
Discovery by Genetic Programming of a Cellular Automata
Rule that is Better than any Known Rule for the Majority

Classification Problem

 David Andre
Visiting Scholar

Computer Science Dept.
Stanford University

860 Live Oak Ave, #4
Menlo Park, CA 94025 USA
andre@flamingo.stanford.edu

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
fhb3@slip.net

John R. Koza
Computer Science Dept.

258 Gates Building
Stanford University

Stanford, California 94305
koza@cs.stanford.edu

ABSTRACT

It is difficult to program cellular
automata. This is especially true when the
desired computation requires global
communication and global integration of
information across great distances in the
cellular space. Various human-written
algorithms have appeared in the past two
decades for the vexatious majority
classification task for one-dimensional
two-state cellular automata. This paper
describes how genetic programming with
automatically defined functions evolved a
rule for this task with an accuracy of
82.326%. This level of accuracy exceeds
that of the original 1978 Gacs-
Kurdyumov-Levin (GKL) rule, all other
known human-written rules, and all other
known rules produced by automated
methods. The rule evolved by genetic
programming is qualitatively different
from all previous rules in that it employs a
larger and more intricate repertoire of
domains and particles to represent and
communicate information across the
cellular space.

1. Introduction
Massively parallel computation is potentially attractive for
solving problems. However, it has proved difficult to
program massively parallel computing devices.

This paper describes our research on using genetic
programming to evolve programs for cellular automata,
which are one type of massively parallel computing system.
Specifically, this paper focuses on the well-studied majority
classification task for one-dimensional two-state cellular
automata. For this problem, genetic programming evolved

a rule whose performance exceeds that of the original Gacs-
Kurdyumov-Levin (GKL) rule, all other known subsequent
human-written rules, and all known rules produced by
automated approaches for this problem (table 1).

The result in this paper is that genetic programming has
produced a result that is slightly better than human
performance for this particular problem. This result joins
several similar results recently obtained by both our group
and other researchers in applying genetic programming to
non-trivial problem domains. The transmembrane segment
identification problem is another problem where genetic
programming is competitive with human performance. The
goal in that problem is to classify a given protein segment
(i.e., a subsequence of amino acid residues from a protein
sequence) as being a transmembrane domain or non-
transmembrane area of the protein. The goal is to perform
the classification without using the biochemical
foreknowledge concerning hydrophobicity that is typically
used in human-written algorithms for this problem. Four
different versions of genetic programming have been
applied to this problem (Koza 1994a; Koza and Andre
1996a, 1996b). The performance of all four versions using
genetic programming is slightly superior to that of
algorithms written by knowledgeable human investigators.

A second example involves the problem of
automatically discovering patterns in databases of DNA and
protein sequences. Genetic programming successfully
evolved motifs for detecting the D-E-A-D box family of
proteins and for detecting the manganese superoxide
dismutase family. Both motifs were evolved without
prespecifying their length. Both relied on automatically
defined functions to capture common subexpressions.

Table 1 Out-of-sample performance of various rules for
the majority classification task.
Rule Accuracy Test cases
Best rule evolved by bit-string
genetic algorithm (Das,
Mitchell, and Crutchfield 1994)

76.9% 106

GKL 1978 human-written 81.6% 106
Davis 1995 human-written 81.8% 106
Das 1995 human-written 82.178% 107

Best rule evolved by genetic
programming (in this paper)

82.326% 107

The two genetically evolved consensus motifs detect the
two families either as well as, or slightly better than, the
comparable human-written motifs found in the PROSITE
database (Koza and Andre 1996c).

A third instance involves the automated discovery of an
analog electrical circuit for a difficult-to-design asymmetric
bandpass filter (Koza, Bennett, Andre, and Keane 1996 in
this volume). Other instances have been reported in
Kinnear 1994 and Angeline and Kinnear 1996.

Section 2 of this paper provides background on cellular
automata. Section 3 presents the majority classification task
and previous work on it. Section 4 details the steps required
to use genetic programming on the majority classification
problem. Section 5 examines the results of our most
successful run using genetic programming. In section 6, we
examine, in detail, the intricate communication patterns
employed by the best rule evolved by genetic programming
for this problem.

2. Cellular Automata
Local rules govern the important interactions of many
animate and inanimate entities. It has been frequently
observed that the simultaneous execution of a single
relatively simple rule at many local sites leads to the
emergence of interesting and complex global behavior
(Langton 1989). This global behavior often occurs when
entities that have access only to information about their
immediate local environment engage in long-distance
communication and long-distance integration of
information.

