
Automatic Synthesis of Electrical Circuits Containing a Free Variable 
Using Genetic Programming 

 
John R. Koza 

Stanford University 
Los Altos, CA 94023 

koza@stanford.edu 
 

Martin A. Keane 
Econometrics Inc. 
Chicago, Illinois 

makeane@ix.netcom.com 
 

Jessen Yu 
Genetic Programming Inc. 

Los Altos, California 
jyu@cs.stanford.edu 

 

William Mydlowec 
Genetic Programming Inc. 

Los Altos, California 
myd@cs.stanford.edu 

 
 

 

Abstract 
 
A mathematical formula containing one or 
more free variables is "general" in the 
sense that it represents the solution to all 
instances of a problem (instead of just the 
solution of a single instance of the 
problem). For example, the familiar 
formula for solving a quadratic equation 
contains free variables representing the 
coefficients of the to-be-solved equation. 
This paper demonstrates, using an 
illustrative problem, that genetic 
programming can automatically create the 
design for both the topology and 
component values for an analog electrical 
circuit in which the value of each 
component in the evolved circuit is 
specified by a mathematical expression 
containing a free variable. That is, genetic 
programming is used to evolve a general 
parameterized circuit that satisfies the 
problem's high-level requirements. The 
evolved circuit has been cross-validated 
on unseen values of the free variable.  
 

1 Introduction 
Genetic algorithms and other techniques of genetic and 
evolutionary computation are typically used to search 
for an optimal (or near-optimal) solution to a particular 
single instance of a problem. Although an evolutionary 
algorithm can easily find the numerical values for the 
real and imaginary parts of the two complex roots of a 
particular quadratic equation, such as 543 2 ++ xx , a 
separate run is required to solve each different instance 
of the problem (e.g., 7210 2 ++ xx ).  

One of the most important characteristics of 
computer programs is that they ordinarily contain 
inputs (free variables) and conditional operations. Free 
variables enable a single program to produce different 
outputs based on the particular values of its free 
variables. Conditional operations enable a single 
program to execute alternative sequences of steps based 
on the particular values of the free variables. 
Conditional operations and free variables together 
potentially enable a single program to solve all 
instances of a problem (instead of just one instance of 
the problem). Thus, a computer program containing 
free variables and conditional operations has the ability 
to solve all quadratic equations.  

Genetic algorithms and other techniques of genetic 
and evolutionary computation have been previously 
used to synthesize electrical circuits, including passive 
linear circuits composed of two-leaded components 
(Grimbleby (1995), operational amplifiers (Kruiskamp 
and Leenaerts 1995), frequency discriminators 
(Thompson 1996), and other types of circuits, as 
reported at the various conferences (Sanchez and 
Tomassini 1996; Higuchi, Iwata, and Liu 1997; Sipper, 
Mange, and Perez-Uribe 1998; IEEE Computer Society 
1999) in the rapidly growing field of evolvable 
hardware (Higuchi, Niwa, Tanaka, Iba, Hitoshi, de 
Garis, and Furuya 1993).  

Genetic programming (Koza 1992; Koza and Rice 
1992; 1994a, 1994b) is a technique for automatically 
creating computer programs to solve, or approximately 
solve, problems. Genetic programming is an extension 
of the genetic algorithm (Holland 1975). Genetic 
programming has been shown to be capable of 
synthesizing the design of both the topology and 
component values (sizing) for a wide variety of analog 
electrical circuits from a high-level statement of the 
circuit's desired behavior and characteristics (Koza, 
Bennett, Andre, and Keane 1999; Koza, Bennett, 
Andre, Keane, and Brave 1999).  

However, all of the previously reported applications 
of genetic and evolutionary computation have been 
used to produce only a single circuit for a particular 



single high-level statement of the circuit's desired 
behavior and characteristics.  

Since genetic programming searches the space of 
computer programs, the question arises as to whether 
genetic programming can be used to create a 
generalized program containing free variables and 
conditional operations so that a single genetically 
evolved program can yield functionally and 
topologically different circuits. If this were the case, a 
single evolved individual could represent the solution 
to all instances of a problem (instead of just a single 
instance of the problem).  

This paper addresses the question of whether 
genetic programming can create the design for both the 
topology and component values for an analog electrical 
circuit in which the value of each component in the 
evolved circuit is specified by a mathematical 
expression containing a free variable.   

