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Abstract 
 
Previously reported applications of genetic 
programming to the automatic synthesis of 
computational circuits have employed 
simulations based on DC sweeps. DC 
sweeps have the advantage of being 
considerably less time-consuming than 
time-domain simulations. However, this 
type of simulation does not necessarily 
lead to robust circuits that correctly 
perform the desired mathematical function 
over time. This paper addresses the 
problem of automatically synthesizing 
computational circuits using multiple 
time-domain simulations and presents 
results involving the synthesis of both the 
topology and sizing for a squaring, square 
root, and multiplier computational circuit 
and a lag circuit (from the field of 
control).  
 

1 Introduction 
An analog electrical circuit whose output is a well-
known mathematical function (e.g., square, square root) 
is called a computational circuit.  

Analog computational circuits are especially useful 
when the mathematical function must be performed 
more rapidly than is possible with digital circuitry (e.g., 
for real-time signal processing at extremely high 
frequencies). Analog computational circuits are also 
useful when the need for a single mathematical function 
in an analog circuit does not warrant converting an 
analog signal into a digital signal (using an analog-to-
digital converter), performing the mathematical 
function in the digital domain (requiring a general 
purpose digital processor consisting of millions of 
transistors), and then converting the result to the analog 
domain (using a digital-to-analog converter).  

The design of computational circuits is exceedingly 
difficult even for seemingly mundane mathematical 
functions. Success usually relies on the clever 
exploitation of some aspect of the underlying device 

physics of the components (e.g., transistors) that is 
uniquely suited to the particular desired mathematical 
function. Because of this, the implementation of each 
different mathematical function typically requires an 
entirely different design approach (Gilbert 1968, 
Sheingold 1976, Babanezhad and Temes 1986).  

The topology of a circuit involves specification of 
the gross number of components in the circuit, the 
identity of each component (e.g., resistor, transistor), 
and the connections between each lead of each 
component. Sizing involves the specification of the 
values (typically numerical) of each component 
possessing a component value (e.g., resistors).  

Genetic programming (Koza 1992; Koza and Rice 
1992; 1994a, 1994b) is a technique for automatically 
creating computer programs to solve, or approximately 
solve, problems. Genetic programming is an extension 
of the genetic algorithm (Holland 1975). Genetic 
programming is capable of synthesizing the design of 
both the topology and component values (sizing) for a 
wide variety of analog electrical circuits from a high-
level statement of the circuit's desired behavior and 
characteristics (Koza, Bennett, Andre, and Keane 1999; 
Koza, Bennett, Andre, Keane, and Brave 1999). In 
particular, genetic programming has been previously 
used to automatically synthesize the design for 
computational circuits, including squaring, cubing, 
square root, cube root, logarithm, and Gaussian circuits.  

However, all of the previously reported applications 
of genetic programming to the automatic synthesis of 
computational circuit have employed simulations based 
on DC sweeps. DC sweeps are considerably less time-
consuming than time-domain simulations. This type of 
simulation does not necessarily lead to robust circuits 
that correctly perform the desired mathematical 
function over time. This paper addresses the problem of 
automatically synthesizing computational circuits using 
multiple time-domain simulations.  

Section 2 describes automatic synthesis of electrical 
circuits by means of developmental genetic 
programming. Section 3 itemizes the preparatory steps 
necessary to apply genetic programming to the four 
illustrative problems involving a squaring, square root, 
and multiplier computational circuit and a lag circuit 
(from the field of control). Sections 4, 5, 6, and 7 
present results for the four problems.  



2 Automatic Circuit Synthesis 
using Developmental Genetic 
Programming 

Both the topology and sizing of an electrical circuit can 
be created by genetic programming by means of a 
developmental process (Koza, Bennett, Andre, and 
Keane 1999; Koza, Bennett, Andre, Keane, and Brave 
1999). This developmental process entails the 
execution of a circuit-constructing program tree that 
contains various component-creating, topology-
modifying, and development-controlling functions. A 
simple initial circuit is the starting point of the 
developmental process for creating a fully developed 
electrical circuit. The initial circuit consists of an 
embryo and a test fixture. The embryo contains at least 
one modifiable wire. The test fixture is a fixed (hard-
wired) substructure composed of nonmodifiable wire(s) 
and nonmodifiable electrical component(s). The test 
fixture provides access to the circuit's external input(s) 
and permits probing of the circuit's output. All 
development originates from the modifiable wires. The 
execution of the component-creating, topology-
modifying, and development-controlling functions in 
the program tree transforms the initial circuit into a 
fully developed circuit. 