Cellular automata are an abstract way of studying and
analyzing the simultaneous execution of local rules (Burks
1970; Farmer, Toffoli, and Wolfram 1983; Wolfram 1986;
Gutowitz 1991; Wuensche and Lesser 1992).

A cellular space is a uniform array of cells arranged in a
certain topological arrangement in a certain number of
dimensions. In a cellular automaton (CA), each cell in a
cellular space is occupied by an identical automaton (each
with its own current state). The next state of each individual
automaton in the cellular space depends on its own current
state and on the current states of the other automata in a
specified local neighborhood around the individual
automaton. The state of each automaton at time 0 is called
its initial condition.

The best-known cellular automata system is John
Conway's game of Life (Berlekamp, Conway, and Guy
1985). It involves a two-dimensional arrangement of
identical two-state automata. In the game of Life, the next
state of each automaton depends on its current state and on
the states of its eight immediately adjacent neighbors in the
two-dimensional cellular space.

For a one-dimensional cellular automata, the cellular
space is a linear arrangement of identical automata. The
next state of each individual automaton might depend on the
current state of that automaton and the current states of its

neighbors at a particular specified distance. For example, if
the distance is three, we denote the seven states that
determine the next state of a given automaton as X (for the
automaton at the center), W (the adjacent automaton to the
west), E (the adjacent automaton to the east), WW (the
automaton at distance 2 to the west), EE, WWW, and EEE. A
cellular space is said to have periodic boundary conditions
when the cellular space is toroidal. If the automaton located
in each cell has only two states, the state-transition function
of the automaton is a Boolean function of its own current
state and the states of its neighbors at the specified distance.

Cellular automata are dynamical systems that are
discrete in time, in space (the cells), and in site value (the
states). Cellular automata are the discrete counterparts of
continuous dynamical systems defined by partial differential
equations and the physicist's concept of field (Toffoli and
Margolus 1987). Simulations of fluid flow and other
complex processes that depend only on local states are well
suited to cellular automata.

It is extremely difficult, in general, to design a single
state-transition rule that, when it operates in each cell of the
cellular space, produces a desired global behavior.

Genetic algorithms (Holland 1975) operating on fixed-
length character strings have been previously used to evolve
the initial conditions and state-transition rules for cellular
automata (Meyer, Richards, and Packard 1991). Genetic
programming (Koza 1992, 1994a, 1994b; Koza and Rice
1992) has been previously used for automatic programming
of cellular automata (Koza 1992).

3. The Majority Classification Problem
The majority classification problem is one vehicle for
exploring how complex calculations can be performed over
large expanses of time and space using rules of interaction
that operate over a relatively small distance.

In one frequently studied version of this vexatious
problem, there is a one-dimensional linear arrangement of
149 two-state automata whose update rule operates on
information within a distance of three. The initial states of
all 149 automata (called the initial configuration) are the
inputs to the calculation. If all 149 automata relax to a
common state (0 or 1) after a certain amount of time, the
common state is considered to be the binary output of the
calculation. For the majority classification task, a "0" is
correct if a majority of the 149 initial bits are 0 and a "1" is
correct if a majority of the bits are 1. Thus, to solve this
problem, a seven-argument Boolean transition rule must be
found such that when it is situated at all 149 cells of a one-
dimensional cellular automata system, the automata
converge to the correct configuration of 149 0's or 149 1's
(after, say, 600 time steps). The fitness of a rule for this task
is measured by its ability to correctly classify any arbitrary
random initial state.

It is difficult to construct a two-state, seven-
neighborhood cellular automata rule that performs this
majority classification task on a 149-bit input configuration.
Seven bits cannot store an integer as large as 149 (if, for

example, one were storing and transmitting a signal
communicating a locally observed surplus or deficit of 0's
or 1's). It is unknown whether a perfect solution to this
problem exists.

The difficulty that human programmers have had with
this task is indicated by its history. In 1978, Gacs,
Kurdyumov, and Levin developed a two-state, seven-
neighbor rule for the purpose of studying reliable
computation under random perturbations. This Gacs-
Kurdyumov-Levin (GKL) rule performs the majority
classification task reasonably well. The GKL rule is
successful on 8l.6% of the inputs consisting of a
configuration of 149 bits (each chosen independently with
50% probability). Gonzaga de Sa and Maes (1992) showed
that this system does indeed relax to a common state.