Section 2 provides sources on genetic programming 
and briefly reviews automatic synthesis of electrical 
circuits by means of developmental genetic 
programming. Section 3 describes an illustrative 
problem. Section 4 itemizes the preparatory steps 
necessary to apply genetic programming to the 
illustrative problem. Section 5 presents the results.  

2 Automatic Circuit Synthesis using 
Developmental Genetic Programming 

The topology of a circuit involves specification of the 
gross number of components in the circuit, the identity 
of each component (e.g., capacitor), and the 
connections between each lead of each component. 
Sizing involves the specification of the values (typically 
numerical) of each component.  

Both the topology and sizing of an electrical circuit 
can be created by genetic programming by means of a 
developmental process (Koza, Bennett, Andre, and 
Keane 1999; Koza, Bennett, Andre, Keane, and Brave 
1999). This developmental process entails the 
execution of a circuit-constructing program tree that 
contains various component-creating, topology-
modifying, and development-controlling functions. An 
initial circuit consisting of an embryo and a test fixture 
is the starting point of the developmental process for 
transforming a program tree in the population into a 
fully developed electrical circuit. The embryo contains 
at least one modifiable wire. The test fixture is a fixed 
(hard-wired) substructure composed of nonmodifiable 
wires and nonmodifiable electrical components. The 
test fixture provides access to the circuit's external 
input(s) and permits probing of the circuit's output. A 
test fixture has ports that enable an embryo to be 
embedded into it. An embryo has one or more ports that 
enable it to communicate with the test fixture. All 
development originates from the modifiable wires.  

Many components appearing in electrical circuit 
(e.g., capacitors, inductors) are specified by component 

values. The value of each component in a circuit 
created by genetic programming may be established by 
an arithmetic-performing subtree associated with its 
component-creating function. If an arithmetic-
performing subtree contains a free variable, it is then a 
general mathematical expression for determining the 
component value as a function of the free variable.  

Additional information on genetic programming can 
be found in books such as Banzhaf, Nordin, Keller, and 
Francone 1998; books such as Langdon 1998, Ryan 
1999, and Wong and Leung 2000 in the series on 
genetic programming from Kluwer Academic 
Publishers; in edited collections of papers such as the 
Advances in Genetic Programming series of books 
from the MIT Press (Spector, Langdon, O'Reilly, and 
Angeline 1999); in the proceedings of the Genetic 
Programming Conference (Koza, Banzhaf, Chellapilla, 
Deb, Dorigo, Fogel, Garzon, Goldberg, Iba, and Riolo 
1998); in the proceedings of the Euro-GP conference 
(Poli, Nordin, Langdon, and Fogarty 1999); in the 
proceedings of the Genetic and Evolutionary 
Computation Conference (Banzhaf, Daida, Eiben, 
Garzon, Honavar, Jakiela, and Smith 1999); at web 
sites such as www.genetic-programming.org; 
and in the Genetic Programming and Evolvable 
Machines journal (from Kluwer Academic Publishers).  

3 Illustrative Problem 
A filter is a one-input, one-output electronic circuit that 
passes the frequency components of the incoming 
signal that lie in a specified range (called the passband) 
while suppressing the frequency components that lie in 
all other frequency ranges (the stopband).  

A lowpass filter passes all frequencies below a 
certain specified frequency, but stops all higher 
frequencies.  

The problem is to evolve a general analog electrical 
circuit for a lowpass filter whose passband ends at 
frequency f and whose stopband starts at frequency 2f 
with 60 decibels (1,000-to-1) of attenuation. (A decibel 
is a unitless measure of relative voltage that is defined 
as 20 times the common logarithm of the ratio between 
the two voltages). The frequencies between f and 2f 
constitute a "don't care" region.  

4 Preparatory Steps 
Seven major preparatory steps are required to apply 
genetic programming to a problem of circuit synthesis 
using developmental genetic programming: (1) identify 
the initial circuit for the circuit developmental process, 
(2) determine the architecture of the circuit-
constructing program trees, (3) identify the primitive 
functions of the circuit-constructing program trees, (4) 
identify the terminals of the circuit-constructing 
program trees, (5) define the fitness measure, (6) 
choose control parameters, and (7) determine the 
termination criterion and method of result designation.  



4.1 Initial Circuit 
Figure 1 shows a one-input, one-output initial circuit 
consisting of an embryo embedded in a test fixture. The 
embryo consists of two modifiable wires Z0, and Z1. 
The test fixture has an incoming signal source 
VSOURCE, a 1,000 Ohm source resistor RSOURCE, 
a nonmodifiable wire ZOUT, a voltage probe point 
VOUT (the output of the overall circuit), a 1,000 Ohm 
load resistor LOAD, and a nonmodifiable wire ZGND 
connecting to ground.  
 

