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ABSTRACT 

It is difficult to program cellular 
automata.  This is especially true when the 
desired computation requires global 
communication and global integration of 
information across great distances in the 
cellular space.  Various human-written 
algorithms have appeared in the past two 
decades for the  vexatious majority 
classification task for one-dimensional 
two-state cellular automata.  This paper 
describes how genetic programming with 
automatically defined functions evolved a 
rule for this task with an accuracy of 
82.326%.  This level of accuracy exceeds 
that of the original 1978 Gacs-
Kurdyumov-Levin (GKL) rule, all other 
known human-written rules, and all other 
known rules produced by automated 
methods.  The rule evolved by genetic 
programming is qualitatively different 
from all previous rules in that it employs a 
larger and more intricate repertoire of 
domains and particles to represent and 
communicate information across the 
cellular space.  

1. Introduction 
Massively parallel computation is potentially attractive for 
solving problems.  However, it has proved difficult to 
program massively parallel computing devices.   

This paper describes our research on using genetic 
programming to evolve programs for cellular automata, 
which are one type of massively parallel computing system. 
Specifically, this paper focuses on the well-studied majority 
classification task for one-dimensional two-state cellular 
automata.  For this problem, genetic programming evolved 

a rule whose performance exceeds that of the original Gacs-
Kurdyumov-Levin (GKL) rule, all other known subsequent 
human-written rules, and all known rules produced by 
automated approaches for this problem (table 1).   

The result in this paper is that genetic programming has 
produced a result that is slightly better than human 
performance for this particular problem.  This result joins 
several similar results recently obtained by both our group 
and other researchers in applying genetic programming to 
non-trivial problem domains.  The transmembrane segment 
identification problem is another problem where genetic 
programming is competitive with human performance.  The 
goal in that problem is to classify a given protein segment 
(i.e., a subsequence of amino acid residues from a protein 
sequence) as being a transmembrane domain or non-
transmembrane area of the protein.  The goal is to perform 
the classification without using the biochemical 
foreknowledge concerning hydrophobicity that is typically 
used in human-written algorithms for this problem.  Four 
different versions of genetic programming have been 
applied to this problem (Koza 1994a; Koza and Andre 
1996a, 1996b).  The performance of all four versions using 
genetic programming is slightly superior to that of 
algorithms written by knowledgeable human investigators.   

A second example involves the problem of 
automatically discovering patterns in databases of DNA and 
protein sequences.  Genetic programming successfully 
evolved motifs for detecting the D-E-A-D box family of 
proteins and for detecting the manganese superoxide 
dismutase family.  Both motifs were evolved without 
prespecifying their length.  Both relied on automatically 
defined functions to capture common subexpressions.   

Table 1  Out-of-sample performance of various rules for 
the majority classification task. 
Rule Accuracy Test cases  
Best rule evolved by bit-string 
genetic algorithm (Das, 
Mitchell, and Crutchfield 1994)  

76.9% 106 

GKL 1978 human-written 81.6% 106 
Davis 1995 human-written 81.8% 106 
Das 1995 human-written 82.178% 107 



 

Best rule evolved by genetic 
programming (in this paper) 

82.326% 107 

The two genetically evolved consensus motifs detect the 
two families either as well as, or slightly better than, the 
comparable human-written motifs found in the PROSITE 
database (Koza and Andre 1996c).   

A third instance involves the automated discovery of an 
analog electrical circuit for a difficult-to-design asymmetric 
bandpass filter (Koza, Bennett, Andre, and Keane 1996 in 
this volume).  Other instances have been reported in 
Kinnear 1994 and Angeline and Kinnear 1996.   

Section 2 of this paper provides background on cellular 
automata.  Section 3 presents the majority classification task 
and previous work on it. Section 4 details the steps required 
to use genetic programming on the majority classification 
problem.  Section 5 examines the results of our most 
successful run using genetic programming. In section 6, we 
examine, in detail, the intricate communication patterns 
employed by the best rule evolved by genetic programming 
for this problem.  

2. Cellular Automata 
Local rules govern the important interactions of many 
animate and inanimate entities.   It has been frequently 
observed that the simultaneous execution of a single 
relatively simple rule at many local sites leads to the 
emergence of interesting and complex global behavior 
(Langton 1989).  This global behavior often occurs when 
entities that have access only to information about their 
immediate local environment engage in long-distance 
communication and long-distance integration of 
information.   