Additional information on genetic programming can 
be found in books such as Banzhaf, Nordin, Keller, and 
Francone 1998; books such as Langdon 1998, Ryan 
1999, and Wong and Leung 2000 in the series on 
genetic programming from Kluwer Academic 
Publishers; in edited collections of papers such as the 
Advances in Genetic Programming series of books 
from the MIT Press (Spector, Langdon, O'Reilly, and 
Angeline 1999); in the proceedings of the Genetic 
Programming Conference (Koza, Banzhaf, Chellapilla, 
Deb, Dorigo, Fogel, Garzon, Goldberg, Iba, and Riolo 
1998); in the proceedings of the Euro-GP conference 
(Poli, Banzhaf, Langdon, Miller, Nordin, and Fogarty 
2000); in the proceedings of the Genetic and 
Evolutionary Computation Conference (Banzhaf, 
Daida, Eiben, Garzon, Honavar, Jakiela, and Smith 
1999); at web sites such as www.genetic-
programming.org; and in the Genetic 
Programming and Evolvable Machines journal (from 
Kluwer Academic Publishers).  

3 Preparatory Steps 
3.1 Initial Circuit 
A one-input, one-output initial circuit with one 
modifiable wire (shown in figure 30.1 of Koza, 
Bennett, Andre, and Keane 1999) was used for the 
problems involving the squaring circuit and the square 
root circuit. The initial circuit has an incoming signal 

source, a 1,000 Ohm source resistor, a voltage probe 
point VOUT, and a 1 Ohm load resistor.  

Since the multiplication function has two inputs, a 
two-input, one-output initial circuit (shown in figure 
29.15 of Koza, Bennett, Andre, and Keane 1999) with 
three modifiable wires was used for the multiplier. 

The lag function applies the transfer function 

)1(
1

sτ+
 to a time-domain input signal, where τ is the 

time constant and s is the Laplace operator. Since the 
lag function has two inputs (the incoming signal and 
the variable value of τ), the initial circuit used in the 
multiplier problem was used for the lag problem.  

3.2 Program Architecture 
The circuit-constructing program tree has one result-
producing branch for each modifiable wire in the 
embryo of the initial circuit. Thus, each program tree 
has one result-producing branch for the problems 
involving the squaring circuit and the square root 
circuit and three result-producing branches for the 
problems involving the multiplier circuit and the lag 
circuit. Automatically defined functions were not used.  

3.3 Terminal Set 
The value of each component in a circuit possessing a 
parameter (e.g., capacitors, resistors) is established by 
an argument of its component-creating function. The 
argument is a perturbable numerical value. In the initial 
random generation (generation 0) of a run, each 
perturbable numerical value is set, individually and 
separately, to a random value in a chosen range (-5.0 
and +5.0 here). In later generations, a perturbable 
numerical value may be changed by adding or 
subtracting a relatively small number determined 
probabilistically by a Gaussian distribution (with a 
standard deviation of 0.5 here). This numerical value is 
subsequently interpreted as a component value lying in 
a range of positive values between 10-5 and 105.  

The perturbations are implemented by a genetic 
operation for mutating the numerical values. In 
addition, single numerical constants can be swapped by 
a crossover operation that operates only the numerical 
constants. The crossover operation may move subtrees 
containing component-creating functions and 
associated numerical constants between program trees. 
The mutation operation may create subtrees containing 
component-creating functions and their associated 
numerical constants.  

The perturbable numerical values are coded by 32 
bits in our system. A constrained syntactic structure 
maintains the distinction between the numerical values 
and all other parts of the program tree. 