 
Figure 1 One-input, one-output initial circuit.  

4.2 Program Architecture 
The architecture of each circuit-constructing program 
tree has two result-producing branches. There are no 
automatically defined functions (Koza 1992, 1994a, 
1994b) in any program tree in the initial random 
population (generation 0). However, in later 
generations, the architecture-altering operations may 
insert (and delete) one-argument automatically defined 
functions of particular individual program trees in the 
population. A (generous) maximum of five 
automatically defined functions was established for 
each program tree in the population.  
4.3 Terminal Set 
The numerical value for each capacitor or inductor is 
established by an arithmetic-performing subtree 
containing perturbable numerical values, arithmetic 
operations, and the free variable f representing the 
frequency of the end of the desired filter's passband. 
Arithmetic-performing subtrees may appear in both 
result-producing branches and any automatically 
defined functions that may be created during the run by 
the architecture-altering operations. The value returned 
by an entire arithmetic-performing subtree is 
interpreted as a component value lying in a range of 
(positive values) between 10-5 and 105.  The terminal 
set, Taps, for the arithmetic-performing subtrees is 
Taps = {ℜ, F}. 

Here ℜ denotes a perturbable numerical value. In the 
initial random generation (generation 0) of a run, each 
perturbable numerical value is set, individually and 
separately, to a random value in a chosen range (from -
5.0 and +5.0 here). In later generations, a perturbable 
numerical value may be changed by adding or 
subtracting a relatively small number determined 
probabilistically by a Gaussian probability distribution. 
The standard deviation of the Gaussian distribution is 
1.0 here (i.e., one order of magnitude after the value 
returned by an entire arithmetic-performing subtree is 
interpreted). The perturbations are implemented by a 
genetic operation for mutating the perturbable 
numerical values. The perturbable numerical values are 
coded by 30 bits in our system. A constrained syntactic 
structure maintains one function and terminal set for the 
arithmetic-performing subtrees and a different function 
and terminal set (below) for all other parts of the 
program tree.  

This approach to numerical constants differs from 
the approach used in most of our previous work on 
circuit synthesis, including Koza, Bennett, Andre, and 
Keane 1999. This approach has the advantage of 
changing the numerical parameter values by relatively 
small amounts. Therefore, the space of possible 
parameter values is most thoroughly searched in the 
immediate neighborhood of the value of the current 
numerical value (which is, by virtue of Darwinian 
selection, usually part of a relatively fit individual). Our 
experience (albeit limited) is that this perturbation 
operation for constants (patterned after the Gaussian 
mutation operation used in evolution strategies and 
evolutionary programming) appears to work better than 
our earlier approach. Since this approach is 
implemented in runs of genetic programming in which 
crossover is the predominant operation, this approach 
retains the usual advantage of the genetic algorithm 
with crossover, namely the ability to exploit and 
propagate co-adapted sets of numerical values.   

The terminal set, Trpb, for other parts of each result-
producing branch is 
Trpb = {END, SAFE_CUT}.  
Each of the above terminals are described in detail in 
Koza, Bennett, Andre, and Keane 1999. Briefly, the 
END terminal is a development-controlling function 
that ends the developmental process for its particular 
path through the circuit-constructing program tree. 
SAFE_CUT is a topology-modifying function that 
preserves circuit validity while deleting a modifiable 
wire or component from the developing circuit.  

The terminal set, Tadf, for each automatically 
defined function (other than their arithmetic-performing 
subtrees) is 
Tadf = {END, SAFE_CUT, ARG0}.  
Here ARG0 is the dummy argument (formal parameter) 
of the automatically defined function.  



4.4 Function Set 
The function set, Faps, for the arithmetic-performing 
subtrees is 
Faps = {+, -, *, %, REXP, RLOG}.  

The two-argument +, -, *, % functions add, 
subtract, multiply, or divide, respectively, their first 
argument by their second argument. The one-argument 
REXP function is the exponential function and the one-
argument RLOG function is the natural logarithm of the 
absolute value. All of these functions are protected in 
the sense that if the value returned by any of these 
functions would be less than 10-9 or greater than 109, a 
value of 10-9 or 109, respectively, is returned.  