The majority classification task has been the subject of
extensive study (Mitchell, Hraber, and Crutchfield 1993;
Das, Mitchell, and Crutchfield 1994; Mitchell, Crutchfield,
and Hraber 1994; Crutchfield and Mitchell 1995; Das,
Crutchfield, Mitchell, and Hanson 1995; Mitchell 1996).

In 1993, Lawrence Davis (1995) cleverly modified the
GKL rule and created a rule that achieved an accuracy of
about 81.8%. Rajarshi Das(1995) created another clever
rule that achieved slightly better accuracy than the GKL
rule and the Davis rule. The Das rule has an accuracy of
about 82.178%. Table 2 shows the GKL rule, the Davis
rule, the Das rule, and the rule evolved by genetic
programming in this paper. The 128 bits are presented in the
natural order that they would appear in a state transition
table starting with state 0000000 and ending at state
1111111.

Das, Mitchell, and Crutchfield (1994) evolved rules
using a version of the genetic algorithm operating on fixed-
length strings. These rules sometimes exhibited qualitatively
the same behavior as the GKL rule. However, none of the
rules evolved using the genetic algorithm operating on
fixed-length strings were as accurate as the original GKL
rule. As Das, Mitchell, and Crutchfield (1994) reported, the
genetic algorithm usually found only relatively
uninteresting block-expanding rules that score in the range
of 65 – 70% accuracy. The best result from the genetic
algorithm operating on fixed-length strings had 76.9%
accuracy. This reported performance may have been the
consequence of factors such as the small population size
employed.

Land and Belew (1995) suggested that evolution may
actually be hindered by the standard representation of the
cellular automata rule as a chromosome string of length 128

used in previous work using the genetic algorithm. They
suggest that higher-level representations (such as condition-
action pairs) may aid the evolutionary process because of
the higher degree of locality in the condition-action pairs.
Given Land and Belew's (1995) view, the tree
representation employed by genetic programming seems
well suited for this task. The size and shape of the ultimate
solution is free to undergo evolution in genetic
programming. The search strategy employed by genetic
programming (and the genetic algorithm) is also important
for this problem.

Although many Boolean problems can be trivially
solved by hillclimbing methods in a variety of
representations, such methods work only when the fitness
cases (i.e., the 27 lines in the truth table) are independent.
When a Boolean function is used for a cellular automata
rule, there is no correct answer for a given set of inputs that
is independent from the answers for the other inputs. Also,
genetic programming supports automatically defined
functions, whereas the conventional genetic algorithm
operating on fixed-length strings does not have a similar
facility for exploiting regularities, symmetries,
homogeneities, and modularities of the problem
environment.

4. Preparatory Steps
The runs reported here used standard genetic programming
with automatically defined functions (Koza 1994a) as
summarized in table 3. The problem (coded in ANSI C) was
run on a medium-grained parallel Parsytec computer system
consisting of 64 80-MHz Power PC 601 processors
arranged in a toroidal mesh with a host PC Pentium type
computer. The so-called distributed genetic algorithm or
island model for parallelization was used. That is,
subpopulations (demes) were situated at the processing
nodes of the system. Population size was Q = 800 at each of
the D = 64 demes for a total population size of 51,200. The
initial random subpopulations were created locally at each
processing node. Generations were run asynchronously on
each node. After a generation of genetic operations was
performed locally on each node, four boatloads, each
consisting of B = 3% (the migration rate) of the
subpopulation (selected on the basis of fitness) were
dispatched to each of the four toroidally adjacent nodes.
Details of the parallel implementation of genetic
programming can be found in Andre and Koza 1996.

Table 2 The succession of "best" cellular automata rules for the majority classification task, presented in truth table
order from 0000000 to 1111111 (i.e. 0 to 127).
Rule State Transitions
GKL 1978 human-written 00000000 01011111 00000000 01011111 00000000 01011111 00000000

01011111 00000000 01011111 11111111 01011111 00000000 01011111
11111111 01011111

Davis 1995 human-written 00000000 00101111 00000011 01011111 00000000 00011111 11001111
00011111 00000000 00101111 11111100 01011111 00000000 00011111
11111111 00011111

Das (1995) human-written 00000111 00000000 00000111 11111111 00001111 00000000 00001111
11111111 00001111 00000000 00000111 11111111 00001111 00110001
00001111 11111111

Best rule evolved by genetic
programming (in this paper)

00000101 00000000 01010101 00000101 00000101 00000000 01010101
00000101 01010101 11111111 01010101 11111111 01010101 11111111
01010101 11111111

Table 3 Tableau for the majority classification problem for one-dimensional cellular automata.
Objective: Find a seven argument Boolean function that performs the majority classification problem

for a 149-width one-dimensional cellular automata system.
Architecture of the overall
program with ADFs:

One result-producing branch and one two-argument automatically defined function, ADF0,
and one three-argument automatically defined function, ADF1. ADF1 can refer to ADF0.

