
Iterative Refinement of Computational Circuits
using Genetic Programming

Matthew J. Streeter

Genetic Programming, Inc.
Mountain View, California

mjs@tmolp.com

Martin A. Keane
Econometrics, Inc.
Chicago, Illinois

makeane@ix.netcom.com

John R. Koza
Stanford University
Stanford, California

koza@stanford.edu

Abstract

Previous work has shown that genetic
programming is capable of creating analog
electrical circuits whose output equals common
mathematical functions, merely by specifying the
desired mathematical function that is to be
produced. This paper extends this work by
generating computational circuits whose output
is an approximation to the error function
associated with an existing computational circuit
(created by means of genetic programming or
some other method). The output of the evolved
circuit can then be added to the output of the
existing circuit to produce a circuit that computes
the desired function with greater accuracy. This
process can be performed iteratively. We
present a set of results showing the effectiveness
of this approach over multiple iterations for
generating squaring, square root, and cubing
computational circuits. We also perform
iterative refinement on a recently patented cubic
signal generator circuit, obtaining a refined
circuit that is 7.2 times more accurate than the
original patented circuit. The iterative
refinement process described herein can be
viewed as a method for using previous
knowledge (i.e. the existing circuit) to obtain an
improved result.

1 INTRODUCTION
An analog electrical circuit whose output is a well-known
mathematical function (e.g., square, square root) is called
a computational circuit.

Analog computational circuits are especially useful when
the mathematical function must be performed more
rapidly than is possible with digital circuitry (e.g., for
real-time signal processing at extremely high
frequencies). Analog computational circuits are also
useful when the need for a single mathematical function
in an analog circuit does not warrant converting an analog

signal into a digital signal (using an analog-to-digital
converter), performing the mathematical function in the
digital domain (requiring a general purpose digital
processor consisting of millions of transistors), and then
converting the result to the analog domain (using a
digital-to-analog converter).

The design of computational circuits is exceedingly
difficult even for seemingly mundane mathematical
functions. Success usually relies on the clever exploitation
of some aspect of the underlying device physics of the
components (e.g., transistors) that is uniquely suited to the
particular desired mathematical function. Because of this,
the implementation of each different mathematical
function typically requires an entirely different design
approach (Gilbert 1968, Sheingold 1976, Babanezhad and
Temes 1986).

The topology of a circuit involves specification of the
total number of components in the circuit, the identity of
each component (e.g., resistor, transistor), and the
connections between each lead of each component. Sizing
involves the specification of the values (typically
numerical) of each component possessing a component
value (e.g., resistors, capacitors). Genetic programming
(Koza 1992; Koza and Rice 1992; 1994a, 1994b) is a
technique for automatically creating computer programs
to solve, or approximately solve, problems. Genetic
programming is an extension of the genetic algorithm
(Holland 1975). Genetic programming is capable of
synthesizing the design of both the topology and
component values (sizing) for a wide variety of analog
electrical circuits from a high-level statement of the
circuit’s desired behavior and characteristics (Koza,
Bennett, Andre, and Keane 1999; Koza, Bennett, Andre,
Keane, and Brave 1999; Mydlowec and Koza 2000).

This paper extends previous work on synthesis of
computational circuits using genetic programming by
applying genetic programming in an iterative manner to
obtain successively more accurate computational circuits.
Specifically, we employ a multiple-run process in which
each run involves generating a computational circuit that

produces as output an approximation to the error function
(i.e. the difference between the target function and the
circuit’s actual output) of the best-of-run circuit from the
previous run.

Section 2 of this paper presents a proof-of-principle
experiment involving iterative refinement of rational
polynomial approximations to the sine function. Section
3 describes automatic synthesis of electrical circuits by
means of developmental genetic programming. Section 4
itemizes the preparatory steps required to apply genetic
programming to the problem of synthesizing
computational circuits. Section 5 describes our
experiments involving iterative refinement of squaring,
square root, and cubing computational circuits. Section 6
describes an experiment involving iterative refinement of
a post-2000 patented cubic signal generator circuit.
Section 7 is the conclusion.

