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Abstract 
 
Previous work has shown that genetic 
programming is capable of creating analog 
electrical circuits whose output equals common 
mathematical functions, merely by specifying the 
desired mathematical function that is to be 
produced.  This paper extends this work by 
generating computational circuits whose output 
is an approximation to the error function 
associated with an existing computational circuit 
(created by means of genetic programming or 
some other method).  The output of the evolved 
circuit can then be added to the output of the 
existing circuit to produce a circuit that computes 
the desired function with greater accuracy.  This 
process can be performed iteratively.  We 
present a set of results showing the effectiveness 
of this approach over multiple iterations for 
generating squaring, square root, and cubing 
computational circuits.  We also perform 
iterative refinement on a recently patented cubic 
signal generator circuit, obtaining a refined 
circuit that is 7.2 times more accurate than the 
original patented circuit.  The iterative 
refinement process described herein can be 
viewed as a method for using previous 
knowledge (i.e. the existing circuit) to obtain an 
improved result. 

1 INTRODUCTION 
An analog electrical circuit whose output is a well-known 
mathematical function (e.g., square, square root) is called 
a computational circuit. 

Analog computational circuits are especially useful when 
the mathematical function must be performed more 
rapidly than is possible with digital circuitry (e.g., for 
real-time signal processing at extremely high 
frequencies). Analog computational circuits are also 
useful when the need for a single mathematical function 
in an analog circuit does not warrant converting an analog 

signal into a digital signal (using an analog-to-digital 
converter), performing the mathematical function in the 
digital domain (requiring a general purpose digital 
processor consisting of millions of transistors), and then 
converting the result to the analog domain (using a 
digital-to-analog converter). 

The design of computational circuits is exceedingly 
difficult even for seemingly mundane mathematical 
functions. Success usually relies on the clever exploitation 
of some aspect of the underlying device physics of the 
components (e.g., transistors) that is uniquely suited to the 
particular desired mathematical function. Because of this, 
the implementation of each different mathematical 
function typically requires an entirely different design 
approach (Gilbert 1968, Sheingold 1976, Babanezhad and 
Temes 1986). 

The topology of a circuit involves specification of the 
total number of components in the circuit, the identity of 
each component (e.g., resistor, transistor), and the 
connections between each lead of each component. Sizing 
involves the specification of the values (typically 
numerical) of each component possessing a component 
value (e.g., resistors, capacitors).  Genetic programming 
(Koza 1992; Koza and Rice 1992; 1994a, 1994b) is a 
technique for automatically creating computer programs 
to solve, or approximately solve, problems. Genetic 
programming is an extension of the genetic algorithm 
(Holland 1975). Genetic programming is capable of 
synthesizing the design of both the topology and 
component values (sizing) for a wide variety of analog 
electrical circuits from a high-level statement of the 
circuit’s desired behavior and characteristics (Koza, 
Bennett, Andre, and Keane 1999; Koza, Bennett, Andre, 
Keane, and Brave 1999; Mydlowec and Koza 2000). 

This paper extends previous work on synthesis of 
computational circuits using genetic programming by 
applying genetic programming in an iterative manner to 
obtain successively more accurate computational circuits.  
Specifically, we employ a multiple-run process in which 
each run involves generating a computational circuit that 



produces as output an approximation to the error function 
(i.e. the difference between the target function and the 
circuit’s actual output) of the best-of-run circuit from the 
previous run. 

Section 2 of this paper presents a proof-of-principle 
experiment involving iterative refinement of rational 
polynomial approximations to the sine function.  Section 
3 describes automatic synthesis of electrical circuits by 
means of developmental genetic programming.  Section 4 
itemizes the preparatory steps required to apply genetic 
programming to the problem of synthesizing 
computational circuits.  Section 5 describes our 
experiments involving iterative refinement of squaring, 
square root, and cubing computational circuits.  Section 6 
describes an experiment involving iterative refinement of 
a post-2000 patented cubic signal generator circuit.  
Section 7 is the conclusion. 

