
Use of Time-Domain Simulations in Automatic Synthesis of
Computational Circuits Using Genetic Programming

William Mydlowec

Genetic Programming Inc.
Los Altos, California

myd@cs.stanford.edu

John R. Koza
Stanford University

Los Altos, CA 94023
koza@stanford.edu

Abstract

Previously reported applications of genetic
programming to the automatic synthesis of
computational circuits have employed
simulations based on DC sweeps. DC
sweeps have the advantage of being
considerably less time-consuming than
time-domain simulations. However, this
type of simulation does not necessarily
lead to robust circuits that correctly
perform the desired mathematical function
over time. This paper addresses the
problem of automatically synthesizing
computational circuits using multiple
time-domain simulations and presents
results involving the synthesis of both the
topology and sizing for a squaring, square
root, and multiplier computational circuit
and a lag circuit (from the field of
control).

1 Introduction
An analog electrical circuit whose output is a well-
known mathematical function (e.g., square, square root)
is called a computational circuit.

Analog computational circuits are especially useful
when the mathematical function must be performed
more rapidly than is possible with digital circuitry (e.g.,
for real-time signal processing at extremely high
frequencies). Analog computational circuits are also
useful when the need for a single mathematical function
in an analog circuit does not warrant converting an
analog signal into a digital signal (using an analog-to-
digital converter), performing the mathematical
function in the digital domain (requiring a general
purpose digital processor consisting of millions of
transistors), and then converting the result to the analog
domain (using a digital-to-analog converter).

The design of computational circuits is exceedingly
difficult even for seemingly mundane mathematical
functions. Success usually relies on the clever
exploitation of some aspect of the underlying device

physics of the components (e.g., transistors) that is
uniquely suited to the particular desired mathematical
function. Because of this, the implementation of each
different mathematical function typically requires an
entirely different design approach (Gilbert 1968,
Sheingold 1976, Babanezhad and Temes 1986).

The topology of a circuit involves specification of
the gross number of components in the circuit, the
identity of each component (e.g., resistor, transistor),
and the connections between each lead of each
component. Sizing involves the specification of the
values (typically numerical) of each component
possessing a component value (e.g., resistors).

Genetic programming (Koza 1992; Koza and Rice
1992; 1994a, 1994b) is a technique for automatically
creating computer programs to solve, or approximately
solve, problems. Genetic programming is an extension
of the genetic algorithm (Holland 1975). Genetic
programming is capable of synthesizing the design of
both the topology and component values (sizing) for a
wide variety of analog electrical circuits from a high-
level statement of the circuit's desired behavior and
characteristics (Koza, Bennett, Andre, and Keane 1999;
Koza, Bennett, Andre, Keane, and Brave 1999). In
particular, genetic programming has been previously
used to automatically synthesize the design for
computational circuits, including squaring, cubing,
square root, cube root, logarithm, and Gaussian circuits.

However, all of the previously reported applications
of genetic programming to the automatic synthesis of
computational circuit have employed simulations based
on DC sweeps. DC sweeps are considerably less time-
consuming than time-domain simulations. This type of
simulation does not necessarily lead to robust circuits
that correctly perform the desired mathematical
function over time. This paper addresses the problem of
automatically synthesizing computational circuits using
multiple time-domain simulations.

Section 2 describes automatic synthesis of electrical
circuits by means of developmental genetic
programming. Section 3 itemizes the preparatory steps
necessary to apply genetic programming to the four
illustrative problems involving a squaring, square root,
and multiplier computational circuit and a lag circuit
(from the field of control). Sections 4, 5, 6, and 7
present results for the four problems.

2 Automatic Circuit Synthesis
using Developmental Genetic
Programming

Both the topology and sizing of an electrical circuit can
be created by genetic programming by means of a
developmental process (Koza, Bennett, Andre, and
Keane 1999; Koza, Bennett, Andre, Keane, and Brave
1999). This developmental process entails the
execution of a circuit-constructing program tree that
contains various component-creating, topology-
modifying, and development-controlling functions. A
simple initial circuit is the starting point of the
developmental process for creating a fully developed
electrical circuit. The initial circuit consists of an
embryo and a test fixture. The embryo contains at least
one modifiable wire. The test fixture is a fixed (hard-
wired) substructure composed of nonmodifiable wire(s)
and nonmodifiable electrical component(s). The test
fixture provides access to the circuit's external input(s)
and permits probing of the circuit's output. All
development originates from the modifiable wires. The
execution of the component-creating, topology-
modifying, and development-controlling functions in
the program tree transforms the initial circuit into a
fully developed circuit.