This approach to numerical constants differs from 
the approach used in most of our previous work on 
circuit synthesis, including Koza, Bennett, Andre, and 
Keane 1999. This approach has the advantage of 



changing the numerical parameter values by relatively 
small amounts. Therefore, the space of possible 
parameter values is most thoroughly searched in the 
immediate neighborhood of the current numerical value 
(which is, by virtue of Darwinian selection, usually part 
of a relatively fit individual). Our experience (albeit 
limited) is that this perturbation operation for constants 
(patterned, in part, after the Gaussian mutation 
operation used in evolution strategies and evolutionary 
programming) appears to work better than our earlier 
approach. Since crossover is the predominant operation 
in our runs of genetic programming, this approach 
retains the usual advantage of the genetic algorithm 
with crossover, namely the ability to exploit co-adapted 
sets of functions and numerical values.  

Aside from the numerical constants, the terminal set 
for each result-producing branch is 
Trpb = {END, SAFE_CUT}.  

These terminals are each described in detail in 
Koza, Bennett, Andre, and Keane 1999. Briefly, the 
END terminal is a development-controlling zero-
argument function that ends the developmental process 
for a particular path through the circuit-constructing 
program tree. SAFE_CUT is a topology-modifying 
function that deletes a modifiable wire or component 
from the developing circuit while preserving circuit 
validity.  

3.4 Function Set 
The function set for each result-producing branch is 
Frpb = {R, C, L, SERIES, PARALLEL0, PARALLEL1, 

FLIP, NOP, 
RETAINING_THREE_GROUND_0, 
RETAINING_THREE_GROUND_1, 
RETAINING_THREE_POS5V_0, 
RETAINING_THREE_POS5V_1, 
PAIR_CONNECT_0, PAIR_CONNECT_1, 
Q_DIODE_NPN, Q_DIODE_PNP, 
Q_THREE_NPN0, ..., Q_THREE_NPN11, 
Q_THREE_PNP0, ..., Q_THREE_PNP11, 
Q_POS5V_COLL_NPN, 
Q_POS5V_EMIT_PNP, 
Q_GND_EMIT_NPN, Q_GND_EMIT_PNP}.  

See Koza, Bennett, Andre, and Keane 1999 for a 
detailed description of each of these functions. Briefly, 
the R, C, and L functions are component-creating 
functions that insert a resistor, capacitor, or inductor 
(respectively) into a developing circuit and that 
establish the numerical value for the inserted 
component. The functions beginning with Q insert 
transistors or diodes into a developing circuit. The 
SERIES and PARALLEL functions modify the 
topology of the developing circuit by performing a 
series or parallel division (respectively). The FLIP 
function reverses the polarity of a two-leaded 
component or wire. The NOP (No operation) function is 
a one-argument development-controlling function. The 

two PAIR_CONNECT functions provide a way to 
connect two points in the developing circuit. The two 
three-argument RETAINING_THREE_GROUND 
functions each create a via to ground.  

3.5 Fitness Measure 
The evaluation of each individual circuit-constructing 
program tree in the population begins with its 
execution. The execution progressively applies the 
component-creating, topology-modifying, and 
development-controlling functions in the program tree 
to the embryo of the initial circuit (and to successor 
circuits during the developmental process), thereby 
eventually yielding a fully developed circuit. A netlist 
is created that identifies each component of the fully 
developed circuit, the nodes to which each component 
is connected, and the numerical value of each 
component. The netlist becomes the input to our 
modified version of the SPICE (Simulation Program 
with Integrated Circuit Emphasis) simulation program 
(Quarles, Newton, Pederson, and Sangiovanni-
Vincentelli 1994). SPICE determines the circuit's 
behavior in terms of the output voltage VOUT in the 
time domain. Each individual circuit in the population 
is exposed to four time-domain signals for a (simulated) 
duration of one second each. Figures 1, 2, 3, and 4 
show the four time-domain signals for the problem of 
synthesizing the squaring function. These input signals 
are structured to provide a representative mixture of 
input values, all of which produce outputs that are well 
within the range that the transistors can handle (i.e., 
below 4 volts).  

We first considered running this problem using the 
"obvious" fitness measure consisting of the sum, over a 
certain number of time steps for each of the four fitness 
cases, of the absolute value of the difference between 
the actual output voltage at probe point VOUT and the 
desired output voltage. However, initial tests of our 
code on a single Pentium workstation indicated that this 
fitness measure often yielded circuits having noticeable 
spikes in the output. These spikes were reminiscent of 
the glitches that we encountered in previous work 
involving digital-to-analog converter circuits (Bennett, 
Koza, Keane, Yu, Mydlowec, and Stiffelman 1999).  