2 ITERATIVE REFINEMENT OF 
NUMERICAL APPROXIMATIONS TO 
FUNCTIONS  

Iterative refinement as described in this paper can be 
applied to other problem areas involving the synthesis of 
structures or entities that generate a specified target curve 
as output.  In particular, it can be applied to the problem 
of generating numerical approximations to mathematical 
functions.  As a proof-of-principle experiment that could 
be conducted using relatively modest computational 
resources, we evolved successively more accurate rational 
polynomial approximations to the function sin(x) over the 
interval [0,π/2].   
The function set for this problem consisted of the four 
arithmetic operators {+,*,-,%}.  The terminal set 
consisted of the variable X and the random numeric 
terminal R.  Fitness was defined as the sum of absolute 
error over 100 uniformly spaced points.  We used a 
population size, M, of  100,000 and tournament selection 
with a tournament size of 10.  The remaining control 
parameters are the same as those described in section 4.6 
of this paper.  Each run was conducted on a single 
Pentium workstation. 
A first run (iteration 0) was conducted using the target 
function sin(x).  The best-of-run individual from this first 
run produces an output a0(x), with an associated error 
function defined as sin(x)-a0(x).  We then perform a 
second run (iteration 1) using the target function sin(x)-
a0(x).  This second run yields a best-of-run individual 
whose output a1(x) can be added to the result of the first 
run to produce a more accurate approximation a0(x)+a1(x).  
This process was continued iteratively for a total of 6 runs 
including the initial run (with target function sin(x)).  The 
best-of-run rational polynomial from each of the runs was 
imported into the Maple symbolic mathematics package 
to calculate average error (using the integral of the error 
functions).  Table 1 presents the average error of the best-
of-run individuals for iteration N=0 through iteration N=5.  

Rprev indicates the ratio of improvement in average error 
over the previous iteration.  Rfinal at the bottom of the table 
gives the ratio of improvement in accuracy of the best 
individual from all iterations over the best individual from 
the first iteration, i.e. the total ratio of improvement over 
all iterations. 
 
Table 1 : Error of Rational Polynomial Approximations to 

sin(x), [0,π/2] over Successive Iterations 

N ERROR Rprev 

0 4.554574e-6  

1 3.483825e-8 130.73 

2 2.093228e-8 1.6643 

3 1.039170e-8 2.0143 

4 6.302312e-9 1.6489 

5 2.200276e-6 3.4912e-4  

Rfinal: 772.65 

 

As shown in Table 1, we obtain a significantly more 
accurate approximation for iterations 1 through 4 of our 
experiment.  With each successive iteration, the error 
function being approximated becomes more complex (i.e. 
has more local extrema and sharper spikes).  On iteration 
5, we obtain a high-degree rational polynomial that, as 
evaluated under our genetic programming system over 
100 fixed points, represents an improvement over the 
previous iteration.  However, when imported into a 
symbolic mathematics package this approximation is 
revealed to have a large spike in between two of these 100 
fixed points, giving it a substantially higher average error 
than the approximation produced by the previous 
iteration. 

3 AUTOMATIC CIRCUIT SYNTHESIS 
USING DEVELOPMENTAL GENETIC 
PROGRAMMING 

Both the topology and sizing of an electrical circuit can be 
created by genetic programming by means of a 
developmental process (Koza, Bennett, Andre, and Keane 
1999; Koza, Bennett, Andre, Keane, and Brave 1999). 
This developmental process entails the execution of a 
circuit-constructing program tree that contains various 
component-creating, topology-modifying, and 
development-controlling functions. A simple initial circuit 
is the starting point of the developmental process for 
creating a fully developed electrical circuit. The initial 
circuit consists of an embryo and a test fixture.  The 
embryo contains at least one modifiable wire. The test 
fixture is a fixed (hard-wired) substructure composed of 
nonmodifiable wire(s) and nonmodifiable electrical 
component(s). The test fixture provides access to the 



circuit’s external input(s) and permits probing of the 
circuit’s output. All development originates from the 
modifiable wires. The execution of the component-
creating, topology-modifying, and development-
controlling functions in the program tree transforms the 
initial circuit into a fully developed circuit.  We use the 
methods described by Koza, Bennett, Andre and Keane 
(1999) in combination with the four technical 
modifications described by Streeter, Keane, and Koza 
(2002). 

