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ABSTRACT 

Genetic programming was used to 
evolve both the topology and the sizing 
(numerical values) for each component of 
a low-distortion, low-bias 60 decibel (1000-
to-1) amplifier circuit with good frequency 
generalization.  The evolved circuit was 
composed of two types of transistors 
(active elements) as well as resistors and 
capacitors.   
 

1. Introduction 
The problem of circuit synthesis involves designing an 
electrical circuit that satisfies user-specified design goals. A 
complete design of an electrical circuit includes both its 
topology and the sizing of all its components.  The topology 
of a circuit consists of the number of components in the 
circuit, the type of each component, and a list of all the 
connections between the components.  The sizing of a 
circuit consists of the component value(s) of each 
component.  

Evolvable hardware is one approach to automated 
circuit synthesis.  Some of the early pioneering work in this 
field includes that of Higuchi, Niwa, Tanaka, Iba, de Garis, 
and Furuya (1993), Hemmi, Mizoguchi, and Shimohara 
(1994); Mizoguchi, Hemmi, and Shimohara (1994); and the 
work presented at the 1995 workshop on evolvable 
hardware in Lausanne (Sanchez and Tomassini 1996).  

The design of analog circuits and mixed analog-digital 
circuits has not proved to be amenable to automation 
(Rutenbar 1993).  In DARWIN (Kruiskamp and Leenaerts 
1995), a CMOS op amp circuit was evolved using a genetic 
algorithm.  However, the topology of each op amp was one 
of 24 hand-designed topologies. Thompson (1996) used a 
genetic algorithm to evolve a frequency discriminator on a 
Xilinx 6216 reconfigurable processor in analog mode.   

2. Genetic Programming 
Genetic programming is an extension of the genetic 
algorithm described in John Holland's pioneering 

Adaptation in Natural and Artificial Systems (1975). The 
book Genetic Programming: On the Programming of 
Computers by Means of Natural Selection (Koza 1992) 
provides evidence that genetic programming can solve, or 
approximately solve, a variety of problems.  See also Koza 
and Rice 1992. The book Genetic Programming II: 
Automatic Discovery of Reusable Programs (Koza 1994a, 
1994b) describes multi-part programs consisting of a main 
program and one or more reusable, parameterized, 
hierarchically-called subprograms.  See Kinnear 1994, 
Angeline and Kinnear 1996, Koza, Goldberg, Fogel, and 
Riolo 1996 for recent work.  

Gruau's cellular encoding (1996) is an innovative 
technique in which genetic programming is used to 
concurrently evolve the architecture, weights, thresholds, 
and biases of neurons in a neural network.  

3. Evolution of Circuits 
Genetic programming can be applied to circuits if a 
mapping is established between the kind of rooted, point-
labeled trees with ordered branches found in the world of 
genetic programming and the line-labeled cyclic graphs 
encountered in the world of circuits.   

Developmental biology provides the motivation for this 
mapping.  The starting point of the growth process used 
herein is a very simple embryonic electrical circuit.  There 
is a circuit-constructing program tree of the type ordinarily 
used in genetic programming.  An electrical circuit is then 
developed by progressively executing the functions in the 
program tree.  These functions manipulate the embryonic 
circuit (and its successors) so as to produce valid electrical 
circuits at each step.   

The functions are divided into four categories:  
(1) connection-modifying functions that modify the 

topology of circuit (starting with the embryonic circuit), and 
(2) component-creating functions that insert components 

into the topology of the circuit, 
(3) arithmetic-performing functions that appear in 

arithmetic-performing subtrees as argument(s) to the 
component-creating functions and specify the numerical 
value of the component, and  

(4) automatically defined functions in function-defining 
branches.  



 

Each branch of the program tree is created in accordance 
with a constrained syntactic structure.  Branches are 
composed from construction-continuing subtree(s) that 
continue the developmental process and arithmetic-
performing subtree(s) that determine the numerical value of 
the component.  Connection-modifying functions have one 
or more construction-continuing subtrees, but no arithmetic-
performing subtrees.  Component-creating functions have 
one construction-continuing subtree and typically have one 
arithmetic-performing subtree.  This constrained syntactic 
structure is preserved by using structure-preserving 
crossover with point typing (Koza 1994a).   

3.1. The Embryonic Circuit 
The developmental process for converting a program tree 
into an electrical circuit begins with an embryonic circuit. 