The function set, Frpb, for all other parts of each 
result-producing branch is  
Frpb = {L, C, SERIES, PARALLEL0, FLIP, NOP, 

PAIR_CONNECT_0, PAIR_CONNECT_1, 
THREE_GROUND_0, THREE_GROUND_1, 
ADF0, ADF1, ADF2, ADF3, ADF4}.  

Briefly, the L and C functions are component-creating 
functions that insert an inductor or capacitor 
(respectively) into a developing circuit and that 
establish the numerical value for the inserted 
component. The SERIES and PARALLEL0 functions 
modify the topology of the developing circuit by 
performing a series or parallel division (respectively). 
The FLIP function reverses the polarity of a 
component or wire. The NOP (No operation) function is 
a development-controlling function. The two 
PAIR_CONNECT functions provide a way to connect 
two (possibly distant) points in the developing circuit. 
The two three-argument THREE_GROUND functions 
each create a via to ground. See Koza, Bennett, Andre, 
and Keane 1999 for details. 

ADF0, … , ADF4 denote automatically defined 
functions (subroutines). A particular automatically 
defined function is present in a particular individual in 
the population at a particular generation during the run 
only if it has been added (and not deleted) by the 
architecture-altering operations. The function set, Fadf, 
for each automatically defined function (other than 
their arithmetic-performing subtrees) consists of Frpb 
along with whatever automatically defined functions 
that it is able to call hierarchically.  
4.5 Fitness Measure 
Genetic programming is a probabilistic search 
algorithm that searches the space of compositions of the 
available functions and terminals under the guidance of 
a fitness measure. The fitness measure is a 
mathematical implementation of the high-level 
requirements of the problem and is couched in terms of 
“what needs to be done”  not “how to do it.” The 
fitness measure may incorporate any measurable, 
observable, or calculable behavior or characteristic or 
combination of behaviors or characteristics. 

Construction of the fitness measure requires translating 
the high-level requirements of the problem into a 
mathematically precise computation. 

The evaluation of each individual circuit-
constructing program tree in the population begins with 
its execution. The execution progressively applies the 
functions in the program tree to the embryo of the 
initial circuit (and to successor circuits during the 
developmental process), thereby eventually yielding a 
fully developed circuit. A netlist is created that 
identifies each component of the fully developed 
circuit, the nodes to which each component is 
connected, and the numerical value of each component. 
The netlist becomes the input to our modified version 
of the 217,000-line SPICE (Simulation Program with 
Integrated Circuit Emphasis) simulation program 
(Quarles, Newton, Pederson, and Sangiovanni-
Vincentelli 1994). SPICE is an industrial strength 
simulator. Hundreds of thousands of copies are in use 
by practicing electrical engineers throughout the world. 
SPICE is remarkably robust in general. The frequencies 
and components involved in this problem are handled 
without difficulty by SPICE. The simulator then 
determines the behavior of the circuit.  

Since the high-level statement of the behavior for 
the desired filter circuit is expressed in terms of 
frequencies, the output voltage VOUT is measured in 
the frequency domain.  

The free variable f ranges over nine values that are 
equally spaced (on a logarithmic scale) in the range 
between 1,000 Hz and 100,000 Hz. Specifically, the 
nine values of f are 1,000, 1,780, 3,160, 5,620, 10,000, 
17,800, 31,600, 56,200, and 100,000 Hz. For each of 
the nine values for the free variable f, SPICE is 
instructed to perform an AC small signal analysis and 
report the circuit's behavior over five decades with each 
decade being divided into 20 parts (using a logarithmic 
scale), so that there are a total of 101 sampled 
frequencies (fitness cases) for each value of f . The 
starting frequency for each AC sweep is f/1,000 and the 
ending frequency is 100f. The desired lowpass filter has 
a passband ending at f and a stopband beginning at 2 f . 
There should be a sharp drop-off from 1 to 0 Volts in 
the transitional (“don't care”) region between f and 2 f. 
For example, if f is 3,160 Hz (the third of the nine 
fitness cases), then the AC small signal analysis is 
performed between 3.16 Hz (three decades below f) and 
316,000 Hz (two decades above f) and desired lowpass 
filter has a passband ending at 3,160 Hz and a stopband 
beginning at 6,320 Hz.  