4 PREPARATORY STEPS 

4.1 INITIAL CIRCUIT 
A one-input, one-output initial circuit with one modifiable 
wire was used for all problems described in this paper 
with the exception of the problem involving the patented 
cubic signal generator circuit (described in section 6).  
The initial circuit has an incoming signal source, a 1 
µOhm source resistor, a voltage probe point VOUT, and a 
1 gigaOhm load resistor.  The topology of the circuit is 
the same as that shown in figure 30.1 of Koza, Bennett, 
Andre, and Keane 1999. 

4.2 PROGRAM ARCHITECTURE 
The circuit-constructing program tree has one result-
producing branch for each modifiable wire in the embryo 
of the initial circuit. Thus, each program tree has one 
result-producing branch for each of the problems 
described in this paper.  Automatically defined functions 
were not used. 

4.3 TERMINAL SET 
The value of each component in a circuit possessing a 
parameter (e.g., resistors) is established by an argument of 
its component-creating function. The argument is a 
numerical terminal whose value can be perturbed by a 
special genetic operation for mutation of constants.  Aside 
from the numerical constants, the terminal set for each 
result-producing branch is  
Trpb = {END, SAFE_CUT, B_C_E ... E_C_B, 
BIFURCATE_POSITIVE, BIFURCATE_NEGATIVE, 
Q2N3906, Q2N3904, UP_OR_LEFT, 
DOWN_OR_RIGHT}.   
These terminals are each described in detail in Koza, 
Bennett, Andre, and Keane 1999 and Streeter, Keane, and 
Koza 2002. Briefly, the END terminal is a development-
controlling function that ends the developmental process 
for a particular path through the circuit-constructing 
program tree. SAFE_CUT is a topology-modifying 
function that deletes a modifiable wire or component from 
the developing circuit while preserving circuit validity.  
The B_C_E through E_C_B terminals specify which of 
six possible permutations to use for the three leads of a 
transistor when inserting a transistor into a circuit.  The 
BIFUCATE_POSITIVE and BIFURCATE_NEGATIVE 

terminals specify which end of the modifiable wire to 
bifurcate when inserting a transistor.  The Q2N3906 and 
Q2N3904 terminals specify which of two available 
transistor models to use when inserting a transistor.  The 
DOWN_OR_RIGHT and UP_OR_LEFT terminals specify 
the two possible pairs of directions in which parallel 
division can be performed. 

4.4 FUNCTION SET 
The function set for each result-producing branch is 
Frpb = {R, Q, SERIES, PARALLEL,  NODE, TWO-LEAD, 
TWO_GROUND, THREE_GROUND}. 
See Koza, Bennett, Andre, and Keane 1999 and Streeter, 
Keane, and Koza 2002 for a detailed description of each 
of these functions. Briefly, the R function is a component-
creating function that creates a resistor with a resistance 
specified as an argument to the function.  A function that 
creates a two-leaded component (with R here being the 
only choice) can be used as an argument to the TWO-
LEAD function, which inserts two-leaded components into 
the circuit.  The Q function inserts transistors into a 
developing circuit. The SERIES and PARALLEL 
functions modify the topology of the developing circuit 
by performing a series or parallel division (respectively). 
The NODE function is used to connect distant points in a 
circuit.  The TWO_GROUND and THREE_GROUND 
functions each create a via to ground. 

4.5 FITNESS MEASURE 
The evaluation of each individual circuit-constructing 
program tree in the population begins with its execution.  
The execution progressively applies the component-
creating, topology-modifying, and development-
controlling functions in the program tree to the embryo of 
the initial circuit (and to intermediate circuits during the 
developmental process), thereby eventually yielding a 
fully developed circuit. A netlist is then created that 
identifies each component of the fully developed circuit, 
the nodes to which each component is connected, and the 
numerical value of each component. The netlist becomes 
the input to our modified version of the SPICE 
(Simulation Program with Integrated Circuit Emphasis) 
simulation program (Quarles, Newton, Pederson, and 
Sangiovanni-Vincentelli 1994). SPICE determines the 
circuit’s behavior in terms of the output voltage VOUT in 
the time domain. Each individual circuit in the population 
is exposed to two time-domain signals for a (simulated) 
duration of either one or one hundred seconds.  The first 
time domain signal is a straight line rising from 0 to 1 volt 
over a period of one second.  The second time domain 
signal is a straight line falling from 1 volt to 0 volts over 
100 seconds.  Each time-domain simulation is run for 100 
time steps. 
Absolute error is defined as the sum, over each time step, 
of the absolute difference between the output of the 
circuit and the value of the target function (which varies 
from problem to problem).  Overall fitness consists of a 