2 ITERATIVE REFINEMENT OF
NUMERICAL APPROXIMATIONS TO
FUNCTIONS

Iterative refinement as described in this paper can be
applied to other problem areas involving the synthesis of
structures or entities that generate a specified target curve
as output. In particular, it can be applied to the problem
of generating numerical approximations to mathematical
functions. As a proof-of-principle experiment that could
be conducted using relatively modest computational
resources, we evolved successively more accurate rational
polynomial approximations to the function sin(x) over the
interval [0,π/2].
The function set for this problem consisted of the four
arithmetic operators {+,*,-,%}. The terminal set
consisted of the variable X and the random numeric
terminal R. Fitness was defined as the sum of absolute
error over 100 uniformly spaced points. We used a
population size, M, of 100,000 and tournament selection
with a tournament size of 10. The remaining control
parameters are the same as those described in section 4.6
of this paper. Each run was conducted on a single
Pentium workstation.
A first run (iteration 0) was conducted using the target
function sin(x). The best-of-run individual from this first
run produces an output a0(x), with an associated error
function defined as sin(x)-a0(x). We then perform a
second run (iteration 1) using the target function sin(x)-
a0(x). This second run yields a best-of-run individual
whose output a1(x) can be added to the result of the first
run to produce a more accurate approximation a0(x)+a1(x).
This process was continued iteratively for a total of 6 runs
including the initial run (with target function sin(x)). The
best-of-run rational polynomial from each of the runs was
imported into the Maple symbolic mathematics package
to calculate average error (using the integral of the error
functions). Table 1 presents the average error of the best-
of-run individuals for iteration N=0 through iteration N=5.

Rprev indicates the ratio of improvement in average error
over the previous iteration. Rfinal at the bottom of the table
gives the ratio of improvement in accuracy of the best
individual from all iterations over the best individual from
the first iteration, i.e. the total ratio of improvement over
all iterations.

Table 1 : Error of Rational Polynomial Approximations to

sin(x), [0,π/2] over Successive Iterations

N ERROR Rprev

0 4.554574e-6 

1 3.483825e-8 130.73

2 2.093228e-8 1.6643

3 1.039170e-8 2.0143

4 6.302312e-9 1.6489

5 2.200276e-6 3.4912e-4

Rfinal: 772.65

As shown in Table 1, we obtain a significantly more
accurate approximation for iterations 1 through 4 of our
experiment. With each successive iteration, the error
function being approximated becomes more complex (i.e.
has more local extrema and sharper spikes). On iteration
5, we obtain a high-degree rational polynomial that, as
evaluated under our genetic programming system over
100 fixed points, represents an improvement over the
previous iteration. However, when imported into a
symbolic mathematics package this approximation is
revealed to have a large spike in between two of these 100
fixed points, giving it a substantially higher average error
than the approximation produced by the previous
iteration.

3 AUTOMATIC CIRCUIT SYNTHESIS
USING DEVELOPMENTAL GENETIC
PROGRAMMING

Both the topology and sizing of an electrical circuit can be
created by genetic programming by means of a
developmental process (Koza, Bennett, Andre, and Keane
1999; Koza, Bennett, Andre, Keane, and Brave 1999).
This developmental process entails the execution of a
circuit-constructing program tree that contains various
component-creating, topology-modifying, and
development-controlling functions. A simple initial circuit
is the starting point of the developmental process for
creating a fully developed electrical circuit. The initial
circuit consists of an embryo and a test fixture. The
embryo contains at least one modifiable wire. The test
fixture is a fixed (hard-wired) substructure composed of
nonmodifiable wire(s) and nonmodifiable electrical
component(s). The test fixture provides access to the

circuit’s external input(s) and permits probing of the
circuit’s output. All development originates from the
modifiable wires. The execution of the component-
creating, topology-modifying, and development-
controlling functions in the program tree transforms the
initial circuit into a fully developed circuit. We use the
methods described by Koza, Bennett, Andre and Keane
(1999) in combination with the four technical
modifications described by Streeter, Keane, and Koza
(2002).