Cellular automata are an abstract way of studying and 
analyzing the simultaneous execution of local rules (Burks 
1970; Farmer, Toffoli, and Wolfram 1983; Wolfram 1986; 
Gutowitz 1991; Wuensche and Lesser 1992).  

A cellular space is a uniform array of cells arranged in a 
certain topological arrangement in a certain number of 
dimensions. In a cellular automaton (CA), each cell in a 
cellular space is occupied by an identical automaton (each 
with its own current state). The next state of each individual 
automaton in the cellular space depends on its own current 
state and on the current states of the other automata in a 
specified local neighborhood around the individual 
automaton. The state of each automaton at time 0 is called 
its initial condition.  

The best-known cellular automata system is John 
Conway's game of Life (Berlekamp, Conway, and Guy 
1985). It involves a two-dimensional arrangement of 
identical two-state automata.  In the game of Life, the next 
state of each automaton depends on its current state and on 
the states of its eight immediately adjacent neighbors in the 
two-dimensional cellular space.   

For a one-dimensional cellular automata, the cellular 
space is a linear arrangement of identical automata. The 
next state of each individual automaton might depend on the 
current state of that automaton and the current states of its 

neighbors at a particular specified distance. For example, if 
the distance is three, we denote the seven states that 
determine the next state of a given automaton as X (for the 
automaton at the center), W (the  adjacent automaton to the 
west), E (the  adjacent automaton to the east), WW (the 
automaton at distance 2 to the west), EE, WWW, and EEE. A 
cellular space is said to have periodic boundary conditions 
when the cellular space is toroidal. If the automaton located 
in each cell has only two states, the state-transition function 
of the automaton is a Boolean function of its own current 
state and the states of its neighbors at the specified distance.  

Cellular automata are dynamical systems that are 
discrete in time, in space (the cells), and in site value (the 
states). Cellular automata are the discrete counterparts of 
continuous dynamical systems defined by partial differential 
equations and the physicist's concept of field (Toffoli and 
Margolus 1987). Simulations of fluid flow and other 
complex processes that depend only on local states are well 
suited to cellular automata.  

It is extremely difficult, in general, to design a single 
state-transition rule that, when it operates in each cell of the 
cellular space, produces a desired global behavior.  

Genetic algorithms (Holland 1975) operating on fixed-
length character strings have been previously used to evolve 
the initial conditions and state-transition rules for cellular 
automata (Meyer, Richards, and Packard 1991). Genetic 
programming (Koza 1992, 1994a, 1994b; Koza and Rice 
1992) has been previously used for automatic programming 
of cellular automata (Koza 1992).  

3. The Majority Classification Problem 
The majority classification problem is one vehicle for 
exploring how complex calculations can be performed over 
large expanses of time and space using rules of interaction 
that operate over a relatively small distance.  

In one frequently studied version of this vexatious 
problem, there is a one-dimensional linear arrangement of 
149 two-state automata whose update rule operates on 
information within a distance of three. The initial states of 
all 149 automata (called the initial configuration) are the 
inputs to the calculation. If all 149 automata relax to a 
common state (0 or 1) after a certain amount of time, the 
common state is considered to be the binary output of the 
calculation.  For the majority classification task, a "0" is 
correct if a majority of the 149 initial bits are 0 and a "1" is 
correct if a majority of the bits are 1. Thus, to solve this 
problem, a seven-argument Boolean transition rule must be 
found such that when it is situated at all 149 cells of a one-
dimensional cellular automata system, the automata 
converge to the correct configuration of 149 0's  or 149 1's 
(after, say, 600 time steps). The fitness of a rule for this task 
is measured by its ability to correctly classify any arbitrary 
random initial state.  

It is difficult to construct a two-state, seven-
neighborhood cellular automata rule that performs this 
majority classification task on a 149-bit input configuration. 
Seven bits cannot store an integer as large as 149 (if, for 



 

example, one were storing and transmitting a signal 
communicating a locally observed surplus or deficit of 0's  
or 1's ). It is unknown whether a perfect solution to this 
problem exists.  

The difficulty that human programmers have had with 
this task is indicated by its history. In 1978, Gacs, 
Kurdyumov, and Levin developed a two-state, seven-
neighbor rule for the purpose of studying reliable 
computation under random perturbations. This Gacs-
Kurdyumov-Levin (GKL) rule performs the majority 
classification task reasonably well. The GKL rule is 
successful on 8l.6% of the inputs consisting of a 
configuration of 149 bits (each chosen independently with 
50% probability). Gonzaga de Sa and Maes (1992) showed 
that this system does indeed relax to a common state. 