Terminal set for the RPB: X, E, EE, EEE, W, WW, and WWW.
Function set for the RPB: AND, OR, NAND, NOR, NOT, IF, XOR, ADF0, and ADF1.
Terminal set for ADF0: X, E, EE, EEE, W, WW, WWW, ARG0, and ARG1.
Function set for ADF0: AND, OR, NAND, NOR, NOT, IF, and XOR.
Terminal set for ADF1: X, E, EE, EEE, W, WW, WWW, ARG0, ARG1, and ARG2.
Function set for ADF1: AND, OR, NAND, NOR, NOT, IF, XOR, and ADF0.
Fitness cases: • 1,000 149-bit initial configurations were used as in-sample fitness cases. These initial

configurations were created randomly, with no bias (i.e., 0 and 1 each have an independent
50% probability of being chosen). Thus, the distribution of densities of the initial state
vectors was a binomial distribution centered at 0.50.
• The out-of-sample fitness cases consisted of 1,000,000 (and later 10,000,000 and
15,000,000) similarly created initial configurations.

Raw fitness: 1,000 minus the number of fitness cases for which the system relaxes to the correct
configuration after 600 time steps.

Standardized fitness: 1,000 minus raw fitness.
Hits: Raw fitness.
Parameters: • Population size, M, is 51,200 (64 times 800).

• Maximum number of generations to be run, G, is 51.
• 89% crossovers, 10% reproductions, and 1% mutations were used on each generation.
• A maximum of 500 points (functions and terminals) for the result-producing branch and
250 points for each automatically defined function was allowed.
• Structure-preserving crossover with branch typing was used.
• The other parameters for controlling the runs of genetic programming were the default
values specified in Koza (1994a).

5. Emergent Computation in the Most
Successful Run

We made five runs of genetic programming on this
problem. Each run produced numerous individuals that
were reminiscent of the GKL rule. Each of the runs
produced numerous individuals that scored well above the
best accuracy of 76.9% produced by the genetic algorithm
operating on fixed-length character strings. The best rule
evolved by genetic programming scores better than any
known human-written or machine-produced rule (table 1).

An examination of the most successful run illustrates the
emergence of many interesting entities prior to the creation
of the best individual.

The best individual program from the initial random
generation indiscriminately classifies all fitness cases as
having a majority of 1's. Since 525 of the 1,000 randomly
created fitness cases on this particular run happened to have
a majority of 1's, this best of generation 0 scores 525 hits.

The best individual of generation 1 scores 650 hits. The
activity of a one-dimensional cellular automata system can
be presented as a two dimensional grid in which the top
horizontal row contains the states (0 or 1) of the 149
automata at a time 0 (i.e., the initial configuration of the
system) and in which each successive row represents the

states of the 149 automata at successive time steps. Figure 1
shows a small part of such a diagram for this individual. In
the space-time diagram, we see large areas dominated by
solid blocks of repeated simple regular patterns, called
domains, where a given domain is specified by a regular
expression. The two domains shown in figure 1 are the
domain denoted by the regular expression 1* and the
domain denoted by the expression 0*. The space-time
diagrams in this paper display 1's as black, and 0's as
white. Thus we call the 1* domain black (designated by
(B)) and the 0* domain white (designated by (W)).

The domains of this generation 1 individual interact in
various ways. When a domain consisting of a solid block of
1's is to the left of a domain consisting of a solid block of
0's, the interface consists of ...111000... and the
corresponding positions at the next time step also consist of
...111000... . Because these particular two domains do not
move left or right over time, this particular domain interface
is said to have a velocity of zero.

Following Das, Mitchell, and Crutchfield (1994), we
describe such an interface between two domains as a
particle, denoted P(xy), where x is the domain on the left
and y the domain on the right. Particles are one of the ways
that information is communicated across large distances in
time and space in a cellular space. In figure 1, line a shows

the path of the P(BW) particle with a velocity of 0 and line
b shows the path of the P(WB) particle with a velocity of
1/2.

...11111000000000000000011111111111...

...11111000000000000001001111111111...

...11111000000000000000001111111111...

...11111000000000000000100111111111...

...11111000000000000000000111111111...

...11111000000000000000010011111111...

...11111000000000000000000011111111...

...11111000000000000000001001111111...

...11111000000000000000000001111111...