4 PREPARATORY STEPS

4.1 INITIAL CIRCUIT
A one-input, one-output initial circuit with one modifiable
wire was used for all problems described in this paper
with the exception of the problem involving the patented
cubic signal generator circuit (described in section 6).
The initial circuit has an incoming signal source, a 1
µOhm source resistor, a voltage probe point VOUT, and a
1 gigaOhm load resistor. The topology of the circuit is
the same as that shown in figure 30.1 of Koza, Bennett,
Andre, and Keane 1999.

4.2 PROGRAM ARCHITECTURE
The circuit-constructing program tree has one result-
producing branch for each modifiable wire in the embryo
of the initial circuit. Thus, each program tree has one
result-producing branch for each of the problems
described in this paper. Automatically defined functions
were not used.

4.3 TERMINAL SET
The value of each component in a circuit possessing a
parameter (e.g., resistors) is established by an argument of
its component-creating function. The argument is a
numerical terminal whose value can be perturbed by a
special genetic operation for mutation of constants. Aside
from the numerical constants, the terminal set for each
result-producing branch is
Trpb = {END, SAFE_CUT, B_C_E ... E_C_B,
BIFURCATE_POSITIVE, BIFURCATE_NEGATIVE,
Q2N3906, Q2N3904, UP_OR_LEFT,
DOWN_OR_RIGHT}.
These terminals are each described in detail in Koza,
Bennett, Andre, and Keane 1999 and Streeter, Keane, and
Koza 2002. Briefly, the END terminal is a development-
controlling function that ends the developmental process
for a particular path through the circuit-constructing
program tree. SAFE_CUT is a topology-modifying
function that deletes a modifiable wire or component from
the developing circuit while preserving circuit validity.
The B_C_E through E_C_B terminals specify which of
six possible permutations to use for the three leads of a
transistor when inserting a transistor into a circuit. The
BIFUCATE_POSITIVE and BIFURCATE_NEGATIVE

terminals specify which end of the modifiable wire to
bifurcate when inserting a transistor. The Q2N3906 and
Q2N3904 terminals specify which of two available
transistor models to use when inserting a transistor. The
DOWN_OR_RIGHT and UP_OR_LEFT terminals specify
the two possible pairs of directions in which parallel
division can be performed.

4.4 FUNCTION SET
The function set for each result-producing branch is
Frpb = {R, Q, SERIES, PARALLEL, NODE, TWO-LEAD,
TWO_GROUND, THREE_GROUND}.
See Koza, Bennett, Andre, and Keane 1999 and Streeter,
Keane, and Koza 2002 for a detailed description of each
of these functions. Briefly, the R function is a component-
creating function that creates a resistor with a resistance
specified as an argument to the function. A function that
creates a two-leaded component (with R here being the
only choice) can be used as an argument to the TWO-
LEAD function, which inserts two-leaded components into
the circuit. The Q function inserts transistors into a
developing circuit. The SERIES and PARALLEL
functions modify the topology of the developing circuit
by performing a series or parallel division (respectively).
The NODE function is used to connect distant points in a
circuit. The TWO_GROUND and THREE_GROUND
functions each create a via to ground.

4.5 FITNESS MEASURE
The evaluation of each individual circuit-constructing
program tree in the population begins with its execution.
The execution progressively applies the component-
creating, topology-modifying, and development-
controlling functions in the program tree to the embryo of
the initial circuit (and to intermediate circuits during the
developmental process), thereby eventually yielding a
fully developed circuit. A netlist is then created that
identifies each component of the fully developed circuit,
the nodes to which each component is connected, and the
numerical value of each component. The netlist becomes
the input to our modified version of the SPICE
(Simulation Program with Integrated Circuit Emphasis)
simulation program (Quarles, Newton, Pederson, and
Sangiovanni-Vincentelli 1994). SPICE determines the
circuit’s behavior in terms of the output voltage VOUT in
the time domain. Each individual circuit in the population
is exposed to two time-domain signals for a (simulated)
duration of either one or one hundred seconds. The first
time domain signal is a straight line rising from 0 to 1 volt
over a period of one second. The second time domain
signal is a straight line falling from 1 volt to 0 volts over
100 seconds. Each time-domain simulation is run for 100
time steps.
Absolute error is defined as the sum, over each time step,
of the absolute difference between the output of the
circuit and the value of the target function (which varies
from problem to problem). Overall fitness consists of a