The majority classification task has been the subject of 
extensive study (Mitchell, Hraber, and Crutchfield 1993; 
Das, Mitchell, and Crutchfield 1994; Mitchell, Crutchfield, 
and Hraber 1994; Crutchfield and Mitchell 1995; Das, 
Crutchfield, Mitchell, and Hanson 1995; Mitchell 1996).  

In 1993, Lawrence Davis (1995) cleverly modified the 
GKL rule and created a rule that achieved an accuracy of 
about 81.8%.  Rajarshi Das(1995) created another clever 
rule that achieved slightly better accuracy than the GKL 
rule and the Davis rule. The Das rule has an accuracy of 
about 82.178%. Table 2 shows the GKL rule, the Davis 
rule, the Das rule, and the rule evolved by genetic 
programming in this paper. The 128 bits are presented in the 
natural order that they would appear in a state transition 
table starting with state 0000000 and ending at state 
1111111. 

Das, Mitchell, and Crutchfield (1994) evolved rules 
using a version of the genetic algorithm operating on fixed-
length strings. These rules sometimes exhibited qualitatively 
the same behavior as the GKL rule.  However, none of the 
rules evolved using the genetic algorithm operating on 
fixed-length strings were as accurate as the original GKL 
rule. As Das, Mitchell, and Crutchfield (1994) reported, the 
genetic algorithm usually found only relatively 
uninteresting block-expanding rules that score in the range 
of 65 – 70% accuracy. The best result from the genetic 
algorithm operating on fixed-length strings had 76.9% 
accuracy. This reported performance may have been the 
consequence of factors such as the small population size 
employed.   

Land and Belew (1995) suggested that evolution may 
actually be hindered by the standard representation of the 
cellular automata rule as a chromosome string of length 128 

used in previous work using the genetic algorithm. They 
suggest that higher-level representations (such as condition-
action pairs) may aid the evolutionary process because of 
the higher degree of locality in the condition-action pairs.  
Given Land and Belew's (1995) view, the tree 
representation employed by genetic programming seems 
well suited for this task.  The size and shape of the ultimate 
solution is free to undergo evolution in genetic 
programming. The search strategy employed by genetic 
programming (and the genetic algorithm) is also important 
for this problem.  

Although many Boolean problems can be trivially 
solved by hillclimbing methods in a variety of 
representations, such methods work only when the fitness 
cases (i.e., the 27 lines in the truth table) are independent. 
When a Boolean function is used for a cellular automata 
rule, there is no correct answer for a given set of inputs that 
is independent from the answers for the other inputs. Also, 
genetic programming supports automatically defined 
functions, whereas the conventional genetic algorithm 
operating on fixed-length strings does not have a similar 
facility for exploiting regularities, symmetries, 
homogeneities, and modularities of the problem 
environment. 

4. Preparatory Steps 
The runs reported here used standard genetic programming 
with automatically defined functions (Koza 1994a) as 
summarized in table 3. The problem (coded in ANSI C) was 
run on a medium-grained parallel Parsytec computer system 
consisting of 64 80-MHz Power PC 601 processors 
arranged in a toroidal mesh with a host PC Pentium type 
computer.  The so-called distributed genetic algorithm or 
island model for parallelization was used. That is, 
subpopulations (demes) were situated at the processing 
nodes of the system. Population size was Q = 800 at each of 
the D = 64 demes for a total population size of 51,200. The 
initial random subpopulations were created locally at each 
processing node. Generations were run asynchronously on 
each node. After a generation of genetic operations was 
performed locally on each node, four boatloads, each 
consisting of B = 3% (the migration rate) of the 
subpopulation (selected on the basis of fitness) were 
dispatched to each of the four toroidally adjacent nodes. 
Details of the parallel implementation of genetic 
programming can be found in Andre and Koza 1996.  