The ideal voltage in the passband of the desired 
lowpass filter is 1 volt and the ideal voltage in the 
desired stopband is 0 volts. A voltage in the desired 
passband of between 970 millivolts and 1 volt (i.e., a 
passband ripple of 30 millivolts or less) and a voltage 
in the desired stopband of between 0 volts and 1 
millivolts (i.e., a stopband ripple of 1 millivolts or less) 



is regarded as acceptable. Any voltage lower than 970 
millivolts in the desired passband and any voltage 
above 1 millivolts in the desired stopband is 
unacceptable. 

Fitness is the sum, over all nine values of the free 
variable f and over all 101 fitness cases associated with 
each of the nine values of f of the absolute weighted 
deviation between the actual value of the voltage that is 
produced by the circuit at the probe point VOUT and 
the target value for voltage (0 or 1 volts). A smaller 
value of fitness is better. Specifically,  

))()),
100

0
(((

9

1
)( ifdifi ifdW

k
tF ∑

=
∑
=

=  

where fi is the frequency of fitness case i; d(x) is the 
absolute value of the difference between the target and 
observed values at frequency x; and W(y,x) is the 
weighting for difference y at frequency x.  

The fitness measure is designed to not penalize 
ideal voltage values, to slightly penalize every 
acceptable voltage deviation, and to heavily penalize 
every unacceptable voltage deviation. Specifically, for 
each of the points in the intended passband, if the 
voltage is between 970 millivolts and 1 volt, the 
absolute value of the deviation from 1 volt is weighted 
by a factor of 1.0. However, if the voltage is less than 
970 millivolts, the absolute value of the deviation from 
1 volt is weighted by a factor of 10.0. The acceptable 
and unacceptable deviations for each of the points in 
the intended stopband are similarly weighed (by 1.0 or 
10.0) based on the amount of deviation from the ideal 
voltage of 0 volts and the acceptable deviation of 1 
millivolts. For each of the “don't care” points between f 
and 2 f, the deviation is deemed to be zero.  

The number of hits is defined as the number of 
fitness cases (0 to 909) for which the voltage is 
acceptable or ideal or that lie in the “don't care” band.  

The SPICE simulator is remarkably robust; 
however, it cannot simulate every conceivable circuit. 
In particular, many circuits that are randomly created 
for the initial population of a run of genetic 
programming and many circuits that are created by the 
crossover and mutation operations in later generations 
are so pathological that SPICE cannot simulate them. 
These circuits receive a high penalty value of fitness 
(108) and become the worst-of-generation programs for 
each generation.  
4.6 Control Parameters 
The population size, M, was 10,000,000. A (generous) 
maximum size of 300 points (i.e., total number of 
functions and terminals) was established for each 
result-producing branch and a (generous) maximum 
size of 100 points was established for each 
automatically defined function. The percentages of the 
genetic operations for each generation on and after 
generation 5 are 57% one-offspring crossover on 

internal points of the program tree other than numerical 
constant terminals, 10% one-offspring crossover on 
points of the program tree other than numerical 
constant terminals, 1% mutation on points of the 
program tree other than numerical constant terminals, 
20% mutation on numerical constant terminals, 9% 
reproduction, 1% subroutine creation, 1% subroutine 
duplication, and 1% subroutine deletion. Since all the 
programs in generation 0 have a minimalist architecture 
consisting of just two result-producing branches, we 
accelerate the appearance of automatically defined 
functions in the population by using an increased 
percentage for the architecture-altering operations that 
add subroutines (i.e., subroutine creation and 
subroutine duplication) prior to generation 5. 
Specifically, the percentages for the genetic operations 
for each generation up to generation 5 are 49%, 10%, 
1%, 20%, 9%, 5%, 5%, and 1%, respectively. The other 
parameters (including details concerning tournament 
selection and other aspects of the run) are the same 
default values that we have used previously on a broad 
range of problems (Koza, Bennett, Andre, Keane 
1999). 
4.7 Termination 
The run was terminated when an individual with 909 
hits was discovered. This individual was harvested and 
designated as the result of the run.  
4.8 Parallel Implementation 
This problem was run on a home-built Beowulf-style 
(Sterling, Salmon, Becker, and Savarese 1999; Bennett, 
Koza, Shipman, and Stiffelman 1999) parallel cluster 
computer system consisting of 1,000 350 MHz Pentium 
II processors (each accompanied by 64 megabytes of 
RAM). The system has a 350 MHz Pentium II 
computer as host. The processing nodes are connected 
with a 100 megabit-per-second Ethernet. The 
processing nodes and the host use the Linux operating 
system. The distributed genetic algorithm with 
unsynchronized generations and semi-isolated 
subpopulations was used with a subpopulation size of 
Q = 10,000 at each of D = 1,000 demes. As each 
processor (asynchronously) completes a generation, 
four boatloads of emigrants from each subpopulation 
are dispatched to each of the four toroidally adjacent 
processors. The 1,000 processors are hierarchically 
organized. There are 5 × 5 = 25 high-level groups (each 
containing 40 processors). If the adjacent node belongs 
to a different group, the migration rate is 2% and 
emigrants are selected based on fitness. If the adjacent 
node belongs to the same group, emigrants are selected 
randomly and the migration rate is 5% (10% if the 
adjacent node is in the same physical box).  