Therefore, we adopted the same fitness measure that 
we used to eliminate the spikes in the earlier work. 
Specifically, we considered the difference only at times 
that correspond to SPICE's internally created turn-
defining points. Thus, the fitness measure for the 
computational circuit is the sum, for each of SPICE's 
turns, of the absolute value of the difference between 
the actual output voltage at the probe point VOUT and 
the desired output voltage. Unsimulatable circuits 
receive a high penalty value of fitness (108).  

For the square root problem, the input signals 
necessarily differ from the signals used for the squaring 
circuit because no negative values are used as inputs. 



Each individual circuit is exposed to four time-domain 
signals for a (simulated) duration of one second each, 
as shown in figures 5, 6, 7, and 8.  
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Figure 1 Rising ramp for squaring circuit.  
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Figure 2 Falling ramp for squaring circuit.  
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Figure 3 Rising step for squaring circuit.  
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Figure 4 Falling step for squaring circuit.  
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Figure 5 Rising ramp for square root circuit.  
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Figure 6 Triangle for square root circuit.  
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Figure 7 Rising step for square root circuit.  
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Figure 8 Pulse for square root circuit.  
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Figure 9 Rising step for lag circuit.  
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Figure 10 Pulse for lag circuit.  
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Figure 11 Double pulse for lag circuit.  
 

Figure 12 Signal set no. 1.  
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Figure 13 Signal set no. 2.  
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Figure 14 Signal set no. 3.  
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Figure 15 Signal set no. 4.  
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Figure 16 Signal set no. 5.  
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Figure 17 Signal set no. 6.  
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Figure 18 Signal set no. 7.  
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Figure 19 Signal set no. 8.  
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Figure 20 Signal set no. 9.  
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Figure 21 Signal set no. 10.  

For the lag problem, the time constant, τ, is held 
constant at 1.0. Each individual circuit is exposed to 
three time-domain signals for a (simulated) duration of 
one second each, as shown in figures 9, 10, and 11.  

For the two-input multiplication problem, each 
individual circuit is exposed to ten sets of two time-

domain signals for a (simulated) duration of one second 
each, as shown in figures 12 through 21. Figure pairs 
18 and 19 and figure pairs 20 and 21 show signals 
where the two inputs are interchanged.  

3.6 Control Parameters 
For each of the four illustrative problems, the 
population size, M, was 10,000,000. A (generous) 
maximum size of 500 points (i.e., total number of 
functions and terminals) was established for the result-
producing branch. The percentages of the genetic 
operations are 60% one-offspring crossover on internal 
points of the program tree other than numerical 
constant terminals, 10% one-offspring crossover on 
points of the program tree other than numerical 



constant terminals, 1% mutation on points of the 
program tree other than numerical constant terminals, 
20% perturbation on numerical constant terminals, and 
9% reproduction. The other parameters are the same 
default values that we have used previously on a broad 
range of problems (Koza, Bennett, Andre, Keane 
1999). 

3.7 Termination 
Each run was manually terminated when the values of 
fitness for successive best-of-generation individuals 
appeared to have reached a plateau.  

3.8 Parallel Implementation 
After code development using a single Pentium 
computer, each of the four illustrative problems was 
run on a home-built Beowulf-style (Sterling, Salmon, 
Becker, and Savarese 1999; Bennett, Koza, Shipman, 
and Stiffelman 1999) parallel cluster computer system 
consisting of 1,000 350 MHz Pentium II processors 
(each accompanied by 64 megabytes of RAM). The 
system has a 350 MHz Pentium II computer as host. 
The processing nodes are connected with a 100 
megabit-per-second Ethernet. The processing nodes 
and the host use the Linux operating system. The 
distributed genetic algorithm with unsynchronized 
generations and semi-isolated subpopulations was used 
with a subpopulation size of Q = 10,000 at each of D = 
1,000 demes. As each processor (asynchronously) 
completes a generation, four boatloads of emigrants 
from each subpopulation are dispatched to each of the 
four toroidally adjacent processors. The 1,000 
processors are hierarchically organized. There are 5 × 5 
= 25 high-level groups (each containing 40 processors). 
If the adjacent node belongs to a different group, the 
migration rate is 2% and emigrants are selected based 
on fitness. If the adjacent node belongs to the same 
group, emigrants are selected randomly and the 
migration rate is 5% (10% if the adjacent node is in the 
same physical box).  