 

Table 2  The succession of "best" cellular automata rules for the majority classification task, presented in truth table 
order from  0000000 to 1111111 (i.e. 0 to 127). 
Rule State Transitions 
GKL 1978 human-written 00000000 01011111 00000000 01011111 00000000 01011111 00000000 

01011111 00000000 01011111 11111111 01011111 00000000 01011111 
11111111 01011111 

Davis 1995 human-written 00000000 00101111 00000011 01011111 00000000 00011111 11001111 
00011111 00000000 00101111 11111100 01011111 00000000 00011111 
11111111 00011111 

Das (1995) human-written 00000111 00000000 00000111 11111111 00001111 00000000 00001111 
11111111 00001111 00000000 00000111 11111111 00001111 00110001 
00001111 11111111 

Best rule evolved by genetic 
programming (in this paper) 

00000101 00000000 01010101 00000101 00000101 00000000 01010101 
00000101 01010101 11111111 01010101 11111111 01010101 11111111 
01010101 11111111 



 

Table 3  Tableau for the majority classification problem for one-dimensional cellular automata.  
Objective: Find a seven argument Boolean function that performs the majority classification problem 

for a 149-width one-dimensional cellular automata system. 
Architecture of the overall 
program with ADFs: 

One result-producing branch and one two-argument automatically defined function, ADF0, 
and one three-argument automatically defined function, ADF1.   ADF1 can refer to ADF0.  

Terminal set for the RPB: X, E, EE, EEE, W, WW, and WWW.  
Function set for the RPB: AND, OR, NAND, NOR, NOT, IF, XOR, ADF0, and ADF1.  
Terminal set for ADF0: X, E, EE, EEE, W, WW, WWW, ARG0, and ARG1. 
Function set for ADF0: AND, OR, NAND, NOR, NOT, IF, and XOR. 
Terminal set for ADF1: X, E, EE, EEE, W, WW, WWW, ARG0, ARG1, and ARG2. 
Function set for ADF1: AND, OR, NAND, NOR, NOT, IF, XOR, and ADF0.  
Fitness cases: • 1,000 149-bit initial configurations were used as in-sample fitness cases. These initial 

configurations were created randomly, with no bias (i.e., 0 and 1 each have an independent 
50% probability of being chosen). Thus, the distribution of densities of the initial state 
vectors was a binomial distribution centered at 0.50.  
• The out-of-sample fitness cases consisted of 1,000,000 (and later 10,000,000 and 
15,000,000) similarly created initial configurations.  

Raw fitness: 1,000 minus the number of fitness cases for which the system relaxes to the correct 
configuration after 600 time steps.  

Standardized fitness: 1,000 minus raw fitness. 
Hits: Raw fitness. 
Parameters: • Population size, M, is 51,200 (64 times 800).  

• Maximum number of generations to be run, G, is 51.  
• 89% crossovers, 10% reproductions, and 1% mutations were used on each generation.  
• A maximum of 500 points (functions and terminals) for the result-producing branch and 
250 points for each automatically defined function was allowed.  
• Structure-preserving crossover with branch typing was used.  
• The other parameters for controlling the runs of genetic programming were the default 
values specified in Koza (1994a).  

 

5. Emergent Computation in the Most 
Successful Run 

We made five runs of genetic programming on this 
problem. Each run produced numerous individuals that 
were reminiscent of the GKL rule. Each of the runs 
produced numerous individuals that scored well above the 
best accuracy of 76.9% produced by the genetic algorithm 
operating on fixed-length character strings. The best rule 
evolved by genetic programming scores better than any 
known human-written or machine-produced rule (table 1).  

An examination of the most successful run illustrates the 
emergence of many interesting entities prior to the creation 
of the best individual.  

The best individual program from the initial random 
generation indiscriminately classifies all fitness cases as 
having a majority of 1's. Since 525 of the 1,000 randomly 
created fitness cases on this particular run happened to have 
a majority of 1's, this best of generation 0 scores 525 hits.  

The best individual of generation 1 scores 650 hits. The 
activity of a one-dimensional cellular automata system can 
be presented as a two dimensional grid in which the top 
horizontal row contains the states (0 or 1) of the 149 
automata at a time 0 (i.e., the initial configuration of the 
system) and in which each successive row represents the 

states of the 149 automata at successive time steps. Figure 1 
shows a small part of such a diagram for this individual. In 
the space-time diagram, we see large areas dominated by 
solid blocks of repeated simple regular patterns, called 
domains, where a given domain is specified by a regular 
expression. The two domains shown in figure 1 are the 
domain denoted by the regular expression 1* and the 
domain denoted by the expression 0*. The space-time 
diagrams in this paper display 1's  as black, and 0's  as 
white. Thus we call the 1* domain black (designated by 
(B)) and the 0* domain white (designated by (W)).  