Figure 1 shows a one-input, one-output embryonic 
circuit that serves as a test harness for the evolving circuits.  
VSOURCE is the incoming signal.  VOUT is the output 
signal.  There is a fixed 1,000 Ohm load resistor RLOAD 
and a fixed 1,000 Ohm source resistor RSOURCE. 
Because we are evolving an amplifier, there is also a fixed 
1,000,000 Ohm feedback resistor RFEEDBACK, a fixed 
1,000 Ohm balancing source resistor 
RBALANCE_SOURCE, and a fixed 1,000,000 Ohm 
balancing feedback resistor RBALANCE_FEEDBACK.  
This arrangement limits the possible amplification of the 
evolving circuit to the 1000-to-1 ratio (which corresponds 
to 60 dB) of the feedback resistor to the source resistor.     

R FLIP

LIST

C

1

3
42

 
Figure 1  Embryonic circuit.  

There are three modifiable wires Z0, Z1, and Z2 
arranged in a triangle so as to provide connectivity between 
the input, the output, and ground.  All of the above elements 
(except Z0, Z1, and Z2) are fixed and not modified during 
the developmental process.  At the beginning of the 
developmental process, there is a writing head pointing to 
(highlighting) each of the three modifiable wires.  All 
development occurs at wires or components to which a 
writing head points.    

The top part of this figure shows a portion of an 
illustrative circuit-constructing program tree.  It contains a 
resistor-creating R function (labeled 2 and described later), 
a capacitor-creating C function (labeled 3), and a polarity-
reversing FLIP function (labeled 4) and a connective LIST 
function (labeled 1).   The R and C functions cause 
modifiable wires Z0 and Z1 to become a resistor and 

capacitor, respectively; the FLIP function reverses the 
polarity of modifiable wire Z2.   

3.2. Component-Creating Functions 
Each circuit-constructing program tree in the population 
contains component-creating functions and connection-
modifying functions.   

Each component-creating function inserts a component 
into the developing circuit and assigns component value(s) 
to the component.  Each component-creating function has a 
writing head that points to an associated highlighted 
component in the developing circuit and modifies the 
highlighted component in some way.  The construction-
continuing subtree of each component-creating function 
points to a successor function or terminal in the circuit-
constructing program tree.  

The arithmetic-performing subtree of a component-
creating function consists of a composition of arithmetic 
functions (addition and subtraction) and random constants 
(in the range –1.000 to +1.000).  The arithmetic-performing 
subtree specifies the numerical value of a component by 
returning a floating-point value that is, in turn, interpreted, 
in a logarithmic way, as the value for the component in a 
range of 10 orders of magnitude (using a unit of measure 
that is appropriate for the particular type of component 
involved).  The floating-point value is interpreted as the 
value of the component as described in Koza, Andre, 
Bennett, and Keane (1996, 1997) 

 The two-argument resistor-creating R function causes 
the highlighted component to be changed into a resistor.  
The value of the resistor in kilo-Ohms is specified by its 
arithmetic-performing subtree.   

Figure 2 shows a modifiable wire Z0 connecting nodes 
1 and 2 of a partial circuit containing four capacitors.   

 
Figure 2  Modifiable wire Z0.  

Figure 3 shows the result of applying the R function to 
the modifiable wire Z0 of figure 2.  

 
Figure 3  Result of applying the R function.   

Similarly, the two-argument capacitor-creating C 
function causes the highlighted component to be changed 
into a capacitor.  The value of the capacitor in nano Farads 
is specified by its arithmetic-performing subtree.   

Space does not permit a detailed description of each 
function herein. See Koza, Andre, Bennett, and Keane 



 

(1996, 1997), and Koza, Bennett, Andre, and Keane (1996a, 
1996b, 1996c, 1996d) for details.   

The one-argument Q_D_PNP diode-creating function 
causes a diode to be inserted in lieu of the highlighted 
component, where the diode is implemented using a PNP 
transistor whose collector and base are connected to each 
other.  The Q_D_NPN function inserts a diode using an 
NPN transistor in a similar manner.   

There are also six one-argument transistor-creating 
functions (called Q_POS_COLL_NPN, 
Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, 
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, 
Q_NEG_COLL_PNP) that insert a transistor in lieu of the 
highlighted component.  For example, the 
Q_POS_COLL_NPN function inserts a NPN transistor 
whose collector is connected to the positive voltage source.   