4 Results for Squaring Circuit 
The fitness of the best individual from generation 0 is 
1195.56 for the problem of designing a squaring circuit.  

The best-of-run individual appeared in generation 
109. The circuit-constructing program tree has 283 
points. This best-of-run circuit has 37 components and 
a fitness of 5.83147 (figure 22).  

 
Figure 22 Best-of-run squaring circuit from generation 

109.  
Figure 23 shows the output voltage produced by the 

best-of-run individual from generation 109 for the 
rising ramp input superimposed on the (virtually 
indistinguishable) correct output voltage for the 
squaring function.  
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Figure 23 Output for rising ramp input for squaring 

circuit.  
Figure 24 shows the output for the falling ramp 

input superimposed on the (virtually indistinguishable) 
correct output voltage for the squaring function.  
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Figure 24 Output for falling ramp input for squaring 

circuit.  
Figure 25 shows the output for the rising step input 

superimposed on the (virtually indistinguishable) 
correct output voltage for the squaring function.  
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Figure 25 Output for rising step input for squaring 

circuit.  
Figure 26 shows the output for the falling step input 

superimposed on the (virtually indistinguishable) 
correct output voltage for the squaring function.  

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

 
Figure 26 Output for falling step input for squaring 

circuit.  
As can be seen, the output voltage produced by the 

best-of-run individual from generation 109 closely 
matches the desired output for a squaring circuit. 
SPICE employed 293 points in simulating this circuit 
for the four input signals. The average error over these 
293 points was 0.027 volts. All analog computational 
circuits are, of course, approximate. This small average 
error would be acceptable for many applications.  

4.1 Computer Time for Squaring Circuit 
The best-of-run individual from generation 109 for the 
squaring computational circuit was produced after 
evaluating 1.1 × 109 individuals. This required 43 hours 
(1.548 × 105 seconds) on our 1,000-node parallel 
computer system  that is, the expenditure of 5.418 × 
1016 computer cycles (about 54 peta-cycles of computer 
time).  

5 Results for Square Root Circuit 
The fitness of the best individual from generation 0 is 
212.0 for the problem of designing a square root 
circuit.  

The best-of-run individual appeared in generation 
66. The circuit-constructing program tree has 284 
points. This best-of-run circuit has 39 components and 
a fitness of 6.26989 (figure 27).  

 
Figure 27 Best-of-run square root circuit from generation 

66.  
Figure 28 shows the output voltage produced by the 

best-of-run individual from generation 66 for the rising 
ramp input superimposed on the (virtually 
indistinguishable) correct output voltage for the square 
root function.  
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Figure 28 Output for rising ramp input for square root 

circuit.  
Figure 29 shows the output for the triangle input 

superimposed on the (virtually indistinguishable) 
correct output voltage for the square root function.  
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Figure 29 Output for triangle input for square root 

circuit.  
Figure 30 shows the output for the rising step input 

superimposed on the (virtually indistinguishable) 
correct output voltage for the square root function.  
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Figure 30 Output for rising step input for square root 

circuit.  
Figure 31 shows the output for the pulse input 

superimposed on the (virtually indistinguishable) 
correct output voltage for the square root function.  

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

 
Figure 31 Output for pulse input for square root circuit. 

As can be seen from the figures, the output voltage 
produced by the best-of-run individual from generation 
66 closely matches the desired output for a square root 
circuit. SPICE employed 299 points in simulating this 
circuit for the four input signals. The average error over 
these 299 points is 0.020 volts.  

5.1 Computer Time for Square Root 
The best-of-run individual from generation 66 for the 
square root circuit was produced after evaluating 6.7 × 
109 individuals. This required 52 hours (1.872 × 105 
seconds) on our 1,000-node parallel computer system 
 that is, the expenditure of 6.552 × 1016 computer 
cycles (about 65 peta-cycles of computer time).  

6 Results for Lag Circuit 
The fitness of the best individual from generation 0 is 
294.71 for the problem of designing a lag circuit.  

