventures of a Mathematician.
Berkeley, CA: University of California Press.

Potential
Recursions

Potential
Internal
Storage

Program

Potential
Subroutines

Input Output

Potential
Loops

Fig. 1 A computer program.