The three-argument transistor-creating Q_3_NPN 
function causes an NPN transistor (model Q2N3904) to be 
inserted in place of the highlighted component and one of 
the nodes to which the highlighted component is connected.  
The Q_3_NPN function creates five new nodes and three 
new modifiable wires. There is no writing head on the new 
transistor.  Similarly, the three-argument transistor-creating 
Q_3_PNP function causes a PNP transistor (model 
Q2N3906) to be inserted.   

Figure 4 shows the result of applying the Q_3_NPN0 
function, thereby creating transistor Q6 in lieu of 
modifiable wire Z0 of figure 2.  

 
Figure 4  Result of applying Q_3_NPN0 function.   

3.3. Connection-Modifying Functions 
Each connection-modifying function in a program tree 
points to an associated highlighted component and modifies 
the topology of the developing circuit in some way.    

The one-argument polarity-reversing FLIP function 
attaches the positive end of the highlighted component to 
the node to which its negative end is currently attached and 
vice versa.   After execution of the FLIP function, there is 
one writing head pointing to the component. 

The three-argument SERIES division function creates a 
series composition consisting of the highlighted component, 
a copy of it, one new modifiable wire, and two new nodes 
(each with a writing head).   

Figure 5 illustrates the result of applying the SERIES 
division function to resistor R1 from figure 3.   

 
Figure 5  Result after applying the SERIES function.  

The four-argument PSS and PSL parallel division 
functions create a parallel composition consisting of the 
original highlighted component, a copy of it two new wires, 
and two new nodes.  Figure 6 shows the result of applying 
PSS to the  resistor R1 from figure 3.  

  
Figure 6  Result of the PSS parallel division function.  

There are six three-argument functions (called 
T_GND_0, T_GND_1, T_POS_0,  T_POS_1, T_NEG_0, 
T_NEG_1) that insert two new nodes and two new 
modifiable wires and make a connection to ground, positive 
voltage source, or negative voltage source, respectively.  
Figure 7 shows the T_GND_0 function connecting resistor 
R1 to ground.  

 
Figure 7  Result of applying the T_GND_0 function. 

The three-argument PAIR_CONNECT_0 and 
PAIR_CONNECT_1 functions enable distant parts of a 
circuit to be connected together.  The first PAIR_CONNECT 
to occur in the development of a circuit creates two new 
wires, two new nodes, and one temporary port.  The next 
PAIR_CONNECT to occur (whether PAIR_CONNECT_0 or 
PAIR_CONNECT_1) creates two new wires and one new 
node, connects the temporary port (TEMP) to the end of one 
of these new wires, and then removes the temporary port.   

The one-argument NOP function has no effect on the 
highlighted component; however, it delays activity on the 
developmental path on which it appears in relation to other 
developmental paths in the overall program tree.   

The zero-argument END function causes the highlighted 
component to lose its writing head.  The END function 



 

causes its writing head to be lost – thereby ending that 
particular developmental path.   

The zero-argument SAFE_CUT function causes the 
highlighted component to be removed from the circuit 
provided that the degree of the nodes at both ends of the 
highlighted component is three (i.e., no dangling 
components or wires are created).   

4. Preparatory Steps 
Our goal in this paper is to evolve a design a 60 decibel 
amplifier with low distortion and low bias. Before applying 
genetic programming to circuit synthesis, the user must 
perform seven major preparatory steps, namely  

(1) identifying the embryonic circuit that is suitable for 
the problem,  (2) determining the architecture of the overall 
circuit-constructing program trees, (3) identifying the 
terminals of the to-be-evolved programs, (4) identifying the 
primitive functions contained in the to-be-evolved 
programs, (5) creating the fitness measure, (6) choosing 
certain control parameters (notably population size and the 
maximum number of generations to be run), and (7) 
determining the termination criterion and method of result 
designation.  The feedback embryo of figure 1 is suitable 
for this problem.  

Since the embryonic circuit has three writing heads – 
one associated with each of the result-producing branches – 
there are three result-producing branches (called RPB0, 
RPB1, and RPB2) in each program tree.  We decided to 
include two one-argument automatically defined functions 
(called ADF0 and ADF1) in each program tree and that there 
would be no hierarchical references among the 
automatically defined functions.  Thus, there are two 
function-defining branches in each program tree.  
Consequently, the architecture of each overall program tree 
in the population consists of a total of five branches (i.e., 
two function-defining branches and three result-producing 
branches) joined by a LIST function.  