The domains of this generation 1 individual interact in 
various ways. When a domain consisting of a solid block of 
1's  is to the left of a domain consisting of a solid block of 
0's, the interface consists of ...111000... and the 
corresponding positions at the next time step also consist of 
...111000... . Because these particular two domains do not 
move left or right over time, this particular domain interface 
is said to have a velocity of zero.  

Following Das, Mitchell, and Crutchfield (1994), we 
describe such an interface between two domains as a 
particle, denoted P(xy), where x is the domain on the left 
and y the domain on the right. Particles are one of the ways 
that information is communicated across large distances in 
time and space in a cellular space. In figure 1, line a shows 



 

the path of the P(BW) particle with a velocity of 0 and line 
b shows the path of the P(WB) particle with a velocity of 
1/2. 

...11111000000000000000011111111111...

...11111000000000000001001111111111...

...11111000000000000000001111111111...

...11111000000000000000100111111111...

...11111000000000000000000111111111...

...11111000000000000000010011111111...

...11111000000000000000000011111111...

...11111000000000000000001001111111...

...11111000000000000000000001111111...

...11111000000000000000000100111111...

...11111000000000000000000000111111...

a b
 

Figure 1  Eleven time steps of the partial space-time behavior 
of the best individual of generation 1 on one fitness case 
showing the spread of the zero domain.  

This evolved rule from generation 1 overpredicts a 
majority of 1's  and underpredicts a majority of 0's. This 
individual is an example of what Mitchell, Hraber, and 
Crutchfield (1993) called a block-expanding rule (i.e. a rule 
that converges to a state unless a sufficiently large block of 
adjacent or nearly adjacent instances of the opposite state 
exists in the input).   

The best program of generation 6 scores 706 hits on the 
1,000 in-sample fitness cases. A portion of its space-time 
behavior is shown in figure 2. The behavior of this 
individual is similar to the individual of generation 1. 
However, it scores slightly better because it has modified 
the conditions under which it  expands a block. The 
interaction between the domain of zeros on the left and ones 
on the right is quite complex in this individual, and the 
interface between the two domains is quite large. The 
particle P(WB) travels at a velocity of 2/7 in this individual.   

The best individual of generation 15 scores 815 hits. Its 
behavior (see figure 3) is somewhat similar to that of the 
GKL rule, although it scores less than 80% on out-of-
sample fitness cases. Like the GKL rule (figure 7), this rule 
separates white on the left from black on the right with a 

gray domain that grows into both black and white. When 
black is to the left of white, a zero-velocity particle 
characterizes their interaction. The combination of these 
two 
concepts yields the basic mechanism that both GKL and this 
generation 15 individual use to compute global measures of 
density. If the domain of all white is larger, it will win out 
over black, and vice versa.  

Although similar to GKL, the rule of generation 15 has 
several new gray domains that are not quite the same as the 
gray domain in the GKL rule's behavior. The new domains 
interact, as can be seen in figure 4. In this example, the zero 
and one domains do not enter into the computation until the 
very end – all of the primary computation is performed by 
the new gray domains. At this point, however, the new gray 
domains do not interact particularly well – the rule fails 
often when it computes with the new gray domains. 

The best individual of the run emerged on generation 
17. The 36-point result-producing branch is 
(nand (xor (or (adf0 X (not WWW)) (not WWW))  
(adf0 (adf0 E X) (or E W))) (or (nand (if EEE 
E X) (if EEE W (and EE WWW))) (adf1 (nand W 
E) (xor WWW W) E))).  

The 10-point automatically defined function ADF0 is  
(if (nor (or X X) (nor arg1 arg0)) EEE WWW).  

The 44-point automatically defined function ADF1 is 
(xor W (xor (adf0 (adf0 (if (or (not W) (adf0 
WWW arg2)) (xor (adf0 WWW X) (nor WW WWW)) 
(nand (xor X X) (or X WW))) (nor (or (if arg2 
EEE arg2) (nor arg2 arg1)) (not (xor W E)))) 
(xor W (not arg2))) EEE)). 

This rule scores 824 hits on the 1,000 in-sample fitness 
cases, and scores 82.4% accuracy over 100,000 out-of-
sample cases. It scores 82.326% accuracy over 10,000,000 
additional cases.  