Additional information on genetic programming can
be found in books such as Banzhaf, Nordin, Keller, and
Francone 1998; books such as Langdon 1998, Ryan
1999, and Wong and Leung 2000 in the series on
genetic programming from Kluwer Academic
Publishers; in edited collections of papers such as the
Advances in Genetic Programming series of books
from the MIT Press (Spector, Langdon, O'Reilly, and
Angeline 1999); in the proceedings of the Genetic
Programming Conference (Koza, Banzhaf, Chellapilla,
Deb, Dorigo, Fogel, Garzon, Goldberg, Iba, and Riolo
1998); in the proceedings of the Euro-GP conference
(Poli, Banzhaf, Langdon, Miller, Nordin, and Fogarty
2000); in the proceedings of the Genetic and
Evolutionary Computation Conference (Banzhaf,
Daida, Eiben, Garzon, Honavar, Jakiela, and Smith
1999); at web sites such as www.genetic-
programming.org; and in the Genetic
Programming and Evolvable Machines journal (from
Kluwer Academic Publishers).

3 Preparatory Steps
3.1 Initial Circuit
A one-input, one-output initial circuit with one
modifiable wire (shown in figure 30.1 of Koza,
Bennett, Andre, and Keane 1999) was used for the
problems involving the squaring circuit and the square
root circuit. The initial circuit has an incoming signal

source, a 1,000 Ohm source resistor, a voltage probe
point VOUT, and a 1 Ohm load resistor.

Since the multiplication function has two inputs, a
two-input, one-output initial circuit (shown in figure
29.15 of Koza, Bennett, Andre, and Keane 1999) with
three modifiable wires was used for the multiplier.

The lag function applies the transfer function

)1(
1

sτ+
 to a time-domain input signal, where τ is the

time constant and s is the Laplace operator. Since the
lag function has two inputs (the incoming signal and
the variable value of τ), the initial circuit used in the
multiplier problem was used for the lag problem.

3.2 Program Architecture
The circuit-constructing program tree has one result-
producing branch for each modifiable wire in the
embryo of the initial circuit. Thus, each program tree
has one result-producing branch for the problems
involving the squaring circuit and the square root
circuit and three result-producing branches for the
problems involving the multiplier circuit and the lag
circuit. Automatically defined functions were not used.

3.3 Terminal Set
The value of each component in a circuit possessing a
parameter (e.g., capacitors, resistors) is established by
an argument of its component-creating function. The
argument is a perturbable numerical value. In the initial
random generation (generation 0) of a run, each
perturbable numerical value is set, individually and
separately, to a random value in a chosen range (-5.0
and +5.0 here). In later generations, a perturbable
numerical value may be changed by adding or
subtracting a relatively small number determined
probabilistically by a Gaussian distribution (with a
standard deviation of 0.5 here). This numerical value is
subsequently interpreted as a component value lying in
a range of positive values between 10-5 and 105.

The perturbations are implemented by a genetic
operation for mutating the numerical values. In
addition, single numerical constants can be swapped by
a crossover operation that operates only the numerical
constants. The crossover operation may move subtrees
containing component-creating functions and
associated numerical constants between program trees.
The mutation operation may create subtrees containing
component-creating functions and their associated
numerical constants.

The perturbable numerical values are coded by 32
bits in our system. A constrained syntactic structure
maintains the distinction between the numerical values
and all other parts of the program tree.

This approach to numerical constants differs from
the approach used in most of our previous work on
circuit synthesis, including Koza, Bennett, Andre, and
Keane 1999. This approach has the advantage of

changing the numerical parameter values by relatively
small amounts. Therefore, the space of possible
parameter values is most thoroughly searched in the
immediate neighborhood of the current numerical value
(which is, by virtue of Darwinian selection, usually part
of a relatively fit individual). Our experience (albeit
limited) is that this perturbation operation for constants
(patterned, in part, after the Gaussian mutation
operation used in evolution strategies and evolutionary
programming) appears to work better than our earlier
approach. Since crossover is the predominant operation
in our runs of genetic programming, this approach
retains the usual advantage of the genetic algorithm
with crossover, namely the ability to exploit co-adapted
sets of functions and numerical values.

