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ABSTRACT 

This paper demonstrates the usefulness 
of automatically defined functions and 
architecture-altering operations in 
designing analog electrical circuits using 
genetic programming.   

A design for a lowpass filter is  
genetically evolved in which an 
automatically defined function is 
profitably reused in the 100% compliant 
circuit. The symmetric reuse of an evolved 
substructure directly enhances the 
performance of the circuit. Genetic 
programming rediscovered the classical 
ladder topology used in Butterworth and 
Chebychev filters as well as the more 
complex topology used in Cauer (elliptic) 
filters.  

A design for a double-passband filter is 
genetically evolved in which the 
architecture-altering operations discover a 
suitable program architecture dynamically 
during the run.  Two automatically defined 
functions are profitably reused in the 
genetically evolved 100% complaint 
circuit.  
 

1. Introduction 
Human-designed electrical circuits are replete with 
instances of the hierarchical reuse of previously designed 
subcircuits.  Indeed, design of a large electronic circuit 
would be impractical if the human designer had to start 
from first principles and rethink the design of each 
subcircuit each occasion time it is needed.  

The previous paper in this volume – "Automated 
WYWIWYG Design of Both the Topology and Component 
Values of Electrical Circuits Using Genetic Programming" 

– demonstrated that complex structures such as electrical 
circuits can be evolved by means of natural selection (Koza, 
Bennett, Andre, and Keane 1996).   

The regularity, symmetry, and reuse of substructures 
found in human-designed electrical circuits suggests that 
automatically defined functions might be useful in the 
problem domain of circuit synthesis.  Accordingly, this 
paper explores the usefulness of automatically defined 
functions and architecture-altering operations for the 
problem of automated circuit synthesis.  

Section 2 provides background on automatically defined 
functions and the architecture-altering operations.  Section 3 
describes the design of a lowpass filter in which an 
automatically defined function is profitably reused in the 
genetically evolved electrical circuit.  Section 4 describes 
the design of a double-passband filter in which the 
architecture-altering operations successfully evolve the 
architecture of the solution and in which automatically 
defined functions are profitably reused in the genetically 
evolved solution.   

2. Background 
Genetic programming is an extension of John Holland's 
genetic algorithm (1975) in which the population consists of 
computer programs of varying sizes and shapes (Koza 1992, 
Koza and Rice 1992).  

The book Genetic Programming II: Automatic 
Discovery of Reusable Programs (Koza 1994a, 1994b) 
describes how to evolve multi-part programs consisting of a 
main program and one or more reusable, parameterized, 
hierarchically-called subprograms.  This book is based on 
the premise that no approach to automated programming is 
likely to be successful on non-trivial problems unless it 
provides some hierarchical mechanism to exploit, by reuse 
and parameterization, the regularities, symmetries, 
homogeneities, similarities, patterns, and modularities 
inherent in problem environments.   

An automatically defined function (ADF) is a function 
(subroutine, subprogram, DEFUN, procedure, or module) 
that is dynamically evolved during a run of genetic 
programming and that may be called by a calling program 
(or subprogram) that is concurrently being evolved.  When 
automatically defined functions are being used, a program 



 

in the population consists of a hierarchy of one (or more) 
reusable function-defining branches (i.e., automatically 
defined functions) along with a main result-producing 
branch.  Typically, the automatically defined functions 
possess one or more dummy arguments (formal parameters) 
and are reused with different instantiations of these dummy 
arguments.  During a run, genetic programming creates 
different subprograms in the function-defining branches of 
the overall program, different main programs in the result-
producing branch, different instantiations of the dummy 
arguments of the automatically defined functions (function-
defining branches), and different hierarchical references 
between the branches.   

When automatically defined functions are used, it is 
necessary to determine the architecture of the yet-to-be-
evolved programs.  The specification of the architecture 
consists of (a) the number of function-defining branches in 
the overall program, (b) the number of arguments (if any) 
possessed by each function-defining branch, and (c) if there 
is more than one function-defining branch, the nature of the 
hierarchical references (if any) allowed between them.   