The terminal sets are identical for all three result-
producing branches of the program trees.  The function sets 
are identical for all three result-producing branches.  For the 
three result-producing branches, the function set, Fccs-rpb, 
for each construction-continuing subtree is 
Fccs-rpb = {ADF0, ADF1, R, C, SERIES, PSS, PSL, 

FLIP, NOP, T_GND_0, T_GND_1, T_POS_0,  
T_POS_1, T_NEG_0, T_NEG_1, 
PAIR_CONNECT_0, PAIR_CONNECT_1, 
Q_D_NPN, Q_D_PNP, Q_3_NPN0, ..., 
Q_3_NPN11, Q_3_PNP0, ..., Q_3_PNP11, 
Q_POS_COLL_NPN, Q_GND_EMIT_NPN, 
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, 
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP}.  

For the three result-producing branches, the terminal set, 
Tccs-rpb, for each construction-continuing subtree consists 
of 
Tccs-rpb = {END, SAFE_CUT}.   

For the function-defining branches (automatically 
defined functions), the function set, Fccs-adf, for each 
construction-continuing subtree is 

Fccs-adf = Fccs-rpb  –  {ADF0, ADF1}. 
The terminal sets are identical for both function-defining 

branches (automatically defined functions) of the program 
trees.  The function sets are identical for both function-
defining branches (automatically defined functions).  For 
the function-defining branches, the terminal set, Tccs-adf, 
for each construction-continuing subtree is 
Tccs-adf = Tccs-adf ≈  {ARG0},   
where ARG0 is the dummy variable (formal parameter) of 
the automatically defined function.  

The terminal set, Taps, for each arithmetic-performing 
subtree consists of 
Taps = {←}, 
where ← represents floating-point random constants from –
1.0 to +1.0.   

The function set, Faps, for each arithmetic-performing 
subtree is, 
Faps = {+, -}. 
each taking two arguments.  

The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with its 
execution.  This execution applies the functions in the 
program tree to the embryonic circuit, thereby developing 
the embryonic circuit into a fully developed circuit.  A 
netlist describing the fully developed circuit is then created.  
The netlist identifies each component of the circuit, the 
nodes to which that component is connected, and the value 
of that component.  Each circuit is then simulated to 
determine its behavior.  The 217,000-line SPICE simulator 
was modified to run as a submodule within the genetic 
programming system.  SPICE (Simulation Program with 
Integrated Circuit Emphasis) is a large simulation program 
written at the University of California (Quarles et al. 1994).  

An amplifier can be viewed in terms of its response to a 
DC input. An ideal amplifier circuit would receive a DC 
input, invert it, and multiply it by the amplification factor.  
A circuit is flawed to the extent that it does not achieve the 
desired amplification; to the extent that the output signal is 
not centered on 0 volts (i. e., it has a bias); and to the extent 
that the DC response of the circuit at several different DC 
input voltages is not linear.   

Thus, for this problem, we used a fitness measure based 
on SPICE's DC sweep.  The DC sweep analysis measures 
the DC response of the circuit at several different DC input 
voltages.  The circuits were analyzed with a 5 point DC 
sweep ranging from –10 millvolts to +10 MV, with input 
points at –10 MV, –5 MV, 0 MV, +5 MV, and +10 MV.  
SPICE produced the circuit's output for each of these input 
values.   

Fitness is based on the four penalties derived from these 
five DC output values It is the sum of the amplification 
penalty, the bias penalty, and the two non-linearity 
penalties.  

First, the amplification factor of the circuit is measured 
using the overall value for gain of the circuit as measured 
by the slope of the straight line between the output for –10 
MV and the output for +10 MV (i.e., between the outputs 



 

for the endpoints of the DC sweep). If the amplification 
factor is less than the target (which is 60 dB for this 
problem), there is a penalty equal to the shortfall in 
amplification.  

Second, the bias is computed using the DC output 
associated with a DC input of 0 volts.  There is a penalty 
equal to the bias times a weight (1.0 for this problem).   

Finally, the linearity is measured by the deviation 
between the slope of each of two shorter lines and the 
overall amplification factor of the circuit.  The first shorter 
line segment connects the output value associated with an 
input of –10 MV and the output value for –5 MV.  The 
second shorter line segment connects the output value for 
+5 MV and the output for +10 MV.  There is a penalty for 
each of these shorter line segments equal to the absolute 
value of the difference in slope between the respective 
shorter line segment and the slope of the straight line 
between the output for –10 MV and the output for +10 MV. 

 Many of the circuits that are randomly created in the 
initial random population and that are subsequently created 
by the crossover and mutation operations are so bizarre that 
they cannot be simulated by SPICE.  Such circuits are 
assigned a high penalty value of fitness (108).   