Aside from the numerical constants, the terminal set
for each result-producing branch is
Trpb = {END, SAFE_CUT}.

These terminals are each described in detail in
Koza, Bennett, Andre, and Keane 1999. Briefly, the
END terminal is a development-controlling zero-
argument function that ends the developmental process
for a particular path through the circuit-constructing
program tree. SAFE_CUT is a topology-modifying
function that deletes a modifiable wire or component
from the developing circuit while preserving circuit
validity.

3.4 Function Set
The function set for each result-producing branch is
Frpb = {R, C, L, SERIES, PARALLEL0, PARALLEL1,

FLIP, NOP,
RETAINING_THREE_GROUND_0,
RETAINING_THREE_GROUND_1,
RETAINING_THREE_POS5V_0,
RETAINING_THREE_POS5V_1,
PAIR_CONNECT_0, PAIR_CONNECT_1,
Q_DIODE_NPN, Q_DIODE_PNP,
Q_THREE_NPN0, ..., Q_THREE_NPN11,
Q_THREE_PNP0, ..., Q_THREE_PNP11,
Q_POS5V_COLL_NPN,
Q_POS5V_EMIT_PNP,
Q_GND_EMIT_NPN, Q_GND_EMIT_PNP}.

See Koza, Bennett, Andre, and Keane 1999 for a
detailed description of each of these functions. Briefly,
the R, C, and L functions are component-creating
functions that insert a resistor, capacitor, or inductor
(respectively) into a developing circuit and that
establish the numerical value for the inserted
component. The functions beginning with Q insert
transistors or diodes into a developing circuit. The
SERIES and PARALLEL functions modify the
topology of the developing circuit by performing a
series or parallel division (respectively). The FLIP
function reverses the polarity of a two-leaded
component or wire. The NOP (No operation) function is
a one-argument development-controlling function. The

two PAIR_CONNECT functions provide a way to
connect two points in the developing circuit. The two
three-argument RETAINING_THREE_GROUND
functions each create a via to ground.

3.5 Fitness Measure
The evaluation of each individual circuit-constructing
program tree in the population begins with its
execution. The execution progressively applies the
component-creating, topology-modifying, and
development-controlling functions in the program tree
to the embryo of the initial circuit (and to successor
circuits during the developmental process), thereby
eventually yielding a fully developed circuit. A netlist
is created that identifies each component of the fully
developed circuit, the nodes to which each component
is connected, and the numerical value of each
component. The netlist becomes the input to our
modified version of the SPICE (Simulation Program
with Integrated Circuit Emphasis) simulation program
(Quarles, Newton, Pederson, and Sangiovanni-
Vincentelli 1994). SPICE determines the circuit's
behavior in terms of the output voltage VOUT in the
time domain. Each individual circuit in the population
is exposed to four time-domain signals for a (simulated)
duration of one second each. Figures 1, 2, 3, and 4
show the four time-domain signals for the problem of
synthesizing the squaring function. These input signals
are structured to provide a representative mixture of
input values, all of which produce outputs that are well
within the range that the transistors can handle (i.e.,
below 4 volts).

We first considered running this problem using the
"obvious" fitness measure consisting of the sum, over a
certain number of time steps for each of the four fitness
cases, of the absolute value of the difference between
the actual output voltage at probe point VOUT and the
desired output voltage. However, initial tests of our
code on a single Pentium workstation indicated that this
fitness measure often yielded circuits having noticeable
spikes in the output. These spikes were reminiscent of
the glitches that we encountered in previous work
involving digital-to-analog converter circuits (Bennett,
Koza, Keane, Yu, Mydlowec, and Stiffelman 1999).