This accuracy is slightly better than the score of the 
GKL rule. We are aware of two human-coded rules that also 
are better than the GKL rule –  the Das rule (1995) and the 
Davis rule (1995) (table 2). We tested the best individual 
evolved by genetic programming against each of the other 
three rules using the same fitness cases (106 107 fitness 
cases).  Table 1 shows the results. As can be seen, the best 
rule evolved by genetic programming is slightly better than 

            
Figure 2  Partial space-time behavior of the best individual of 
generation 6. Black represents 1s, white 0s. 

                
Figure 3 Space-time behavior of the best individual of 
generation 15 on a typical initial state vector. 



 

all the other rules. Non-parametric χ2 tests with one degree 
of freedom were performed;  the probability(p) that the 
pairwise differences between the best rule evolved by 
genetic programming and each of the other three rules were 
attributable to chance was less than 0.001 (i.e. the 
differences are  statistically significant, p < 0.001). 

6. The Best Rule Evolved by Genetic 
Programming 

Why does the best rule evolved by genetic programming 
score better than the previously known (human-written) 
rules?  First, it has more domains than the GKL rule. The 11 
domains of the rule evolved by genetic programming (table 
4) classify the density of 1's into finer levels of gray than do 
the black, white, and checkerboard gray domains of the 
GKL rule (analyzed in detail in Das, Mitchell, and 
Crutchfield 1994). The checkerboard gray domain of the 
GKL rule corresponds to the regular expression (10)* ≈ 
(01)* (Das, Mitchell, and Crutchfield 1994). In addition, 
the rule evolved by genetic programming employs a larger 
number of particles.  The rule evolved by genetic 
programming employs 10 particles that are identical to the 
particles (Das, Mitchell, and Crutchfield 1994) in the GKL 
rule; however, it also discovered at least 40 additional 
particles that involve the new gray domains. All the new 
particles have velocity 0, +3, or -3.  

 
Figure 5  Space-time diagram showing the behavior of the best 
rule evolved by genetic programming. The differences between 
the shades of gray and the area highlighted by the arrow are 
important to convergence. 

More domains would be purely a superficial difference 
if the new domains did not participate in the computation. 
However, the new gray domains are crucial to the 
computations being performed by the genetically evolved 
rule. In the behavior shown in figure 5, for example, the 
new grays are critical to the success of the rule. If all the 
grays acted identically, then the automata would not 
converge in this example. The interactions of the new gray 
domains in the area indicated by the arrow allow the white 
domain to escape and encroach to the left. 

In addition, there are periods (as shown in figure 6) 
during the behavior of the best rule evolved by genetic 
programming where none of the GKL domains exist.  In 
fact, there are periods in which the computation is carried 
out entirely by the new gray domains.  

Even though the new gray domains take part in the 
computation, one might question whether they account for 

         
Figure 4  Space-time behavior of the best individual of 
generation 15 where there are no all black or all white domains 
until the end.  

               
Figure 6  The behavior of the best rule evolved by genetic 
programming on one set of initial states. 



 

the difference in score between the best rule evolved by 
genetic programming and the GKL rule. 

 However, the behavior of both rules shown in figure 7 
indicates that the finer levels of gray do confer an advantage 
on the best rule evolved by genetic programming. On the 
left of the initial state vector, there are two fairly large 
regions of white (0s) separated by a region of black (1s) 
marked in the diagrams by the arrows. Under the GKL rule, 
the black area is eliminated by the two adjacent white 
domains. In the best rule evolved by genetic programming, 
these two white areas are classified as light gray domains 
and the black area becomes a dark gray domain (all shifted 

to the right slightly). Because it can make use of extra 
domains, the best rule evolved by genetic programming 
retains the information that there is a significant density of 
black (1s) in the vicinity of the arrow until additional global 
information can resolve the local dispute.  

The basic mechanism of best rule evolved by genetic 
programming is similar to that of the GKL rule in that there 
is a race among the black, white, and gray domains. Figure 
8 shows a space-time diagram of the behavior of the best 
rule evolved by genetic programming. 

 In the best rule evolved by genetic programming, a 
white domain (W) is separated on the right from a black 
domain (B) by a growing domain of checkerboard gray (6). 
The white domain (W) is separated on the left from the 
black domain (B) by one or both of the separator domains, 
(3) and (8), which are domains whose interactions with 
either white or black have zero velocity. In the case shown 
in figure 8, the (B) domain is larger, and the gray (6) 
domain cuts off the white domain (W), allowing the black 
domain (B) to break through. In this case, the extra gray 
domains of (7) and (9) are not important, but they play a 
role in other fitness cases.  