5 Results 
The fitness of the best individual from generation 0 is 
957.1.  

 

 
Figure 2 Genetically evolved parameterized filter.  

The first individual to achieve 100% compliance 
with the problem's requirements by scoring 909 hits 
(out of 909) appeared in generation 78 (figure 2). This 
best-of-run circuit has a fitness of 0.18450 and scores 
909 hits (out of 909). The circuit has nine components 
(four inductors and five capacitors). The circuit-
constructing program tree has two result-producing 
branches (with 146 and 295 points, respectively) and 
five automatically defined functions (with 4, 3, 5, 3, 
and 1 points, respectively). Both result-producing 
branches refer to ADF0 once. ADF0 hierarchically 
refers to ADF3 and they together evaluate to 1 - f. The 
other three automatically defined functions are not 
referenced.  

 

 
Figure 3 Frequency domain behavior of genetically 

evolved parameterized filter for nine values of 
frequency f.  

Figure 3 shows the behavior, in the frequency 
domain, of the genetically evolved parameterized filter 
from generation 78 for each of nine values of the free 

variable f. The horizontal axis represents the frequency 
of the incoming signal and ranges logarithmically over 
the seven decades of frequency between 1 Hz and 10 
MHz. The 101 equally spaced filled circles (many of 
which overlap in the figure) along each of the nine 
curves represent the 101 fitness cases (sampled 
frequencies). The vertical axis represents the peak 
voltage of the circuit's output signal and ranges linearly 
between 0 and +1.2 Volts. The amplitude of the 
voltages produced by the genetically evolved 
parameterized filter for frequencies below f are all 
between 970 millivolts and 1 Volt). The amplitude of 
the voltages produced by the genetically evolved 
parameterized filter for frequencies above 2f are all 
between 0 millivolts and 1 millivolt. Thus, the evolved 
parameterized filter is 100% compliant for all sampled 
frequencies for all nine values of the free variable f.  

The component values for the circuit's nine 
components (four inductors and five capacitors) are 
shown below. Note that each component value is a 
function of the problem's free variable f. Inductors are 
in micro-Henrys and capacitors are in nano-Farads.  

f
L

7100198.81 ×
=  

( )( )
( )ff

fffL
+×

+×+×+××
=

−

12

2516128

104636.3
103714.9103331.1107387.4103406.12

                        f
f

f ln104451.2ln
8
+

×
≈+  

f
f

L ln2100262.23
8
+

×
=  

f
L

7107297.34 ×
=  

f
C

5106786.11 ×
=  

f
C

5106786.12 ×
=  

f
C

5103552.13 ×
=  

f
C

5104484.64 ×
=  

f
f

f ln104451.2ln
8
+

×
≈+



f
C

5101056.15 ×
=  

As can be seen, all the above component values 
(except for L2 and L3) are inversely proportional to f. 
For L2 and L3, the component values are 
approximately inversely proportional to f for f less than 
1,000,000 Hz. This is exactly what you would expect as 
a means to make a filter scalable over a wide range of 
frequencies when the impedance (i.e., the load and 
source resistance here) is fixed (Van Valkenburg 1982). 
Thus, the mathematical expressions for each of the 
component values in the evolved circuit have a 
reasonable interpretation in electrical engineering 
terms.  
5.1 Cross Validation 
The question arises as to how well the genetically 
evolved parameterized filter from generation 78 
generalizes to previously unseen values of the 
frequency f. The evolutionary process is driven by 
fitness as measured by the above particular set of nine 
in-sample values of frequency f. The possibility exists 
that the circuit that is evolved with a small finite 
number of values of the frequency f (i.e., the so-called 
"in-sample" or "training" cases) will be overly 
specialized to those particular values and will prove to 
be inapplicable to other unseen values of f. Figure 4 
shows the behavior, in the frequency domain, of the 
genetically evolved parameterized filter from 
generation 78 for four out-of-sample values of 
frequency f. Two of the values of f are from inside the 
range between 1,000 Hz and 100,000 Hz. They are 
4,640 Hz (the antilog of 3 2/3) and 21,540 Hz (the 
antilog of 4 1/3). Two others are from outside the 
range, namely 100 Hz and 1,000,000 Hz (each a full 
decade outside the original range of frequencies). As 
can be seen, the genetically evolved parameterized 
filter from generation 78 is 100% compliant for these 
four out-of-sample values of frequency f.  
 