Therefore, we adopted the same fitness measure that
we used to eliminate the spikes in the earlier work.
Specifically, we considered the difference only at times
that correspond to SPICE's internally created turn-
defining points. Thus, the fitness measure for the
computational circuit is the sum, for each of SPICE's
turns, of the absolute value of the difference between
the actual output voltage at the probe point VOUT and
the desired output voltage. Unsimulatable circuits
receive a high penalty value of fitness (108).

For the square root problem, the input signals
necessarily differ from the signals used for the squaring
circuit because no negative values are used as inputs.

Each individual circuit is exposed to four time-domain
signals for a (simulated) duration of one second each,
as shown in figures 5, 6, 7, and 8.

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vol
tag

e

Figure 1 Rising ramp for squaring circuit.

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
ltag

e

Figure 2 Falling ramp for squaring circuit.

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 3 Rising step for squaring circuit.

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vol
tag

e

Figure 4 Falling step for squaring circuit.

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vol
tag

e

Figure 5 Rising ramp for square root circuit.

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vol
tag

e

Figure 6 Triangle for square root circuit.

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 7 Rising step for square root circuit.

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 8 Pulse for square root circuit.

-1.5

-0.5

0.5

1.5

0.0 1.0 2.0 3.0 4.0 5.0

Time

Vo
lta

ge

Figure 9 Rising step for lag circuit.

-1.5

-0.5

0.5

1.5

0.0 1.0 2.0 3.0 4.0 5.0

Time

Vo
lta

ge

Figure 10 Pulse for lag circuit.

-1.5

-0.5

0.5

1.5

0.0 1.0 2.0 3.0 4.0 5.0

Time

Vol
tag

e

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vol
tag

e

Figure 11 Double pulse for lag circuit.

Figure 12 Signal set no. 1.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 13 Signal set no. 2.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vol
tag

e

Figure 14 Signal set no. 3.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 15 Signal set no. 4.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 16 Signal set no. 5.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 17 Signal set no. 6.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vol
tag

e

Figure 18 Signal set no. 7.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vol
tag

e

Figure 19 Signal set no. 8.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vol
tag

e

Figure 20 Signal set no. 9.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 21 Signal set no. 10.

For the lag problem, the time constant, τ, is held
constant at 1.0. Each individual circuit is exposed to
three time-domain signals for a (simulated) duration of
one second each, as shown in figures 9, 10, and 11.

For the two-input multiplication problem, each
individual circuit is exposed to ten sets of two time-

domain signals for a (simulated) duration of one second
each, as shown in figures 12 through 21. Figure pairs
18 and 19 and figure pairs 20 and 21 show signals
where the two inputs are interchanged.

3.6 Control Parameters
For each of the four illustrative problems, the
population size, M, was 10,000,000. A (generous)
maximum size of 500 points (i.e., total number of
functions and terminals) was established for the result-
producing branch. The percentages of the genetic
operations are 60% one-offspring crossover on internal
points of the program tree other than numerical
constant terminals, 10% one-offspring crossover on
points of the program tree other than numerical

constant terminals, 1% mutation on points of the
program tree other than numerical constant terminals,
20% perturbation on numerical constant terminals, and
9% reproduction. The other parameters are the same
default values that we have used previously on a broad
range of problems (Koza, Bennett, Andre, Keane
1999).

3.7 Termination
Each run was manually terminated when the values of
fitness for successive best-of-generation individuals
appeared to have reached a plateau.

3.8 Parallel Implementation
After code development using a single Pentium
computer, each of the four illustrative problems was
run on a home-built Beowulf-style (Sterling, Salmon,
Becker, and Savarese 1999; Bennett, Koza, Shipman,
and Stiffelman 1999) parallel cluster computer system
consisting of 1,000 350 MHz Pentium II processors
(each accompanied by 64 megabytes of RAM). The
system has a 350 MHz Pentium II computer as host.
The processing nodes are connected with a 100
megabit-per-second Ethernet. The processing nodes
and the host use the Linux operating system. The
distributed genetic algorithm with unsynchronized
generations and semi-isolated subpopulations was used
with a subpopulation size of Q = 10,000 at each of D =
1,000 demes. As each processor (asynchronously)
completes a generation, four boatloads of emigrants
from each subpopulation are dispatched to each of the
four toroidally adjacent processors. The 1,000
processors are hierarchically organized. There are 5 × 5
= 25 high-level groups (each containing 40 processors).
If the adjacent node belongs to a different group, the
migration rate is 2% and emigrants are selected based
on fitness. If the adjacent node belongs to the same
group, emigrants are selected randomly and the
migration rate is 5% (10% if the adjacent node is in the
same physical box).