weighted sum of absolute error. The error of each point is
weighted by a factor of 10 if it is not a hit, and a factor of
1 otherwise. A hit is defined as an output that is within
1% of the desired value.

4.6 CONTROL PARAMETERS
For the computational circuit problems described in this
paper, the population size, M, was 20,000. A (generous)
maximum size of 500 points (i.e., total number of
functions and terminals) was established for the result-
producing branch. The percentages of the genetic
operations are 60% one-offspring crossover on internal
points of the program tree other than numerical constant
terminals, 10% one-offspring crossover on points of the
program tree other than numerical constant terminals, 1%
mutation on points of the program tree other than
numerical constant terminals, 20% perturbation on
numerical constant terminals, and 9% reproduction. The
other parameters are the same default values that we have
used previously on a broad range of problems (Koza,
Bennett, Andre, Keane 1999).

4.7 TERMINATION
Each run (performed as part of a multi-run process) was
allowed to perform 100 generations before being
terminated.

4.8 PARALLEL IMPLEMENTATION
Each of the problems described in this paper was run on a
home-built Beowulf-style (Sterling, Salmon, Becker, and
Savarese 1999; Bennett, Koza, Shipman, and Stiffelman
1999) parallel cluster computer system consisting of 20
350 MHz Pentium II processors (each accompanied by 64
megabytes of RAM). These 20 processors were isolated
into a logically separate cluster for the purpose of these
experiments. They normally act as part of a larger 1,000
processor cluster which we apply to more difficult
problems involving genetic programming. The system
has a 350 MHz Pentium II computer as host.
The processing nodes are connected with a 100 megabit-
per-second Ethernet. The processing nodes and the host
use the Linux operating system. The distributed genetic
algorithm with unsynchronized generations and semi-
isolated subpopulations was used with a subpopulation
size of Q = 1,000 at each of D = 20 demes. As each
processor (asynchronously) completes a generation, four
boatloads of emigrants from each subpopulation are
dispatched to each of the four toroidally adjacent
processors. Emigrants are selected randomly and the
migration rate is 5% (10% if the adjacent node is in the
same physical box).

5 ITERATIVE REFINEMENT OF
EVOLVED COMPUTATIONAL
CIRCUITS

5.1 RESULTS
We applied our iterative refinement process to the
generation of squaring, square root, and cubing
computational circuits. In each case, a first run of genetic
programming was conducted to create a circuit which
output the desired function with some degree of accuracy.
A second run was then performed in which the target
function was taken as the error function associated with
the best-of-run circuit from the previous run. This
process was continued for successive iterations until a run
produced an improvement in accuracy over the previous
iteration of 5% or less. Tables 2, 3, and 4 present the
results of these experiments for squaring, square root, and
cubing computational circuits, respectively. Figures 1, 3,
and 5 present the output curves for the circuits produced
by successive iterations for the squaring, square root, and
cubing functions, respectively. Figures 2, 4, and 6 present
the error curves over successive iterations for the
squaring, square root, and cubing circuits, respectively.