The architecture-altering operations (Koza 1994c, 
1995a) provide one way to automate this architectural 
choice so that it can be made dynamically during a run of 
genetic programming.  The six architecture-altering 
operations are motivated by the naturally occurring 
mechanisms of gene duplication and gene deletion in 
chromosome strings as described in Susumu Ohno's book 
Evolution by Gene Duplication (1970).  In that book, Ohno 
advanced the thesis that the creation of new proteins (and 
hence new structures and new behaviors in living things) 
begins with a gene duplication.   

The potential usefulness of automatically defined 
functions and architecture-altering operations have been 
previously demonstrated by both proof-of-principle ("toy") 
problems and by non-trivial problems.  For example, on the 
transmembrane segment identification problem (Koza and 
Andre 1996), the results produced by using genetic 
programming with automatically defined functions and the 
architecture-altering operations were competitive with the 
human-written algorithm for that problem.   

3. Evolving a Lowpass Filter Using 
Automatically Defined Functions 

A filter is a one-input, one-output circuit that receives a 
signal as its input and passes the frequency components of 
the incoming signal that lie in a certain specified range (the 
passband) while stopping the frequency components of the 
signal that lie in other frequency ranges (the stopband).   

Consider a circuit synthesis problem in which the design 
goal is to design a lowpass filter using inductors and 
capacitors with a passband below 1,000 Hertz and a 
stopband above 2,000 Hz.  The voltages in the filter's 
passband are to lie in the narrow range between 970 
millivolts and 1 volt (i.e., the permissible passband ripple is 
30 millivolts) and the voltages in the stopband are to lie in 
the narrow range between 0 volts and 1 millivolt.  The 
circuit is to be driven from an alternating-current input 

signal with a 2 volt amplitude with a source resistance of 
1,000 Ohms and a load resistance of 1,000 Ohms.  

3.1. Preparatory Steps 
This paper assumes that the reader is familiar with the use 
of genetic programming in electrical circuit design 
described in the previous paper in this volume (Koza, 
Bennett, Andre, and Keane 1996). 

3.1.1 Embryonic Circuit and Program 
Architecture 

A one-input, one-output embryonic circuit with two writing 
heads is suitable for this problem.  Thus, there are two 
result-producing branches in each program tree in the 
population.   

In this section of this paper, we pre-specified that the 
common architecture of each individual in the population  
would consist of four zero-argument automatically defined 
functions and that there would be no hierarchical references 
among the automatically defined functions.  Consequently, 
the architecture of every program tree in the population 
throughout the entire run consists of a total of six branches 
joined by a LIST function, as shown in figure 1.  

 

RPB1RPB0ADF3ADF2ADF1ADF0

LIST

 
Figure 1  Program architecture.   

3.1.2 Function and Terminal Sets 
The function set, Fccs, for each construction-continuing 
subtree is 
Fccs = {C, L, SERIES, PSS, FLIP, NOP, THGND, 

THVIA0,  THVIA1,  THVIA2,  THVIA3,  
THVIA4,  THVIA5,  THVIA6,  THVIA7, ADF0, 
ADF1, ADF2, ADF3}.   

The C, L, SERIES, PSS, FLIP, and NOP functions are 
defined in Koza, Bennett, Andre, and Keane (1996).   

The eight three-argument "via" functions (called 
THVIA0, ..., THVIA7) and the three-argument "ground" 
function (called THGND) enable distant parts of a circuit to 
be connected together.  These functions are similar to the 
VIA and the GND functions, except that they each create 
three (instead of two) modifiable wires.   

ADF0, ADF1, ADF2, and ADF3 are automatically 
defined functions. 

The terminal set, Tccs, for each construction-continuing 
subtree is 
Tccs = {END, CUT}.   

The zero-argument CUT function causes the highlighted 
component to be removed from the circuit.  The CUT 
function also causes the writing head to be lost.   

The function set, Faps, for each arithmetic-performing 
subtree is 
Faps = {+, -}. 



 

The terminal set, Taps, for each arithmetic-performing 
subtree is 
Taps = {←}, 
where ← represents floating-point random constants 
between –1.000 and +1.000.   