The mechanism discussed above is sufficient for many 
cases, but fails to handle the case when the black and white 
domains are of approximately equal size. In this 
circumstance, the gray (6) domain cuts off both the white 
and black domains. In the behavior of the GKL rule, when 
there is such a 'tie', after a brief transition, the black and 
white domains seem to 'swap' places, separated by a new 
growing gray domain (figure 9). 

In the behavior of the best rule evolved by genetic 
programming such collisions occur slightly differently and 
yield different behavior after the collision. Under this rule, 
the black (B) and white (W) domains are separated by a 
potentially larger distance by one or both of the separator 

A

 
Figure 7  The space-time behavior of the 
best rule evolved by genetic programming 
(bottom) and the GKL rule (top) on the 
same initial state vector. The ability of the 
evolved rule to classify domains of the input 
as intermediate gray values allows it to 
avoid the 'round-off' error that the GKL 
makes.  

B WW

 
Figure 8  Abstracted Space-Time domain diagram for the 
best rule evolved by genetic programming showing its 
typical behavior. The darkness of each domain 
corresponds to the density of ones.  



 

domains (8) and (3). If there is a tie, new domains emerge 
after the collision instead of the black and white domains, 
and there is no immediate gray separator domain. The new 
gray domains of (7) and (9) appear to represent the 
continuation of the black (B) domain, whereas the (2) and 
(1) domains appear to represent the continuation of the 
white (W) domain. Thus, when there is a tie in the best rule 
evolved by genetic programming; the original domains of 
black and white disappear completely; and the computation 
is carried out entirely by the gray domains. The abstract 
schematic for this interaction is shown in figure 10. 

One problem that a rule utilizing zero-velocity particles 
can have is that the initial state vector could either be in a 
state or relax to a state where convergence does not take 
place. If the automata either starts in or reaches a state 
where the automata is filled with domains that have zero-
velocity interactions with the adjacent patterns, the 
automata cannot converge. Thus, one potential downside to 
the best rule evolved by genetic programming is that 
because it utilizes more domains in its computation that 
have zero-velocity particles, it may be more likely to be 
trapped in a non-convergent steady-state. We found only 
one such input pattern in our testing (see figure 11). Given 
that the best rule evolved by genetic programming scores 
better than any other known rule, however, it is possible 

that the occasional non-convergence represents a strategic 
tradeoff rather than a defect. 

The asymmetry of the best rule evolved by genetic 
programming suggests that there may be other rules that are 
better yet at performing the majority classification task.  

7. Conclusions 
A cellular automata rule for the majority classification task 
was evolved using genetic programming with automatically 
defined functions. This genetically evolved rule has an 
accuracy of 82.326%. This accuracy exceeds that of the 
Gacs-Kurdyumov-Levin (GKL) rule, all other known 
human-written rules, and all other known rules produced by 
previous automated approaches. The best rule evolved by 
genetic programming differs qualitatively from these other 
rules. It utilizes a very fine internal representation of density 
information; it employs a large number of different domains 
and particles; and it uses an intricate set of signals for 
communicating information over large distances in time and 
space.  
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Table 4  The 11 domains of the best rule evolved by genetic programming. 
Regular Domain Domain Name Color 
0* W White 
(000001)*≈(100000)*≈(010000)*≈(001000)*≈(000100)*≈(000010)* 1 Very Light Gray 
(000101)*≈(100010)*≈(010001)*≈(101000)*≈(010100)*≈(001010)* 2 Light Gray 
(001)*≈(100)*≈(010)* 3 Light Gray 
(001101)*≈(100110)*≈(010011)*≈(101001)*≈(110100)*≈(011010)* 4 Gray 
(001011)*≈(100101)*≈(110010)*≈(011001)*≈(101100)*≈(010110)* 5 Gray 
(01)*≈(10)* 6 Gray 
(011101)*≈(101110)*≈(010111)*≈(101011)*≈(110101)*≈(111010)* 7 Dark Gray 
(011)*≈(101)*≈(110)* 8 Dark Gray 
(011111)*≈(101111)*≈(110111)*≈(111011)*≈(111101)*≈(111110)* 9 Very Dark Gray 
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