weighted sum of absolute error.  The error of each point is 
weighted by a factor of 10 if it is not a hit, and a factor of 
1 otherwise.  A hit is defined as an output that is within 
1% of the desired value. 

4.6 CONTROL PARAMETERS 
For the computational circuit problems described in this 
paper, the population size, M, was 20,000. A (generous) 
maximum size of 500 points (i.e., total number of 
functions and terminals) was established for the result-
producing branch. The percentages of the genetic 
operations are 60% one-offspring crossover on internal 
points of the program tree other than numerical constant 
terminals, 10% one-offspring crossover on points of the 
program tree other than numerical constant terminals, 1% 
mutation on points of the program tree other than 
numerical constant terminals, 20% perturbation on 
numerical constant terminals, and 9% reproduction. The 
other parameters are the same default values that we have 
used previously on a broad range of problems (Koza, 
Bennett, Andre, Keane 1999). 

4.7 TERMINATION 
Each run (performed as part of a multi-run process) was 
allowed to perform 100 generations before being 
terminated. 

4.8 PARALLEL IMPLEMENTATION 
Each of the problems described in this paper was run on a 
home-built Beowulf-style (Sterling, Salmon, Becker, and 
Savarese 1999; Bennett, Koza, Shipman, and Stiffelman 
1999) parallel cluster computer system consisting of 20 
350 MHz Pentium II processors (each accompanied by 64 
megabytes of RAM).  These 20 processors were isolated 
into a logically separate cluster for the purpose of these 
experiments.  They normally act as part of a larger 1,000 
processor cluster which we apply to more difficult 
problems involving genetic programming.  The system 
has a 350 MHz Pentium II computer as host. 
The processing nodes are connected with a 100 megabit-
per-second Ethernet. The processing nodes and the host 
use the Linux operating system. The distributed genetic 
algorithm with unsynchronized generations and semi-
isolated subpopulations was used with a subpopulation 
size of Q = 1,000 at each of D = 20 demes. As each 
processor (asynchronously) completes a generation, four 
boatloads of emigrants from each subpopulation are 
dispatched to each of the four toroidally adjacent 
processors. Emigrants are selected randomly and the 
migration rate is 5% (10% if the adjacent node is in the 
same physical box). 

5 ITERATIVE REFINEMENT OF 
EVOLVED COMPUTATIONAL 
CIRCUITS 

5.1 RESULTS 
We applied our iterative refinement process to the 
generation of squaring, square root, and cubing 
computational circuits.  In each case, a first run of genetic 
programming was conducted to create a circuit which 
output the desired function with some degree of accuracy.  
A second run was then performed in which the target 
function was taken as the error function associated with 
the best-of-run circuit from the previous run.  This 
process was continued for successive iterations until a run 
produced an improvement in accuracy over the previous 
iteration of 5% or less.  Tables 2, 3, and 4 present the 
results of these experiments for squaring, square root, and 
cubing computational circuits, respectively.  Figures 1, 3, 
and 5 present the output curves for the circuits produced 
by successive iterations for the squaring, square root, and 
cubing functions, respectively.  Figures 2, 4, and 6 present 
the error curves over successive iterations for the 
squaring, square root, and cubing circuits, respectively. 
 