...11111000000000000000000100111111...

...11111000000000000000000000111111...

a b

Figure 1 Eleven time steps of the partial space-time behavior
of the best individual of generation 1 on one fitness case
showing the spread of the zero domain.

This evolved rule from generation 1 overpredicts a
majority of 1's and underpredicts a majority of 0's. This
individual is an example of what Mitchell, Hraber, and
Crutchfield (1993) called a block-expanding rule (i.e. a rule
that converges to a state unless a sufficiently large block of
adjacent or nearly adjacent instances of the opposite state
exists in the input).

The best program of generation 6 scores 706 hits on the
1,000 in-sample fitness cases. A portion of its space-time
behavior is shown in figure 2. The behavior of this
individual is similar to the individual of generation 1.
However, it scores slightly better because it has modified
the conditions under which it expands a block. The
interaction between the domain of zeros on the left and ones
on the right is quite complex in this individual, and the
interface between the two domains is quite large. The
particle P(WB) travels at a velocity of 2/7 in this individual.

The best individual of generation 15 scores 815 hits. Its
behavior (see figure 3) is somewhat similar to that of the
GKL rule, although it scores less than 80% on out-of-
sample fitness cases. Like the GKL rule (figure 7), this rule
separates white on the left from black on the right with a

gray domain that grows into both black and white. When
black is to the left of white, a zero-velocity particle
characterizes their interaction. The combination of these
two
concepts yields the basic mechanism that both GKL and this
generation 15 individual use to compute global measures of
density. If the domain of all white is larger, it will win out
over black, and vice versa.

Although similar to GKL, the rule of generation 15 has
several new gray domains that are not quite the same as the
gray domain in the GKL rule's behavior. The new domains
interact, as can be seen in figure 4. In this example, the zero
and one domains do not enter into the computation until the
very end – all of the primary computation is performed by
the new gray domains. At this point, however, the new gray
domains do not interact particularly well – the rule fails
often when it computes with the new gray domains.

The best individual of the run emerged on generation
17. The 36-point result-producing branch is
(nand (xor (or (adf0 X (not WWW)) (not WWW))
(adf0 (adf0 E X) (or E W))) (or (nand (if EEE
E X) (if EEE W (and EE WWW))) (adf1 (nand W
E) (xor WWW W) E))).

The 10-point automatically defined function ADF0 is
(if (nor (or X X) (nor arg1 arg0)) EEE WWW).

The 44-point automatically defined function ADF1 is
(xor W (xor (adf0 (adf0 (if (or (not W) (adf0
WWW arg2)) (xor (adf0 WWW X) (nor WW WWW))
(nand (xor X X) (or X WW))) (nor (or (if arg2
EEE arg2) (nor arg2 arg1)) (not (xor W E))))
(xor W (not arg2))) EEE)).

This rule scores 824 hits on the 1,000 in-sample fitness
cases, and scores 82.4% accuracy over 100,000 out-of-
sample cases. It scores 82.326% accuracy over 10,000,000
additional cases.

This accuracy is slightly better than the score of the
GKL rule. We are aware of two human-coded rules that also
are better than the GKL rule – the Das rule (1995) and the
Davis rule (1995) (table 2). We tested the best individual
evolved by genetic programming against each of the other
three rules using the same fitness cases (106 107 fitness
cases). Table 1 shows the results. As can be seen, the best
rule evolved by genetic programming is slightly better than

Figure 2 Partial space-time behavior of the best individual of
generation 6. Black represents 1s, white 0s.

Figure 3 Space-time behavior of the best individual of
generation 15 on a typical initial state vector.

all the other rules. Non-parametric χ2 tests with one degree
of freedom were performed; the probability(p) that the
pairwise differences between the best rule evolved by
genetic programming and each of the other three rules were
attributable to chance was less than 0.001 (i.e. the
differences are statistically significant, p < 0.001).

6. The Best Rule Evolved by Genetic
Programming

Why does the best rule evolved by genetic programming
score better than the previously known (human-written)
rules? First, it has more domains than the GKL rule. The 11
domains of the rule evolved by genetic programming (table
4) classify the density of 1's into finer levels of gray than do
the black, white, and checkerboard gray domains of the
GKL rule (analyzed in detail in Das, Mitchell, and
Crutchfield 1994). The checkerboard gray domain of the
GKL rule corresponds to the regular expression (10)* ≈
(01)* (Das, Mitchell, and Crutchfield 1994). In addition,
the rule evolved by genetic programming employs a larger
number of particles. The rule evolved by genetic
programming employs 10 particles that are identical to the
particles (Das, Mitchell, and Crutchfield 1994) in the GKL
rule; however, it also discovered at least 40 additional
particles that involve the new gray domains. All the new
particles have velocity 0, +3, or -3.