Table 2 : Error of Squaring Computational Circuits over

Successive Iterations

N ERROR (mV) Rprev

0 46.84 

1 5.836 8.0260

2 5.5635 1.0490

Rfinal: 8.4193

Table 3 : Error of Square Root Computational Circuits
over Successive Iterations

N ERROR (mV) Rprev

0 11.835 

1 3.4445 3.4359

2 3.398 1.0137

Rfinal: 3.4830

Table 4 : Error of Cubing Computational Circuits over
Successive Iterations

N ERROR (mV) Rprev

0 22.312 

1 20.198 1.1047

2 17.510 1.1535

3 17.061 1.0263

Rfinal: 1.3078

0V

0.2V

0.4V

0.6V

0.8V

1V

0s 0.2s 0.4s 0.6s 0.8s 1s

Time

V
o
lt
a
g
e

Iter 0

Iter 1

Iter 2

Figure 1: Output of Squaring Computational Circuits over

Successive Iterations

-0.05V

0V

0.05V

0.1V

0.15V

0.2V

0.25V

0.3V

0s 0.2s 0.4s 0.6s 0.8s 1s

Time

V
o
lt
a
g
e

Iter 0

Iter 1

Iter 2

Figure 2: Error of Squaring Computational Circuits over

Successive Iterations

0V

0.2V

0.4V

0.6V

0.8V

1V

1.2V

0s 0.2s 0.4s 0.6s 0.8s 1s

Time

V
o
lt
a
g
e

Iter 0

Iter 1

Iter 2

Figure 3: Output of Square Root Computational Circuits

over Successive Iterations

-0.3V

-0.25V

-0.2V

-0.15V

-0.1V

-0.05V

0V

0.05V

0s 0.2s 0.4s 0.6s 0.8s 1s

Time

V
o
lt
a
g
e

Iter 0

Iter 1

Iter 2

Figure 4: Error of Square Root Computational Circuits

over Successive Iterations

0V

0.2V

0.4V

0.6V

0.8V

1V

1.2V

0s 0.2s 0.4s 0.6s 0.8s 1s

Time

V
o
lt
a
g
e

Iter 0

Iter 1

Iter 2

Iter 3

Figure 5: Output of Cubing Computational Circuits over

Successive Iterations

-0.04V

-0.02V

0V

0.02V

0.04V

0.06V

0.08V

0.1V

0.12V

0s 0.2s 0.4s 0.6s 0.8s 1s

Time

V
o
lt
a
g
e

Iter 0

Iter 1

Iter 2

Iter 3

Figure 6: Error of Cubing Computational Circuits over

Successive Iterations

5.2 EFFICIENCY OF EVOLVING
COMPUTATIONAL CIRCUITS USING
ITERATIVE REFINEMENT

It is not necessarily (and almost undoubtedly not) the case
that the experiments described above produce their results
with the most efficient possible use of available
computational resources. Since our multi-run process
involved 6 separate GP runs, the same computational
resources could be expended by executing (for example) a
single run for 6 times as long or a single run using 6 times
the population. We have no evidence to show that either
of these approaches, or some other approach which used
the same amount of computational resources as our
experiments, would not produce better results than the
ones given here. However, our purpose here is to
establish that genetic programming is capable of creating
computational circuits whose output is an approximation
to the error function of another computational circuit, and
that the iterative process used in these experiments is
indeed able to create successively more accurate
computational circuits.
Also note that the results presented in this section and in
section 2 in no way imply that the error functions being
targeted in each successive iteration are somehow more
amenable to approximation by genetic programming than
are the original target functions (i.e. sqrt(x), x2, and x3).
Rather, it is the fact that genetic programming is able to
produce circuits whose outputs approximate the error
functions with any degree of accuracy at all that allows
successively more accurate circuits to be obtained.

6 REFINEMENT OF A POST-2000
PATENTED CIRCUIT

U.S. patent 6,160,427 covers a low-voltage cubic signal
generator circuit that produces an output current
approximately equal to the cube of its input current
(Cipriani and Takeshian, 2000). In a previous paper, we
successfully applied genetic programming to the synthesis
of a computational circuit that duplicates the functionality
of this patented circuit. Specifically, we evolved a circuit