3.1.3 Fitness Measure 
The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with its 
execution.  This execution applies the functions in the 
program tree to the embryonic circuit thereby developing 
the embryonic circuit into a fully developed circuit.  A 
netlist describing the circuit is then created.  Each circuit is 
then simulated to determine its behavior using a version of 
the SPICE3 (Quarles et al. 1994) simulator that we modified 
to run as a submodule within the genetic programming 
system. The SPICE simulator is requested to perform an AC 
small signal analysis and to report the circuit's behavior for 
each of 101 frequency values chosen over five decades of 
frequency (from 1 Hz to 100,000 Hz).  Each decade is 
divided into 20 parts (on a logarithmic scale).  

Fitness is measured in terms of the sum, over these 101 
fitness cases, of the absolute weighted deviation between 
the actual value of the voltage in the frequency domain that 
is produced by the circuit at its output probe point and the 
desired voltage at that point.  The smaller the fitness, the 
better (with a fitness of zero being best).  

The fitness measure is constructed so that it does not 
penalize ideal values; it slightly penalizes acceptable 
deviations; and it heavily penalizes unacceptable deviations.   

Specifically, the procedure for each of the 61 points in 
the three-decade interval from 1 Hz to 1,000 Hz (i.e., the 
desired passband) is as follows: If the voltage at the output 
probe point equals the ideal value of 1.0 volts in this 
interval, the deviation is 0.0.  If the voltage is between 970 
millivolts and 1,000 millivolts, the absolute value of the 
deviation from 1,000 millivolts is weighted by a factor of 
1.0.  If the voltage is less than 970 millivolts, the absolute 
value of the deviation from 1,000 millivolts is weighted by 
a factor of 10.0.  This arrangement reflects the fact that the 
ideal voltage in the passband is 1.0 volt, the fact that a 30 
millivolt shortfall is acceptable, and the fact that a voltage 
below 970 millivolts in the passband is not acceptable.   

The procedure for each of the 35 points between 2,000 
Hz and 100,000 Hz (i.e., the desired stopband) is as follows:  
If the voltage is between 0 millivolts (the ideal value) and 1 
millivolt, the absolute value of the deviation from 0 
millivolts is weighted by a factor of 1.0.  If the voltage is 
more than 1 millvolt, the absolute value of the deviation 
from 0 millivolts is weighted by a factor of 10.0.  This 
arrangement reflects the fact that the ideal voltage in the 
stopband is 0 millivolts, the fact that a 1 millivolt ripple 
above 0 millivolts is acceptable, and the fact that a voltage 
above 1 millivolt in the stopband is not acceptable.   

The deviation is deemed to be zero for each of the 5 
points in the interval between 1,000 Hz and 2,000 Hz (i.e., 
the "don't care" band of frequencies).   

Hits are defined as the number (from 5 to 101) of fitness 
cases for which the voltage is acceptable or ideal or which 
lie in the "don't care" band.   

3.1.4 Control Parameters 
The population size, M, is 640,000.  The crossover 
percentage is 89% (producing 569,600 offspring), the 
reproduction percentage was 10%, and the mutation 
percentage was 1%.  A maximum size of 300 points was 
established for each of the branches in each overall 
program.  The other minor parameters were the default 
values in Koza 1994a (appendix D).  The problem was run 
on a parallel computer system with a migration rate of B = 
2% as described in Koza and Andre 1996.  

3.2. Results for the Lowpass Filter 
3.2.1 Initial Random Generation 
The best circuit from generation 0 has a fitness of 58.6 and 
scores 52 hits (out of 101).  Figure 3 shows that this best-of-
generation circuit from generation 0 consists of a single 
inductor and a single capacitor.  The topological 
arrangement of these two components is that of the first 
rung of a classical ladder. Figure 9 shows the frequency 
domain behavior of this best-of-generation circuit from 
generation 0. 