 
Figure 4 Frequency domain behavior of genetically 
evolved parameterized filter for four out-of-sample 

values of frequency f.  

5.2 Computer Time 
As one would expect, automatically creating a 
generalized formula to solve an entire category of 
problems requires considerably more computer time 
than solving one particular instance of the problem. The 
best-of-run individual from generation 78 was 
produced after evaluating 7.9 × 108 individuals 
(10,000,000 times 79). This required 44.9 hours (1.584 
× 105 seconds) on our 1,000-node parallel computer 
system  that is, the expenditure of 5.54 × 1016 
computer cycles (about 55 peta-cycles of computer 
time).  

6 Conclusions 
This paper demonstrated that genetic programming can 
automatically create the design for both the topology 
and component values for an analog electrical circuit in 
which the value of each component in the evolved 
circuit is specified by a mathematical expression 
containing a free variable. That is, genetic 
programming evolved a circuit that is general in the 
sense that it represents the solution to all instances of a 
problem (instead of just the solution of a single instance 
of the problem). The mathematical expressions for each 
of the component values in the evolved circuit have a 
reasonable interpretation in electrical engineering 
terms. The evolved circuit has been cross-validated on 
unseen values of the free variable.  

References 
Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E., 

Garzon, Max H., Honavar, Vasant, Jakiela, Mark, 
and Smith, Robert E. (editors). 1999. GECCO-99: 
Proceedings of the Genetic and Evolutionary 
Computation Conference, July 13-17, 1999, 
Orlando, Florida USA. San Francisco, CA: Morgan 
Kaufmann.  

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., 
and Francone, Frank D. 1998. Genetic Programming 



– An Introduction. San Francisco, CA: Morgan 
Kaufmann and Heidelberg: dpunkt.  

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, 
and Fogarty, Terence C. 1998. Genetic 
Programming: First European Workshop. 
EuroGP'98. Paris, France, April 1998 Proceedings. 
Paris, France. April l998. Lecture Notes in 
Computer Science. Volume 1391. Berlin, Germany: 
Springer-Verlag.  

Bennett, Forrest H III, Koza, John R., Shipman, James, 
and Stiffelman, Oscar. 1999. Building a parallel 
computer system for $18,000 that performs a half 
peta-flop per day. In Banzhaf, Wolfgang, Daida, 
Jason, Eiben, A. E., Garzon, Max H., Honavar, 
Vasant, Jakiela, Mark, and Smith, Robert E. 
(editors). 1999. GECCO-99: Proceedings of the 
Genetic and Evolutionary Computation Conference, 
July 13-17, 1999, Orlando, Florida USA. San 
Francisco, CA: Morgan Kaufmann. 1484 - 1490.  

Grimbleby, J. B. 1995. Automatic analogue network 
synthesis using genetic algorithms. Proceedings of 
the First International Conference on Genetic 
Algorithms in Engineering Systems: Innovations and 
Applications (GALESIA). London: Institution of 
Electrical Engineers. Pages 53 – 58.  

Higuchi, Tetsuya, Iwata, Masaya, and Lui, Weixin 
(editors). 1997. Proceedings of International 
Conference on Evolvable Systems: From Biology to 
Hardware (ICES-96). Lecture Notes in Computer 
Science, Volume 1259.  

Higuchi, Tetsuya, Niwa, Tatsuya, Tanaka, Toshio, Iba, 
Hitoshi, de Garis, Hugo, and Furuya, Tatsumi. 1993. 
Higuchi, Tetsuya, Niwa, Tatsuya, Tanaka, Toshio, 
Iba, Hitoshi, de Garis, Hugo, and Furuya, Tatsumi. 
Evolving hardware with genetic learning: A first step 
towards building a Darwin machine.  In Meyer, 
Jean-Arcady, Roitblat, Herbert L. and Wilson, 
Stewart W. (editors). From Animals to Animats 2: 
Proceedings of the Second International Conference 
on Simulation of Adaptive Behavior. Cambridge, 
MA: The MIT Press. 1993. Pages 417 – 424.  