The best-of-run circuit appeared in generation 71 
with a fitness of 1.629 and 29 components.  

In this run, for example, the best-of-generation 
individual from generation 69 has fewer components 
(26) than the best-of-run individual from generation 71, 
while having an almost identical value of fitness 
(1.634).  Thus, we designate the best-of-generation 
from generation 69 (shown in figure 32) as the result of 
this run. The circuit-constructing program tree for the 
best-of-generation individual from generation 69 has 
99, 141, and 2 points, respectively.   

 
Figure 32 Best-of-generation lag circuit from generation 

69.  
Figure 33 shows the output voltage produced by the 

best-of-generation individual from generation 69 for 
the rising step input superimposed on the (virtually 
indistinguishable) correct output voltage.  
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Figure 33 Output for rising step input for lag circuit.  
Figure 34 shows the output for the pulse input 

superimposed on the (virtually indistinguishable) 
correct output voltage for the lag function.  
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Figure 34 Output for pulse input for lag circuit.  

Figure 35 shows the output for the double pulse 
input superimposed on the (virtually indistinguishable) 
correct output voltage for the lag function.  
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Figure 35 Output for double pulse input for lag circuit.  



As can be seen from the figures, the output voltage 
produced by the best-of-run individual from generation 
69 closely matches the desired output for a lag circuit. 
SPICE employed 202 points in simulating this circuit 
for the three input signals. The average error over these 
202 points was 0.002 volts.  

6.1 Computer Time for Lag Circuit 
The best-of-run individual from generation 69 for the 
lag circuit was produced after evaluating 70 × 108 
individuals. This required 47 hours (1.692 × 105 
seconds) on our 1,000-node parallel computer system 
 that is, the expenditure of 5.922 × 1016 computer 
cycles (about 59 peta-cycles of computer time).  

7 Results for Multiplier Circuit 
The fitness of the best individual from generation 0 is 
2,229.2 for the problem of designing a multiplier 
circuit.  

The best-of-run individual appeared in generation 
79 with a fitness of 139.07. The three result-producing 
branches of the circuit-constructing program tree has 
277, 17, and 34 points, respectively. This best-of-run 
circuit has 40 components (figure 36).  

 
Figure 36 Best-of-run multiplier circuit from generation 

79.  
Figures 37 through 46 show the output voltage 

produced by the best-of-run individual from generation 
79 for each of the 10 signal sets (figures 12 through 21) 
superimposed on the correct output voltage.  

As can be seen from the 10 figures, the output 
voltage produced by the best-of-run individual from 
generation 79 closely matches the desired output for a 
multiplier circuit. SPICE employed 635 points in 
simulating this circuit for the ten input signals. The 
average error over these 635 points was 0.121 volts. 
The most significant error occurs at the right ends of 
figures 45 and 46.  

7.1 Computer Time for Multiplier 
Circuit 

The best-of-run individual from generation 79 for the 
multiplier computational circuit was produced after 

evaluating 8.0 × 109 individuals. This required 141 
hours (5.076 × 105 seconds) on our 1,000-node parallel 
computer system  that is, the expenditure of 1.777 × 
1017 computer cycles (about 178 peta-cycles of 
computer time).  

8 Conclusions 
This paper used multiple computationally intensive 
time-domain simulations to automatically synthesize 
both the topology and sizing for a squaring, square 
root, and multiplier computational circuit and a lag 
circuit.  

Editor's Note 
This paper is a combination and consolidation of 
originally separate papers.  
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Figure 37 Output for signal no. 1 for multiplier circuit.  
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Figure 38 Output for signal no. 2 for multiplier circuit.  
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Figure 39 Output for signal no. 3 for multiplier circuit.  
 

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 40 Output for signal no. 4 for multiplier circuit.  
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Figure 41 Output for signal no. 5 for multiplier circuit.  
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Figure 42 Output for signal no. 6 for multiplier circuit.  
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Figure 43 Output for signal no. 7 for multiplier circuit.  
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Figure 44 Output for signal no. 8 for multiplier circuit.  
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Figure 45 Output for signal no. 9 for multiplier circuit.  
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Figure 46 Output for signal no. 10 for multiplier circuit.  
 

 