3.2.2 Emergence of Reuse – A Two-Rung 
Ladder 

The best circuit from generation 9 (figure 4) has the two-
rung ladder topology.  The ladder topology for a lowpass 
filter consists of repeated instances of various series 
inductors (so named because they run "in series" 
horizontally across the top of the figure) and repeated 
instances of various vertical shunt capacitors.  The classical 
Butterworth or Chebychev filters are based on the ladder 
topology (Van Valkenburg 1982).  Automatically defined 
function ADF0 supplies a group of three inductors 
(equivalent to one 154,400 µH inductor).  Figure 2 shows 
this twice-called two-ported substructure developed by 
ADF0.  

 
Figure 2  Twice-called two-ported automatically defined 
function ADF0 from generation 9.   

Figure 10 shows the behavior in the frequency domain 
of the best-of-generation circuit from generation 9.  Figures 
10 – 14 were made with 200 points per decade for greater 
detail.  

3.2.3 A Thrice-Called Substructure Further 
Enhances Performance 

The best circuit from generation 16 (figure 5) has a fitness 
of 4.1 and scores 90 hits. This circuit has a three-rung 
ladder topology.  When electrical engineers design 



 

Butterworth or Chebychev filters, additional rungs on the 
ladder (in conjunction with properly chosen numerical 
values for the components) generally improve the level of 
performance of the filter (at the expense of additional power 
consumption, space, and cost).  Figure 11 shows the 
behavior in the frequency domain of the best circuit from 
generation 16.  ADF0 is used three times in creating this 
best circuit of generation 16.  Figure 15 shows this thrice-
called automatically defined function.   

 
Figure 15  Thrice-called two-ported automatically 
defined function ADF0 from generation 16.   



 

 
 
Figure 3  The best circuit from generation 0 is a one-
rung ladder.  

 
Figure 4  The best circuit from generation 9 is a two-
rung ladder.  

 
Figure 5  The best circuit of generation 16 is a three-
rung ladder.  

 
 

 
Figure 6  The best circuit of generation 20 is a four-rung 
ladder.  

 
 

 
Figure 7  The 100% compliant best circuit of generation 31 has the Cauer (elliptic) topology.   

 

 
Figure 8  The 100% compliant best-of-run circuit from generation 35.   



 

 
Figure 9 Frequency domain behavior of best circuit of 
generation 0.  

 
Figure 10  Frequency domain behavior of best circuit 
and generation 9. 

9.  
Figure 11  Frequency domain behavior of best circuit 
from generation 16.   

 
Figure 12  Frequency domain behavior of best circuit 
from generation 20.  

 
Figure 13  Frequency domain behavior of best circuit 
from generation 31. 

 
Figure 14  Frequency domain behavior of best-of-run 
circuit from generation 35.  

3.2.4 A Quadruply-Called Substructure Further 
Enhances Performance 

The best circuit from generation 20 (figure 6) has a fitness 
of 2.8 and scores 96 hits.  It is a four-rung ladder.  

ADF0 (figure 16) is used four times.   

 
Figure 16  Quadruply-called two-ported automatically 
defined function ADF0 from generation 20.   

Figure 12 shows the behavior in the frequency domain 
of the best circuit from generation 20.  The enhanced 
performance of this circuit is the consequence of the 
additional repeated calls to ADF0.  Note that in figures 10 – 
12, there is ripple in the passband, but none in the stopband 
(i.e., these circuits exhibit a Chebychev-like response).  

3.2.5 Emergence of the Elliptic Topology 
Further Enhances Performance 

The best circuit in generation 31 (figure 7) has a fitness of 
0.0850 and scores 101 hits (i.e., is 100% compliant).  This 
individual has 41 points in its RPB0 and 7 points in its 
RPB1; it has 52, 297, 22, and 2 points in ADF0, ADF1, 
ADF2, and ADF3, respectively.  Figure 13 shows its 
behavior in the frequency domain.  

Automatically defined function ADF0 is interesting 
because it constructs a three-ported substructure. This ADF0 
(figure 17) is used five times in the best circuit from 
generation 31.  

 
Figure 17  Quintuply-called three-ported automatically 
defined function ADF0 from generation 31.   

This genetically evolved 100% compliant circuit is 
especially interesting because it has the topology of an 
elliptic (Cauer) filter.   