that meets the low voltage criteria defined in the patent
and has an average error that is 59% of that of the
patented circuit over the four fitness cases on which it was
evaluated (Streeter, Keane, and Koza 2002).
We now apply our iterative refinement process to this
patented circuit. The preparatory steps for the runs
performed in this experiment differ from the preparatory
steps given in section 4 in four minor ways. First, we
force the evolved circuit to conform to the low voltage
specification in the patent by including only a 2V power
supply in the function set, rather than the 15V and –15V
supplies we had included in previous run. Second, we
desire that this circuit make full use of the voltage range
provided by the power supply, i.e. the circuit’s output
should range from 0V to 2V. This means that the input
voltage should have a minimum value of 0V and a
maximum voltage equal to the cube root of 2. The two
time-domain curves described in section 4.5 are modified
accordingly. Third, for this problem we use only a
minimal embryo consisting of a single modifiable wire
initially not connected to the test fixture, in contrast to the
embryo consisting of a modifiable wire connected to
source and load resistors as described in section 4.1. We
generally use this minimal embryo when dealing with a
test fixture that has multiple inputs or outputs. In this
case there is one input (representing an input current
flowing down from a 2V supply) and two outputs
(representing the high and low points at which the output
current is to be probed). Additional functions are
included in the function set that allow connections to be
made to the single input and the two outputs. For more
information on these functions see Koza, Bennett, Andre,
Keane 1999. Finally, each of the runs described in this
section was manually monitored and terminated when it
appeared to have reached a plateau.
When building upon a patented circuit, the first iteration
(iteration 0) of our iterative process does not involve a GP
run, but rather involves building and simulating the
patented circuit based on the schematics given in the
patent document. Our first GP run (iteration 1) involves
the synthesis of a computational circuit whose output
approximates the error function associated with the
patented circuit. Our second GP run (iteration 2) involves
the synthesis of a circuit whose output approximates the
error function of the best-of-run circuit from our first GP
run. The results of these runs are presented in Table 5.

Table 5 : Error of Low-Voltage Cubing Circuits over
Successive Iterations

N ERROR (mV) Rprev

0 7.128 

1 0.9873 7.2197

2 0.9236 1.0690

Rfinal: 7.2197 (see below)

The first iteration of our experiment produced a circuit
whose average error was 7.2 times better than that of the
patented circuit (over our two fitness cases). This circuit
was created after 147 generations. The circuit was tested
on a variety of unseen fitness cases, and outperformed the
patented circuit on those fitness cases as well. The
second iteration of our experiment produced a circuit that
was approximately 1.07 times better than the circuit of the
previous iteration. This circuit was created after 80
generations. However, examination of the output of this
circuit reveals that it contains a number of sharp spikes
which indicate instability in the circuit’s output. This
circuit generally does not perform better that the circuit of
the previous iteration when tested on unseen fitness cases.
The output curves for the circuits produced in iterations 0
and 1 of our experiment are given in Figure 7. The error
curves for these two circuits are given in Figure 8.
Figure 9 presents the refined computational circuit
obtained by adding the output of the patented cubic signal
generator circuit to the output of the evolved circuit. In
this figure there are two rectangles drawn using dotted
lines. The top rectangle encloses the circuitry from the
patented cubic signal generator, while the bottom
rectangle encloses the evolved circuitry. Components
which are outside both rectangles are part of the test
fixture for the problem. The two outputs labeled VITER0
(for the output of the patented circuit) and VITER1 (for
the output of the evolved circuit) are passed through a
voltage addition block to produce the final output
(VFINAL) of the refined circuit.