Figure 5 Space-time diagram showing the behavior of the best
rule evolved by genetic programming. The differences between
the shades of gray and the area highlighted by the arrow are
important to convergence.

More domains would be purely a superficial difference
if the new domains did not participate in the computation.
However, the new gray domains are crucial to the
computations being performed by the genetically evolved
rule. In the behavior shown in figure 5, for example, the
new grays are critical to the success of the rule. If all the
grays acted identically, then the automata would not
converge in this example. The interactions of the new gray
domains in the area indicated by the arrow allow the white
domain to escape and encroach to the left.

In addition, there are periods (as shown in figure 6)
during the behavior of the best rule evolved by genetic
programming where none of the GKL domains exist. In
fact, there are periods in which the computation is carried
out entirely by the new gray domains.

Even though the new gray domains take part in the
computation, one might question whether they account for

Figure 4 Space-time behavior of the best individual of
generation 15 where there are no all black or all white domains
until the end.

Figure 6 The behavior of the best rule evolved by genetic
programming on one set of initial states.

the difference in score between the best rule evolved by
genetic programming and the GKL rule.

 However, the behavior of both rules shown in figure 7
indicates that the finer levels of gray do confer an advantage
on the best rule evolved by genetic programming. On the
left of the initial state vector, there are two fairly large
regions of white (0s) separated by a region of black (1s)
marked in the diagrams by the arrows. Under the GKL rule,
the black area is eliminated by the two adjacent white
domains. In the best rule evolved by genetic programming,
these two white areas are classified as light gray domains
and the black area becomes a dark gray domain (all shifted

to the right slightly). Because it can make use of extra
domains, the best rule evolved by genetic programming
retains the information that there is a significant density of
black (1s) in the vicinity of the arrow until additional global
information can resolve the local dispute.

The basic mechanism of best rule evolved by genetic
programming is similar to that of the GKL rule in that there
is a race among the black, white, and gray domains. Figure
8 shows a space-time diagram of the behavior of the best
rule evolved by genetic programming.

 In the best rule evolved by genetic programming, a
white domain (W) is separated on the right from a black
domain (B) by a growing domain of checkerboard gray (6).
The white domain (W) is separated on the left from the
black domain (B) by one or both of the separator domains,
(3) and (8), which are domains whose interactions with
either white or black have zero velocity. In the case shown
in figure 8, the (B) domain is larger, and the gray (6)
domain cuts off the white domain (W), allowing the black
domain (B) to break through. In this case, the extra gray
domains of (7) and (9) are not important, but they play a
role in other fitness cases.

The mechanism discussed above is sufficient for many
cases, but fails to handle the case when the black and white
domains are of approximately equal size. In this
circumstance, the gray (6) domain cuts off both the white
and black domains. In the behavior of the GKL rule, when
there is such a 'tie', after a brief transition, the black and
white domains seem to 'swap' places, separated by a new
growing gray domain (figure 9).

In the behavior of the best rule evolved by genetic
programming such collisions occur slightly differently and
yield different behavior after the collision. Under this rule,
the black (B) and white (W) domains are separated by a
potentially larger distance by one or both of the separator

A

Figure 7 The space-time behavior of the
best rule evolved by genetic programming
(bottom) and the GKL rule (top) on the
same initial state vector. The ability of the
evolved rule to classify domains of the input
as intermediate gray values allows it to
avoid the 'round-off' error that the GKL
makes.

B WW

Figure 8 Abstracted Space-Time domain diagram for the
best rule evolved by genetic programming showing its
typical behavior. The darkness of each domain
corresponds to the density of ones.

domains (8) and (3). If there is a tie, new domains emerge
after the collision instead of the black and white domains,
and there is no immediate gray separator domain. The new
gray domains of (7) and (9) appear to represent the
continuation of the black (B) domain, whereas the (2) and
(1) domains appear to represent the continuation of the
white (W) domain. Thus, when there is a tie in the best rule
evolved by genetic programming; the original domains of
black and white disappear completely; and the computation
is carried out entirely by the gray domains. The abstract
schematic for this interaction is shown in figure 10.