4 Results for Squaring Circuit
The fitness of the best individual from generation 0 is
1195.56 for the problem of designing a squaring circuit.

The best-of-run individual appeared in generation
109. The circuit-constructing program tree has 283
points. This best-of-run circuit has 37 components and
a fitness of 5.83147 (figure 22).

Figure 22 Best-of-run squaring circuit from generation

109.
Figure 23 shows the output voltage produced by the

best-of-run individual from generation 109 for the
rising ramp input superimposed on the (virtually
indistinguishable) correct output voltage for the
squaring function.

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 23 Output for rising ramp input for squaring

circuit.
Figure 24 shows the output for the falling ramp

input superimposed on the (virtually indistinguishable)
correct output voltage for the squaring function.

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 24 Output for falling ramp input for squaring

circuit.
Figure 25 shows the output for the rising step input

superimposed on the (virtually indistinguishable)
correct output voltage for the squaring function.

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 25 Output for rising step input for squaring

circuit.
Figure 26 shows the output for the falling step input

superimposed on the (virtually indistinguishable)
correct output voltage for the squaring function.

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 26 Output for falling step input for squaring

circuit.
As can be seen, the output voltage produced by the

best-of-run individual from generation 109 closely
matches the desired output for a squaring circuit.
SPICE employed 293 points in simulating this circuit
for the four input signals. The average error over these
293 points was 0.027 volts. All analog computational
circuits are, of course, approximate. This small average
error would be acceptable for many applications.

4.1 Computer Time for Squaring Circuit
The best-of-run individual from generation 109 for the
squaring computational circuit was produced after
evaluating 1.1 × 109 individuals. This required 43 hours
(1.548 × 105 seconds) on our 1,000-node parallel
computer system  that is, the expenditure of 5.418 ×
1016 computer cycles (about 54 peta-cycles of computer
time).

5 Results for Square Root Circuit
The fitness of the best individual from generation 0 is
212.0 for the problem of designing a square root
circuit.

The best-of-run individual appeared in generation
66. The circuit-constructing program tree has 284
points. This best-of-run circuit has 39 components and
a fitness of 6.26989 (figure 27).

Figure 27 Best-of-run square root circuit from generation

66.
Figure 28 shows the output voltage produced by the

best-of-run individual from generation 66 for the rising
ramp input superimposed on the (virtually
indistinguishable) correct output voltage for the square
root function.

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 28 Output for rising ramp input for square root

circuit.
Figure 29 shows the output for the triangle input

superimposed on the (virtually indistinguishable)
correct output voltage for the square root function.

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 29 Output for triangle input for square root

circuit.
Figure 30 shows the output for the rising step input

superimposed on the (virtually indistinguishable)
correct output voltage for the square root function.

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 30 Output for rising step input for square root

circuit.
Figure 31 shows the output for the pulse input

superimposed on the (virtually indistinguishable)
correct output voltage for the square root function.

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 31 Output for pulse input for square root circuit.

As can be seen from the figures, the output voltage
produced by the best-of-run individual from generation
66 closely matches the desired output for a square root
circuit. SPICE employed 299 points in simulating this
circuit for the four input signals. The average error over
these 299 points is 0.020 volts.

5.1 Computer Time for Square Root
The best-of-run individual from generation 66 for the
square root circuit was produced after evaluating 6.7 ×
109 individuals. This required 52 hours (1.872 × 105
seconds) on our 1,000-node parallel computer system
 that is, the expenditure of 6.552 × 1016 computer
cycles (about 65 peta-cycles of computer time).

6 Results for Lag Circuit
The fitness of the best individual from generation 0 is
294.71 for the problem of designing a lag circuit.

The best-of-run circuit appeared in generation 71
with a fitness of 1.629 and 29 components.