Table 2 : Error of Squaring Computational Circuits over 

Successive Iterations 

N ERROR (mV) Rprev 

0 46.84  

1 5.836 8.0260 

2 5.5635 1.0490 

Rfinal: 8.4193 
 

Table 3 : Error of Square Root Computational Circuits 
over Successive Iterations 

N ERROR (mV) Rprev 

0 11.835  

1 3.4445 3.4359 

2 3.398 1.0137 

Rfinal: 3.4830 
 
 
 
 
 
 
 
 



Table 4 : Error of Cubing Computational Circuits over 
Successive Iterations 

N ERROR (mV) Rprev 

0 22.312  

1 20.198 1.1047 

2 17.510 1.1535 

3 17.061 1.0263 

Rfinal: 1.3078 
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Figure 1: Output of Squaring Computational Circuits over 

Successive  Iterations 
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Figure 2: Error of Squaring Computational Circuits over 

Successive Iterations 
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Figure 3: Output of Square Root Computational Circuits 

over Successive Iterations 
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Figure 4: Error of Square Root Computational Circuits 

over Successive Iterations 
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Figure 5: Output of Cubing Computational Circuits over 

Successive Iterations 
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Figure 6: Error of Cubing Computational Circuits over 

Successive Iterations 

5.2 EFFICIENCY OF EVOLVING 
COMPUTATIONAL CIRCUITS USING 
ITERATIVE REFINEMENT 

It is not necessarily (and almost undoubtedly not) the case 
that the experiments described above produce their results 
with the most efficient possible use of available 
computational resources.  Since our multi-run process 
involved 6 separate GP runs, the same computational 
resources could be expended by executing (for example) a 
single run for 6 times as long or a single run using 6 times 
the population.  We have no evidence to show that either 
of these approaches, or some other approach which used 
the same amount of computational resources as our 
experiments, would not produce better results than the 
ones given here.  However, our purpose here is to 
establish that genetic programming is capable of creating 
computational circuits whose output is an approximation 
to the error function of another computational circuit, and 
that the iterative process used in these experiments is 
indeed able to create successively more accurate 
computational circuits. 
Also note that the results presented in this section and in 
section 2 in no way imply that the error functions being 
targeted in each successive iteration are somehow more 
amenable to approximation by genetic programming than 
are the original target functions (i.e. sqrt(x), x2, and x3).  
Rather, it is the fact that genetic programming is able to 
produce circuits whose outputs approximate the error 
functions with any degree of accuracy at all that allows 
successively more accurate circuits to be obtained. 

6 REFINEMENT OF A POST-2000 
PATENTED CIRCUIT 

U.S. patent 6,160,427 covers a low-voltage cubic signal 
generator circuit that produces an output current 
approximately equal to the cube of its input current 
(Cipriani and Takeshian, 2000).  In a previous paper, we 
successfully applied genetic programming to the synthesis 
of a computational circuit that duplicates the functionality 
of this patented circuit.  Specifically, we evolved a circuit 

that meets the low voltage criteria defined in the patent 
and has an average error that is 59% of that of the 
patented circuit over the four fitness cases on which it was 
evaluated (Streeter, Keane, and Koza 2002). 
We now apply our iterative refinement process to this 
patented circuit.  The preparatory steps for the runs 
performed in this experiment differ from the preparatory 
steps given in section 4 in four minor ways.  First, we 
force the evolved circuit to conform to the low voltage 
specification in the patent by including only a 2V power 
supply in the function set, rather than the 15V and –15V 
supplies we had included in previous run.  Second, we 
desire that this circuit make full use of the voltage range 
provided by the power supply, i.e. the circuit’s output 
should range from 0V to 2V.  This means that the input 
voltage  should have a minimum value of 0V and a 
maximum voltage equal to the cube root of 2.  The two 
time-domain curves described in section 4.5 are modified 
accordingly.  Third, for this problem we use only a 
minimal embryo consisting of a single modifiable wire 
initially not connected to the test fixture, in contrast to the 
embryo consisting of a modifiable wire connected to 
source and load resistors as described in section 4.1.  We 
generally use this minimal embryo when dealing with a 
test fixture that has multiple inputs or outputs.  In this 
case there is one input (representing an input current 
flowing down from a 2V supply) and two outputs 
(representing the high and low points at which the output 
current is to be probed).  Additional functions are 
included in the function set that allow connections to be 
made to the single input and the two outputs.  For more 
information on these functions see Koza, Bennett, Andre, 
Keane 1999.  Finally, each of the runs described in this 
section was manually monitored and terminated when it 
appeared to have reached a plateau. 
When building upon a patented circuit, the first iteration 
(iteration 0) of our iterative process does not involve a GP 
run, but rather involves building and simulating the 
patented circuit based on the schematics given in the 
patent document.  Our first GP run (iteration 1) involves 
the synthesis of a computational circuit whose output 
approximates the error function associated with the 
patented circuit.  Our second GP run (iteration 2) involves 
the synthesis of a circuit whose output approximates the 
error function of the best-of-run circuit from our first GP 
run.  The results of these runs are presented in Table 5. 
 