One problem that a rule utilizing zero-velocity particles
can have is that the initial state vector could either be in a
state or relax to a state where convergence does not take
place. If the automata either starts in or reaches a state
where the automata is filled with domains that have zero-
velocity interactions with the adjacent patterns, the
automata cannot converge. Thus, one potential downside to
the best rule evolved by genetic programming is that
because it utilizes more domains in its computation that
have zero-velocity particles, it may be more likely to be
trapped in a non-convergent steady-state. We found only
one such input pattern in our testing (see figure 11). Given
that the best rule evolved by genetic programming scores
better than any other known rule, however, it is possible

that the occasional non-convergence represents a strategic
tradeoff rather than a defect.

The asymmetry of the best rule evolved by genetic
programming suggests that there may be other rules that are
better yet at performing the majority classification task.

7. Conclusions
A cellular automata rule for the majority classification task
was evolved using genetic programming with automatically
defined functions. This genetically evolved rule has an
accuracy of 82.326%. This accuracy exceeds that of the
Gacs-Kurdyumov-Levin (GKL) rule, all other known
human-written rules, and all other known rules produced by
previous automated approaches. The best rule evolved by
genetic programming differs qualitatively from these other
rules. It utilizes a very fine internal representation of density
information; it employs a large number of different domains
and particles; and it uses an intricate set of signals for
communicating information over large distances in time and
space.

Acknowledgements
The authors gratefully thank Lawrence Davis, Melanie
Mitchell, and James Crutchfield for helpful discussions and
for reviewing a draft of this paper. Simon Handley and
Scott Brave made helpful comments on drafts of this paper.

Bibliography
Andre, David and Koza, John R. 1996. Parallel genetic

programming: A scalable implementation using the transputer
architecture. In Angeline, Peter J. and Kinnear, Kenneth E. Jr.
(editors). Advances in Genetic Programming 2. Cambridge,
MA: The MIT Press.

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). Advances
in Genetic Programming 2. Cambridge, MA: The MIT Press.

Burks, Arthur W. 1970. Essays on Cellular Automata. Urbana, IL:
University of Illinois Press.

Crutchfield, J. P. and Mitchell, Melanie 1995. The evolution of
emergent computation. Proceedings of the National Academy of
Sciences, USA. 92 (23).

Das, Rajarshi, Mitchell, Melanie, and Crutchfield, J. P. 1994. A
genetic algorithm discovers particle-based computation in
cellular automata. In Davidor, Yuval, Schwefel, Hans-Paul, and
Maenner, Reinhard (editors). 1994. Parallel Problem Solving
from Nature - PPSN III. (Lecture Notes in Computer Science,
Volume 866). Berlin: Springer-Verlag. 344-353.

B W

##

#W B

Figure 9 Collisions under GKL rule.

3

and/or

8

B

66

1 and/or 2 7 and/or 9

W

Figure 10 Collisions under the best rule evolved by
genetic programming.

Figure 11 The behavior of the best rule evolved by genetic
programming on an initial state vector where the automata
does not converge.

Das, Rajarshi, Crutchfield, J. P., Mitchell, Melanie, and Hanson, J.
E. 1995. Evolving globally synchronized cellular automata. In
Eshelman, Larry J. (editor). Proceedings of the Sixth
International Conference on Genetic Algorithms. San
Francisco, CA: Morgan Kaufmann Publishers.

Das, Rajarshi. 1995. Personal communication.
Davis, Lawrence. 1995. Personal communication.
Farmer, Doyne, Toffoli, Tommaso, and Wolfram, Stephen

(editors). 1983. Cellular Automata: Proceeding of an
Interdisciplinary Workshop, Los Alamos, New Mexico, March
7-11, 1983. Amsterdam: North-Holland Physics Publishing.
Also in Physica D, volume 10.

Gacs, P., Kurdyumov, G. L., and Levin, L. A. 1978. One
dimensional uniform arrays that wash out finite islands.
Problemy Peredachi Informatsii. 12(1978) 92 – 98.

Gardner, Martin 1970. The fantastic combinations of John
Conway's new solitaire game "Life." Scientific American.
223(April): 120–123.

Gonzaga de Sa, P. and Maes. C. 1992. The Gacs-Kurdyumov-
Levin automaton revisited. Journal of Statistical Physics.
67(3/4) 507–522.

Gutowitz, Howard (editor). 1991. Cellular Automata: Theory and
Experiment. Cambridge, MA: The MIT Press. Also in Physica
D 1990.

Holland, John H. 1975. Adaptation in Natural and Artificial
System. Ann Arbor, MI: University of Michigan Press. The
1992 second edition was published by The MIT Press.

Kinnear, Kenneth E. Jr. (editor). Advances in Genetic
Programming. Cambridge, MA: The MIT Press 1994.