In this run, for example, the best-of-generation
individual from generation 69 has fewer components
(26) than the best-of-run individual from generation 71,
while having an almost identical value of fitness
(1.634). Thus, we designate the best-of-generation
from generation 69 (shown in figure 32) as the result of
this run. The circuit-constructing program tree for the
best-of-generation individual from generation 69 has
99, 141, and 2 points, respectively.

Figure 32 Best-of-generation lag circuit from generation

69.
Figure 33 shows the output voltage produced by the

best-of-generation individual from generation 69 for
the rising step input superimposed on the (virtually
indistinguishable) correct output voltage.

-1.5

-0.5

0.5

1.5

0.0 1.0 2.0 3.0 4.0 5.0

Time

Vo
lta

ge

Figure 33 Output for rising step input for lag circuit.
Figure 34 shows the output for the pulse input

superimposed on the (virtually indistinguishable)
correct output voltage for the lag function.

-0.5

0.0

0.5

0.0 1.0 2.0 3.0 4.0 5.0

Time

Vo
lta

ge

Figure 34 Output for pulse input for lag circuit.

Figure 35 shows the output for the double pulse
input superimposed on the (virtually indistinguishable)
correct output voltage for the lag function.

-0.5

0.0

0.5

0.0 1.0 2.0 3.0 4.0 5.0

Time

Vo
lta

ge

Figure 35 Output for double pulse input for lag circuit.

As can be seen from the figures, the output voltage
produced by the best-of-run individual from generation
69 closely matches the desired output for a lag circuit.
SPICE employed 202 points in simulating this circuit
for the three input signals. The average error over these
202 points was 0.002 volts.

6.1 Computer Time for Lag Circuit
The best-of-run individual from generation 69 for the
lag circuit was produced after evaluating 70 × 108
individuals. This required 47 hours (1.692 × 105
seconds) on our 1,000-node parallel computer system
 that is, the expenditure of 5.922 × 1016 computer
cycles (about 59 peta-cycles of computer time).

7 Results for Multiplier Circuit
The fitness of the best individual from generation 0 is
2,229.2 for the problem of designing a multiplier
circuit.

The best-of-run individual appeared in generation
79 with a fitness of 139.07. The three result-producing
branches of the circuit-constructing program tree has
277, 17, and 34 points, respectively. This best-of-run
circuit has 40 components (figure 36).

Figure 36 Best-of-run multiplier circuit from generation

79.
Figures 37 through 46 show the output voltage

produced by the best-of-run individual from generation
79 for each of the 10 signal sets (figures 12 through 21)
superimposed on the correct output voltage.

As can be seen from the 10 figures, the output
voltage produced by the best-of-run individual from
generation 79 closely matches the desired output for a
multiplier circuit. SPICE employed 635 points in
simulating this circuit for the ten input signals. The
average error over these 635 points was 0.121 volts.
The most significant error occurs at the right ends of
figures 45 and 46.

7.1 Computer Time for Multiplier
Circuit

The best-of-run individual from generation 79 for the
multiplier computational circuit was produced after

evaluating 8.0 × 109 individuals. This required 141
hours (5.076 × 105 seconds) on our 1,000-node parallel
computer system  that is, the expenditure of 1.777 ×
1017 computer cycles (about 178 peta-cycles of
computer time).

8 Conclusions
This paper used multiple computationally intensive
time-domain simulations to automatically synthesize
both the topology and sizing for a squaring, square
root, and multiplier computational circuit and a lag
circuit.

Editor's Note
This paper is a combination and consolidation of
originally separate papers.

References
Babanezhad, J. N. and Temes, G. C. 1986. Analog

MOS Computational Circuits. Proceedings of the
IEEE Circuits and System International Symposium.
Piscataway, NJ: IEEE Press. Pages 1156–1160.

Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E.,
Garzon, Max H., Honavar, Vasant, Jakiela, Mark,
and Smith, Robert E. (editors). 1999. GECCO-99:
Proceedings of the Genetic and Evolutionary
Computation Conference, July 13-17, 1999,
Orlando, Florida USA. San Francisco, CA: Morgan
Kaufmann.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E.,
and Francone, Frank D. 1998. Genetic Programming
– An Introduction. San Francisco, CA: Morgan
Kaufmann and Heidelberg: dpunkt.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc,
and Fogarty, Terence C. 1998. Genetic
Programming: First European Workshop.
EuroGP'98. Paris, France, April 1998 Proceedings.
Paris, France. April l998. Lecture Notes in
Computer Science. Volume 1391. Berlin, Germany:
Springer-Verlag.