0V

0.5V

1V

1.5V

2V

0s 0.2s 0.4s 0.6s 0.8s 1s

Time

V
o
lt
a
g
e

Iter 0

Iter 1

Figure 7: Output of Low-Voltage Cubing Circuits over

Successive Iterations

-0.02V

-0.015V

-0.01V

-0.005V

0V

0.005V

0.01V

0.015V

0s 0.2s 0.4s 0.6s 0.8s 1s

Time

V
o
lt
a
g
e

Iter 0

Iter 1

Figure 8: Error of Low-Voltage Cubing Circuits over

Successive Iterations

Figure 9: Refined Low-Voltage Cubic Signal Generator

Circuit

As previously mentioned, computational circuits are
valuable in that they are able to produce the output of
complex mathematical functions at near-instantaneous
analog speed. However, no human-designed
computational circuit (or circuit designed by any other
means) is likely to produce the desired output with
perfect accuracy. For this reason, an error correction
process is desireable. Genetic programming has been
shown in this paper to provide such a process. Since the
shape of the error functions associated with computational
circuits are rather arbitrary and do not correspond to
simple mathematical functions, it would be difficult if not
impossible for an analog engineer to generate a circuit
that produced these functions. The synthesis of
computational circuits that produce these error functions
as output is therefore an especially suitable application of
genetic programming.

7 CONCLUSIONS
We have shown that an iterative refinement process can
be applied both to the generation of rational polynomial
approximations to functions and to the synthesis of
computational circuits using genetic programming. In
particular, we have applied this process to the synthesis of
squaring, square root, and cubing computational circuits,
obtaining an increase in accuracy with each successive
iteration of refinement. We further applied this iterative
process to a recently patented low-voltage cubic signal
generator circuit, and achieved an improvement in
accuracy of a factor of 7.2 over the patented circuit. We
conclude that the approach described in this paper
provides an effective way to generate high-accuracy
computational circuits.

References
Babanezhad, J. N. and Temes, G. C. 1986. Analog MOS

Computational Circuits. Proceedings of the IEEE
Circuits and System International Symposium.
Piscataway, NJ: IEEE Press. Pages 1156–1160.

Bennett, Forrest H III, Koza, John R., Shipman, James,
and Stiffelman, Oscar. 1999. Building a parallel
computer system for $18,000 that performs a half peta-
flop per day. In Banzhaf, Wolfgang, Daida, Jason,
Eiben, A. E., Garzon, Max H., Honavar, Vasant,
Jakiela, Mark, and Smith, Robert E. (editors). 1999.
GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, July 13-17,
1999, Orlando, Florida USA. San Francisco, CA:
Morgan Kaufmann. 1484 - 1490.

Cipriani, Stefano and Takeshian, Anthony A. 2000.
Compact cubic function generator. U. S. patent
6,160,427. Filed September 4, 1998. Issued December
12, 2000.

Gilbert, Barrie. 1968. A precise four-quadrant multiplier
with subnanosecond response. IEEE Journal of Solid-

State Circuits. Volume SC-3. Number 4. December
1968. Pages 365–373.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. 2nd. Ed. Cambridge, MA: MIT Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge, MA: MIT
Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1999. Genetic Programming III:
Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David,
Keane, Martin A., and Brave, Scott. 1999. Genetic
Programming III Videotape: Human-Competitive
Machine Intelligence. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

Mydlowec, William and Koza, John R. 2000. Use of
Time-Domain Simulations in Automatic Synthesis of
Computational Circuits using Genetic Programming. In
Whitley, Darrell (editor). 2000. Late Breaking Papers
at the 2000 Genetic and Evolutionary Computation
Conference. Las Vegas, NV: Morgan Kaufmann. 187-
197.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and
Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version
3F5 User’s Manual. Department of Electrical
Engineering and Computer Science, University of
California. Berkeley, CA. March 1994.

Sheingold, Daniel H. (editor). 1976. Nonlinear Circuits
Handbook. Norwood, MA: Analog Devices, Inc.

Sterling, Thomas L., Salmon, John, Becker, Donald J.,
and Savarese, Daniel F. 1999. How to Build a Beowulf:
A Guide to Implementation and Application of PC
Clusters. Cambridge, MA: MIT Press.

Streeter, Matthew J., Keane, Martin A., and Koza, John
R. 2002. Routine Duplication of Post-2000 Patented
Inventions by Means of Genetic Programming. In
Lutton, Evelyn, Foster, James A., Miller, Julian, Ryan,
Conor and Tettamanzi, Andrea. Proceedings of
EuroGP'2002, April 3-5, 2002, Kinsale, Ireland.
Springer-Verlag. 26-36.