After all of the pairs and triplets of inductors are 
consolidated, it can be seen that the circuit has the 
equivalent of six inductors horizontally across the top of the 
circuit and five vertical shunts.  Each shunt consists of an 
inductor and a capacitor (e.g., L34 and C18 appear in the 
first shunt).  This is the topology of the elliptic invented by 
Cauer.   
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Figure 18  Best-of-run individual from generation 35. 

The Cauer filter was a significant advance (both 
theoretically and commercially) over the Butterworth and 
Chebychev filters.  For example, for one illustrative set of 
specifications, a fifth-order elliptic filter could equal the 
performance of 17th order Butterworth filter or an eighth 
order Chebychev filter.  The eighth order Chebychev filter 
has one more component than the fifth order elliptic filter. 
As Van Valkenburg (1982, page 379) explains: 

"Cauer first used his new theory in solving a 
filter problem for the German telephone industry.  
His new design achieved specifications with one 
less inductor than had ever been done before.  The 
world first learned of the Cauer method not 
through scholarly publication but through a patent 
disclosure, which eventually reached the Bell 
Laboratories. Legend has it that the entire 
Mathematics Department of Bell Laboratories 
spent the next two weeks at the New York Public 
library studying elliptic functions.  Cauer had 
studied mathematics under Hilbert at Goettingen, 
and so elliptic functions and their applications were 
familiar to him."   

Thus, this run of genetic programming illustrates the 
rediscovery of the ladder topology used in Butterworth and 
Chebychev filters as well as the more complex topology 
used in elliptic (Cauer) filters.   

3.2.6 An Even Better Circuit 
The best circuit in generation 35 (figure 8) has a fitness of 
0.00752 (i.e., about an order of magnitude better than that 
of the best-of-generation individual from generation 31) and 
is also 100% compliant (i.e., scores 101 hits).  

Only ADF0 is referenced by the result-producing 
branches.   

Figure 14 shows the "brick wall" behavior in the 
frequency domain of this best-of-run best circuit from 
generation 35.   

Notice this circuit's two-fold symmetry involving the 
repetition of a total of four modular substructures. The 
symmetry of the best-of-run circuit from generation 35 is a 
consequence of its quadruply-called three-ported 
automatically defined function, ADF0 (figure 19).  Two 
inductors (L52 and L34) and one capacitor (C51) form a 
triangle. There is an additional induction element 
(specifically, a series composition of three inductors, L43, 
L42, and L23) branching away from the triangle at the node 
where inductors L52 and L34 meet.   

 
Figure 19  Quadruply-called three-ported automatically 
defined function ADF0 of best-of-run circuit from 
generation 35.   

Figure 18 presents the best-of-run individual from 
generation 35 as a rooted, point-labeled tree with ordered 
branches.  Note that ADF0 is invoked at points 34, 43, 44, 
and 51 of the figure. Since ADF0 is the only function-
defining branch that is actually referenced by either result-
producing branch, the three unreferenced function-defining 
branches (ADF1, ADF2, and ADF3) are represented by the 
filled circles labeled 3, 4, and 5. The complete arithmetic-
performing subtrees are not shown, but, instead, are 
abbreviated as V1 through V5.  

4. Evolving a Double-Bandpass Filter 
Using Architecture-Altering 
Operations 

In the previous section, the user pre-specified the number of 
automatically defined functions as one of the preparatory 
steps for the run of genetic programming.  In this section, 
the architecture-altering operations will be used to evolve 
the program architecture dynamically during the run.   

The goal is to design a double-bandpass filter using 
inductors and capacitors as primitive components.  
Specifically, the goal is to design a double-bandpass filter 
whose first passband starts at 1,000 Hz and ends at 2,000 
Hz, whose second passband starts at 1,000,000 Hz and ends 
at 2,000,000 Hz, and whose passband and stopband ripple 
are that of an elliptic filter (as detailed below).  

The regularity inherent in a filter with two passbands 
suggests that automatically defined functions may 
potentially be useful for this design problem.   