Bennett, Forrest H III, Koza, John R., Keane, Martin
A., Yu, Jessen, Mydlowec, William, and Stiffelman,
Oscar. 1999. Evolution by means of genetic
programming of analog circuits that perform digital
functions. In Banzhaf, Wolfgang, Daida, Jason,
Eiben, A. E., Garzon, Max H., Honavar, Vasant,
Jakiela, Mark, and Smith, Robert E. (editors). 1999.
GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, July 13-17,
1999, Orlando, Florida USA. San Francisco, CA:
Morgan Kaufmann. Pages 1477 - 1483.

Bennett, Forrest H III, Koza, John R., Shipman, James,
and Stiffelman, Oscar. 1999. Building a parallel
computer system for $18,000 that performs a half
peta-flop per day. In Banzhaf, Wolfgang, Daida,
Jason, Eiben, A. E., Garzon, Max H., Honavar,

Vasant, Jakiela, Mark, and Smith, Robert E.
(editors). 1999. GECCO-99: Proceedings of the
Genetic and Evolutionary Computation Conference,
July 13-17, 1999, Orlando, Florida USA. San
Francisco, CA: Morgan Kaufmann. 1484 - 1490.

Gilbert, Barrie. 1968. A precise four-quadrant
multiplier with subnanosecond response. IEEE
Journal of Solid-State Circuits. Volume SC-3.
Number 4. December 1968. Pages 365–373.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. 2nd. Ed. Cambridge, MA: MIT
Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge, MA:
MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1999. Genetic Programming
III: Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David,
Keane, Martin A., and Brave, Scott. 1999. Genetic
Programming III Videotape: Human-Competitive
Machine Intelligence. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT
Press.

Langdon, William B. 1998. Genetic Programming and
Data Structures: Genetic Programming + Data
Structures = Automatic Programming! Amsterdam:
Kluwer.

Poli, Riccardo, Banzhaf, Wolfgang, Langdon, William
B., Miller, Julian, Nordin, Peter, and Fogarty,
Terence C. 2000. Genetic Programming: European
Conference, EuroGP 2000, Edinburgh, Scotland,
UK, April 2000, Proceedings. Lecture Notes in
Computer Science. Volume 1802. Berlin, Germany:
Springer-Verlag.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and
Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version
3F5 User's Manual. Department of Electrical
Engineering and Computer Science, University of
California. Berkeley, CA. March 1994.

Ryan, Conor. 1999. Automatic Re-engineering of
Software Using Genetic Programming. Amsterdam:
Kluwer Academic Publishers.

Sheingold, Daniel H. (editor). 1976. Nonlinear Circuits
Handbook. Norwood, MA: Analog Devices, Inc.

Spector, Lee, Langdon, William B., O'Reilly, Una-
May, and Angeline, Peter (editors). 1999. Advances

in Genetic Programming 3. Cambridge, MA: MIT
Press.

Sterling, Thomas L., Salmon, John, Becker, Donald J.,
and Savarese, Daniel F. 1999. How to Build a
Beowulf: A Guide to Implementation and
Application of PC Clusters. Cambridge, MA: MIT
Press.

Wong, Man Leung and Leung, Kwong Sak. 2000. Data
Mining Using Grammar Based Genetic
Programming and Applications. Amsterdam:
Kluwer Academic Publishers.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 37 Output for signal no. 1 for multiplier circuit.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 38 Output for signal no. 2 for multiplier circuit.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 39 Output for signal no. 3 for multiplier circuit.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 40 Output for signal no. 4 for multiplier circuit.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 41 Output for signal no. 5 for multiplier circuit.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 42 Output for signal no. 6 for multiplier circuit.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vol
tag

e

Figure 43 Output for signal no. 7 for multiplier circuit.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 44 Output for signal no. 8 for multiplier circuit.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vol
tag

e

Figure 45 Output for signal no. 9 for multiplier circuit.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

Time

Vo
lta

ge

Figure 46 Output for signal no. 10 for multiplier circuit.