The population size, M, was 640,000.  The crossover 
percentage was 89%; the reproduction percentage was 10%; 
and the mutation percentage was 1%.  A maximum size of 
300 points was established for each of the branches in each 
overall program.  The other minor parameters were the 
default values in Koza 1994a (appendix D).   

This problem was run on a medium-grained parallel 
Parsytec computer system consisting of 64 80 MHz Power 
PC 601 processors arranged in a toroidal mesh with a host 
PC Pentium type computer.  The distributed genetic 
algorithm was used with a population size of Q =  10,000 at 
each of the D = 64 demes.  On each generation, four 
boatloads of emigrants, each consisting of B = 2% (the 
migration rate) of the node's subpopulation (selected on the 
basis of fitness) were dispatched to the four toroidally 
adjacent processing nodes.  See Andre and Koza 1996.  

5. Results 
The best circuit (figure 11) from generation 0 achieves a 
fitness of 986.1 and has nine transistors, three capacitors, 
and two resistors (and five resistors of the embryo).  

About 45% of the circuits of generation 0 cannot be 
simulated by SPICE.  However, the percentage of 
unsimulatable programs drops to 8% by generation 1.  
Moreover, this percentage does not exceed 2% after 
generation 16 and does not exceed 1% after generation 58.   

The best circuit (figure 12) from generation 49 achieves 
a fitness of 404.0 and has 16 transistors, no capacitors, and 
four resistors (and five resistors of the feedback embryo).  

The best circuit (figure 13) from generation 109 has 22 
transistors, no capacitors, and 11 resistors (and five resistors 
of the feedback embryo).  It achieves a fitness of 0.178.  Its 
circuit-constructing program tree has 40, 98, and 27 points, 
respectively, in its first, second, and third result-producing 
branches and 33 and 144 points, respectively, in its first and 
second automatically defined functions.  

The amplification of an op amp can be measured from 
the DC sweep (figure 8). The amplification in decibels is 
the 20 times the common logarithm of the ratio of the 
change in the output divided by the change of the input (i.e., 
20 millivolts here) . The amplification is 60 dB here (i.e., 
1,000-to-1 ratio).  There is a bias of 0.2 volts.  Notice the 
linearity of the DC sweep in this figure.   

 
Figure 8  DC sweep of best circuit from generation 109. 

Figure 9 shows the time domain behavior of the best 
circuit from generation 109. The vertical axis is voltage 
from –10 volts to +10 volts.  The input is the 10 millivolt 
sinusoidal signal; however, this sinusoidal input signal 
appears as a nearly straight line because of the scale of this 
figure.  At 1,000 Hz, the amplification is 59.7 dB; the bias is 
0.18 volts; and the distortion is very low (0.17%).   

 
Figure 9  Time domain behavior of best of generation 
109. 

The amplification of an op amp can also be measured 
from an AC sweep.  Figure 10 shows that the amplification 
at 1,000 Hz is 59.7 dB. The amplification is within 3 dB of 
the nominal (flatband) level of 60 dB up to 79, 333 Hz.  

 
Figure 10  AC sweep for best circuit from generation 
109. 

In summary, the best circuit of generation 109 achieves 
60 dB amplification (based on the DC sweep), has almost 



 

no bias or distortion, and generalizes well in the frequency 
domain.   

We then tested whether the genetically evolved 22-
transistor best circuit from generation 109 provided more 
than 60 dB amplification when embedded in a test harness 
that is appropriate for testing application of up to 80 dB.  
The amplification is 80.15 dB when SPICE's DC sweep is 
applied. The amplification is 77.79 dB at 1,000 Hz in the 
time domain.  When the AC sweep is applied, the circuit 
delivers over 80 dB of amplification from 1 Hz to 36 Hz; 
the circuit delivers over 77.86 dB from 36 Hz to 55,000 Hz.    

6. Conclusion 
Genetic programming successfully evolved a 22-transistor 
amplifier that delivers a gain of 60 dB amplification (based 
on the DC sweep), that has almost no bias or distortion, and 
that generalizes well in the frequency domain.  Moreover, 
this genetically evolved 60 dB amplifier generalizes in such 
a way as to deliver 80 dB of amplification (as measured by 
the DC sweep) when it is embedded in a test harness that 
allows 80 dB of amplification.   
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Figure 11  Best circuit from generation 0.  

 

 
Figure 12  Best circuit from generation 49.  

 



 

 
Figure 13  Best circuit from generation 109.   

 