Table 5 : Error of Low-Voltage Cubing Circuits over 
Successive Iterations 

N ERROR (mV) Rprev 

0 7.128  

1 0.9873 7.2197 

2 0.9236   1.0690 

Rfinal: 7.2197 (see below) 
 



The first iteration of our experiment produced a circuit 
whose average error was 7.2 times better than that of the 
patented circuit (over our two fitness cases).  This circuit 
was created after 147 generations.  The circuit was tested 
on a variety of unseen fitness cases, and outperformed the 
patented circuit on those fitness cases as well.  The 
second iteration of our experiment produced a circuit that 
was approximately 1.07 times better than the circuit of the 
previous iteration.  This circuit was created after 80 
generations.  However, examination of the output of this 
circuit reveals that it contains a number of sharp spikes 
which indicate instability in the circuit’s output.  This 
circuit generally does not perform better that the circuit of 
the previous iteration when tested on unseen fitness cases. 
The output curves for the circuits produced in iterations 0 
and 1 of our experiment are given in Figure 7.  The error 
curves for these two circuits are given in Figure 8.   
Figure 9 presents the refined computational circuit 
obtained by adding the output of the patented cubic signal 
generator circuit to the output of the evolved circuit.  In 
this figure there are two rectangles drawn using dotted 
lines.  The top rectangle encloses the circuitry from the 
patented cubic signal generator, while the bottom 
rectangle encloses the evolved circuitry.  Components 
which are outside both rectangles are part of the test 
fixture for the problem.  The two outputs labeled VITER0 
(for the output of the patented circuit) and VITER1 (for 
the output of the evolved circuit) are passed through a 
voltage addition block to produce the final output 
(VFINAL) of the refined circuit. 
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Figure 7: Output of Low-Voltage Cubing Circuits over 

Successive Iterations 
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Figure 8: Error of Low-Voltage Cubing Circuits over 

Successive Iterations 
 
 

 

 
Figure 9: Refined Low-Voltage Cubic Signal Generator 

Circuit 



As previously mentioned, computational circuits are 
valuable in that they are able to produce the output of 
complex mathematical functions at near-instantaneous 
analog speed.  However, no human-designed 
computational circuit (or circuit designed by any other 
means) is likely to produce the desired output with  
perfect accuracy.  For this reason, an error correction 
process is desireable.  Genetic programming has been 
shown in this paper to provide such a process.  Since the 
shape of the error functions associated with computational 
circuits are rather arbitrary and do not correspond to 
simple mathematical functions, it would be difficult if not 
impossible for an analog engineer to generate a circuit 
that produced these functions.  The synthesis of 
computational circuits that produce these error functions 
as output is therefore an especially suitable application of 
genetic programming. 

7 CONCLUSIONS 
We have shown that an iterative refinement process can 
be applied both to the generation of rational polynomial 
approximations to functions and to the synthesis of 
computational circuits using genetic programming.  In 
particular, we have applied this process to the synthesis of 
squaring, square root, and cubing computational circuits, 
obtaining an increase in accuracy with each successive 
iteration of refinement.  We further applied this iterative 
process to a recently patented low-voltage cubic signal 
generator circuit, and achieved an improvement in 
accuracy of a factor of 7.2 over the patented circuit.  We 
conclude that the approach described in this paper 
provides an effective way to generate high-accuracy 
computational circuits. 
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