Holland, John H. 1975. Adaptation in Natural and 
Artificial Systems. 2nd. Ed. Cambridge, MA: MIT 
Press. 

IEEE Computer Society. 1999. Proceedings of the First 
NASA / DOD Workshop on Evolvable Hardware, 
Pasadena, California, July 19 - 21, 1999. Los 
Alamitos, CA. IEEE Computer Society. 

Koza, John R. 1992. Genetic Programming: On the 
Programming of Computers by Means of Natural 
Selection. Cambridge, MA: MIT Press. 

Koza, John R. 1994a. Genetic Programming II: 
Automatic Discovery of Reusable Programs. 
Cambridge, MA: MIT Press. 

Koza, John R. 1994b. Genetic Programming II 
Videotape: The Next Generation. Cambridge, MA: 
MIT Press.  

Koza, John R., Bennett III, Forrest H, Andre, David, 
and Keane, Martin A. 1999. Genetic Programming 
III: Darwinian Invention and Problem Solving. San 
Francisco, CA: Morgan Kaufmann.  

Koza, John R., Bennett III, Forrest H, Andre, David, 
Keane, Martin A., and Brave, Scott. 1999. Genetic 
Programming III Videotape: Human-Competitive 
Machine Intelligence. San Francisco, CA: Morgan 
Kaufmann.  

Koza, John R., and Rice, James P. 1992. Genetic 
Programming: The Movie. Cambridge, MA: MIT 
Press.  

Kruiskamp Marinum Wilhelmus and Leenaerts, 
Domine. 1995. DARWIN: CMOS opamp synthesis 
by means of a genetic algorithm. Proceedings of the 
32nd Design Automation Conference. New York, 
NY: Association for Computing Machinery. Pages 
433–438.  

Langdon, William B. 1998. Genetic Programming and 
Data Structures: Genetic Programming + Data 
Structures = Automatic Programming! Amsterdam: 
Kluwer.  

Poli, Riccardo, Nordin, Peter, Langdon, William B., 
and Fogarty, Terence C. 1999. Genetic 
Programming: Second European Workshop. 
EuroGP'99. Proceedings. Lecture Notes in 
Computer Science. Volume 1598. Berlin: Springer-
Verlag.  

Quarles, Thomas, Newton, A. R., Pederson, D. O., and 
Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version 
3F5 User's Manual. Department of Electrical 
Engineering and Computer Science, University of 
California. Berkeley, CA. March 1994.  

Ryan, Conor. 1999. Automatic Re-engineering of 
Software Using Genetic Programming. Amsterdam: 
Kluwer Academic Publishers.  

Sanchez, Eduardo and Tomassini, Marco (editors). 
1996. Towards Evolvable Hardware. Lecture Notes 
in Computer Science, Volume 1062. Berlin: 
Springer-Verlag. 

Sipper, Moshe, Mange, Daniel, and Perez-Uribe. 1998. 
Evolvable Systems: From Biology to Hardware. 
Second International Conference, ICES 98, 
Lausanne, Switzerland, September 1998 
Proceedings. Lecture Notes in Computer Science 
1478. Berlin: Springer-Verlag.  

Spector, Lee, Langdon, William B., O'Reilly, Una-
May, and Angeline, Peter (editors). 1999. Advances 
in Genetic Programming 3. Cambridge, MA: MIT 
Press.  

Sterling, Thomas L., Salmon, John, Becker, Donald J., 
and Savarese, Daniel F. 1999. How to Build a 
Beowulf: A Guide to Implementation and 
Application of PC Clusters. Cambridge, MA: MIT 
Press.  

Thompson, Adrian. 1996. Silicon evolution. In Koza, 
John R., Goldberg, David E., Fogel, David B., and 



Riolo, Rick L. (editors). 1996. Genetic Programming 
1996: Proceedings of the First Annual Conference, 
July 28-31, 1996, Stanford University. Cambridge, 
MA: MIT Press. Pages 444–452.  

Van Valkenburg, M. E. 1982. Analog Filter Design. 
Fort Worth, TX: Harcourt Brace Jovanovich.  

Wong, Man Leung and Leung, Kwong Sak. 2000. Data 
Mining Using Grammar Based Genetic 
Programming and Applications. Amsterdam: 
Kluwer Academic Publishers.  

 