Koza, John R. 1992. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. Cambridge, MA:
The MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: The MIT
Press.

Koza, John R. 1994b. Genetic Programming II Videotape: The
Next Generation. Cambridge, MA: The MIT Press.

Koza, John R. and Andre, David. 1996a. Classifying protein
segments as transmembrane domains using architecture-altering
operations in genetic programming. In Angeline, Peter J. and
Kinnear, Kenneth E. Jr. (editors). 1996. Advances in Genetic
Programming II. Cambridge, MA: MIT Press. In Press.

Koza, John R. and Andre, David. 1996b. Evolution of iteration in
genetic programming. In Evolutionary Programming V:
Proceedings of the Fifth Annual Conference on Evolutionary
Programming. Cambridge, MA: MIT Press. In Press.

Koza, John R. and Andre, David. 1996c. Automatic discovery of
protein motifs using genetic programming. In Yao, Xin
(editor). 1996. Evolutionary Computation: Theory and
Applications. Singapore: World Scientific. In Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane,
Martin A. 1996. Automated WYWIWYG design of both the
topology and component values of analog electrical circuits
using genetic programming. In Koza, John R., Goldberg, David
E., Fogel, David B., and Riolo, Rick L. (editors). Genetic
Programming 1996: Proceedings of the First Annual
Conference, July 28-31, 1996, Stanford University. Cambridge,
MA: MIT Press. In this volume.

Koza, John R., and Rice, James P. 1992. Genetic Programming:
The Movie. Cambridge, MA: MIT Press.

Land, Mark and Belew, Richard K. 1995. In McDonnell, John R.,
Reynolds, Robert G., and Fogel, David B. (editors).
Evolutionary Programming IV: Proceedings of the Fourth
Annual Conference on Evolutionary Programming. Cambridge,
MA: The MIT Press. Pages 403–434.

Langton, Christopher G. (editor). 1989. Artificial Life, Santa Fe
Institute Studies in the Sciences of Complexity. Volume VI.
Redwood City, CA: Addison-Wesley.

Meyer, Thomas P., Richards, Fred C., and Packard, Norman H.
1989. A learning algorithm for modeling. Physical Review
Letters. 63(16) 1735-1738. October 16.

Mitchell, Melanie. 1996. An Introduction to Genetic Algorithms.
Cambridge, MA: The MIT Press.

Mitchell, Melanie, Crutchfield, J. P., and Hraber, P. T. 1994.
Dynamics, computation, and the "edge of chaos'': A re-
examination. In G. Cowan, D. Pines, and D. Melzner (editors).
Complexity: Metaphors, Models, and Reality. Santa Fe Institute
Studies in the Sciences of Complexity, Proceedings, Volume
19. Reading, MA: Addison-Wesley.

Mitchell, Melanie, Hraber, P. T., and Crutchfield, J. P. 1993.
Revisiting the edge of chaos: Evolving cellular automata to
perform computations. Complex Systems. (7) 89-130.

Toffoli, T. and Margolus, N. 1987. Cellular Automata Machines.
Cambridge, MA: The MIT Press.

Wuensche, Andrew and Lesser, Mike. 1992. The Global
Dynamics of Cellular Automata. Santa Fe Institute Studies in
the Sciences of Complexity. Reference Volume I. Reading,
MA: Addison-Wesley.

Wolfram (editor). 1986. Theory and Applications of Cellular
Automata. Singapore: World Scientific.

Table 4 The 11 domains of the best rule evolved by genetic programming.
Regular Domain Domain Name Color
0* W White
(000001)*≈(100000)*≈(010000)*≈(001000)*≈(000100)*≈(000010)* 1 Very Light Gray
(000101)*≈(100010)*≈(010001)*≈(101000)*≈(010100)*≈(001010)* 2 Light Gray
(001)*≈(100)*≈(010)* 3 Light Gray
(001101)*≈(100110)*≈(010011)*≈(101001)*≈(110100)*≈(011010)* 4 Gray
(001011)*≈(100101)*≈(110010)*≈(011001)*≈(101100)*≈(010110)* 5 Gray
(01)*≈(10)* 6 Gray
(011101)*≈(101110)*≈(010111)*≈(101011)*≈(110101)*≈(111010)* 7 Dark Gray
(011)*≈(101)*≈(110)* 8 Dark Gray
(011111)*≈(101111)*≈(110111)*≈(111011)*≈(111101)*≈(111110)* 9 Very Dark Gray

 11

1* B Black