 

4.1. Preparatory Steps 
4.1.1 Embryonic Circuit and Program 

Architecture 
A one-input, one-output embryonic circuit with one writing 
head is suitable for this problem.  Since the embroyonic 
circuit has one writing head, each program in the initial 
population of programs has one result-producing branch.  
Since we did not use the operation of branch creation on 
this problem, each program tree in the initial random 
population at generation 0 also has one one-argument 
automatically defined function.  Thus, each program tree at 
generation 0 starts with a uniform architecture consisting of 
a LIST function joining ADF0 and the result-producing 
branch, RPB.   The number of automatically defined 
functions in the eventual solution will be determined 
dynamically, during the run, using the architecture-altering 
operations of branch duplication and branch deletion.  Thus, 
starting with generation 1 of each run, the population 
becomes architecturally diverse.  

4.1.2 Function and Terminal Sets 
For any branch, the function set, Fccs, for each 
construction-continuing subtree is 
Fccs = {ADF0, C, L, SERIES, PSS, FLIP, NOP, THGND, 

THVIA0, THVIA1, THVIA2, THVIA3, THVIA4, 
THVIA5, THVIA6, THVIA7}. 

Here ADF0 is the first automatically defined function. 
The terminal set, Tccs-rpb, for each construction-

continuing subtree in the result-producing branch is 
Tccs-rpb = {END, CUT}.   

The terminal set, Tccs-adf, for each construction-
continuing subtree in any function-defining branch is 
Tccs-adf = {ARG0, END, CUT}.   

Since architecture-altering operations can create 
automatically defined functions, the set of potential new 
functions, Fpotential, is 
Fpotential = {ADF1, ADF2, ADF3, ADF4}. 

The function set, Faps, for an arithmetic-performing 
subtree in any branch and the terminal set, Taps, for an 
arithmetic-performing subtree in any branch are the same as 
in the previous section of this paper.  

4.1.3 Fitness Measure 
The SPICE simulator is requested to perform an AC small 
signal analysis and to report the circuit's behavior for each 
of 176 frequency values chosen over seven decades of 
frequency (from 10 Hz to 100,000,000 Hertz).  Each decade 
is divided into 25 parts (using a logarithmic scale).  

Fitness is measured in terms of the sum, over these 176 
fitness cases, of the absolute weighted deviation between 
the actual value of the voltage that is produced by the circuit 
at the output probe point and the target value for voltage.   

The frequency range is divided into two passbands, 
three stopbands, and four "don't care" regions.   

The procedure for each of the 8 points in each of the two 
passbands (a total of 16 points) is as follows:  If the voltage 

is between 960 millivolts and 1,000 millivolts (the ideal 
value), the absolute value of the deviation from 1,000 
millivolts is weighted by a factor of 1.0.  If the voltage is 
less than 960 millivolts, the absolute value of the deviation 
from 1,000 millivolts is weighted by a factor of 10.0.   

The procedure for each of the 120 points in the three 
stopbands is as follows:  If the voltage is between 0 
millivolts (the ideal value) and 40 millivolts, the absolute 
value of the deviation from 0 millivolts is weighted by a 
factor of 1.0.  If the voltage is more than 40 millivolts, the 
absolute value of the deviation from 0 millivolts is weighted 
by a factor of 10.0.   

There are 10 "don't care" points just before each 
passband and 10 "don't care" points just after each 
passband.  The deviation is deemed to be zero for each of 
the 40 points in these four "don't care" bands.   

Hits are defined as the number (between 40 and 176) of 
fitness cases for which the voltage is acceptable or ideal or 
that lie in one of the "don't care" bands.   

4.1.4 Parameters 
The control parameters were the same as in the previous 
section, except for the following:  

(1) The architecture-altering operations are intended to 
be used sparingly on each generation.  The percentage of 
operations on each generation after generation 5 was 87.5% 
one-offspring crossovers; 10% reproductions; 1% 
mutations; 1% branch duplications; 0% argument 
duplications; 0.5% branch deletions; 0% argument 
deletions; 0% branch creations; and 0% argument creations.  
Since we do not want to waste large amounts of computer 
time in early generations where only a few programs have 
any automatically functions, the percentage of operations on 
each generation before generation 6 was 82.0% one-
offspring crossovers; 11% reproductions; 1% mutations; 
5.0% branch duplications; 0% argument duplications; 1% 
branch deletions; 0% argument deletions; 0.0% branch 
creations; and 0% argument creations.   

(2) The maximum number of automatically defined 
functions is five. 

(3) The number of arguments for each automatically 
defined function is one.  

(4) In randomly choosing functions during the creation 
of the initial random population, the C, L, SERIES, PSS, 
FLIP, NOP, THGND, and ADF0 functions were each 
assigned a relative weight of 8, while each of the eight 
THVIA functions were assigned a relative weight of 1.  

4.2. Results for Double-Bandpass Filter Using 
Architecture-Altering Operations 

This run illustrates the progressive addition of function-
defining branches and references to them.  

The best circuit from generation 0 has a fitness of 720.3 
and scores 54 hits; however, the result-producing branch of 
the program tree does not reference its 45-point 
automatically defined function ADF0.   

In generation 2, the first best-of-generation individual 
with a referenced automatically defined function appears 
(with a fitness of 697.3 and 58 hits).  



 

The first best-of-generation individual with two 
automatically defined functions appears in generation 22 
(with a fitness of 184.7 and 110 hits); however, there are no 
references to either automatically defined function.   

In generation 29, the first best-of-generation individual 
with two referenced automatically defined functions 
appears (with a fitness of 105.4 and 128 hits).  

The first circuit scoring a full 176 hits is produced in 
generation 82 (with a fitness of 0.731). 

A 100% complaint best-of-run individual emerged at 
generation 89 with four automatically defined functions.  
This individual has a fitness of 0.549 and scores 176 hits.  
The result-producing branch has 296 points and the 
function-defining branches have 82, 71, 64, and 82 points, 
respectively.  ADF0 is called four times; ADF1 is called 
once; ADF2 is ignored; and ADF3 is called twice.    

Figure 23 shows the best-of-run circuit from generation 
89.  Note that L79, C78, and L66 are superfluous.  Boxes 
are used to indicate the parts of the overall circuit that are 
developed by the automatically defined functions.  The 
letters, A, B, C, and D indicate the interface points at which 
the substructure specified by each automatically defined 
function connects to the remainder of the circuit.  

Figure 20 shows the three-ported substructure developed 
from ADF0 at each of the four places in the result-
producing branch where ADF0 is invoked.  The figure 
shows  ADF0's three ports  (A, B, and C) indicating the 
interface points at which this substructure developed from 
ADF0 connects to the remainder of the circuit.  

 
Figure 20  Three-ported quadruply-called ADF0 from 
generation 89.  

Figure 21 shows the three-ported substructure developed 
from ADF1.  ADF1 is invoked once.  

 
Figure 21 Three-ported ADF1 from generation 89.  

Figure 22 shows the four-ported substructure developed 
from ADF3 at each of the two places in the result-producing 
branch where ADF3 is invoked.  The figure shows ADF3's 
four ports  (A, B, C, and D) indicating the interface points 
at which this substructure developed from ADF3 connects 
to the remainder of the circuit.  

 The insertion process for automatically defined 
functions (even those with no arguments) is context-
sensitive.  For example, in figure 23, the substructures 
developed by the two invocations of ADF3 are different.  
Specifically, one invocation employs ports A, B, and C (of 
figure 22) while the other employs ports A, B, and D.  This 
difference was caused by parts of the overall program tree 
outside ADF3.   

 
Figure 22 Four-ported twice-called ADF3 from 
generation 89.  

Figure 24 shows the behavior in the frequency domain 
of the best-of-run circuit from generation 89.  All 136 
fitness cases that are not part of the "don't care" bands 
satisfy the design goals of this problem.  Notice that the two 
small non-monotonic spikes lie in the "don't care" bands.   

5. Conclusions 
This paper demonstrates the usefulness of automatically 
defined functions and the architecture-altering operations in 
runs of genetic programming in which electrical circuits are 
being designed.   
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Figure 23  Best-of-run circuit from generation 89.  

 
 

 
Figure 24  Frequency domain behavior of the best-of-run circuit from generation 89.  

 


