
Evolution of a Low-Distortion, Low-Bias 60 Decibel Op Amp
with Good Frequency Generalization using Genetic

Programming

John R. Koza
Computer Science Dept.

258 Gates Building
Stanford University

Stanford, California 94305
koza@cs.stanford.edu

David Andre
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
andre@flamingo.stanford.ed

u

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
fhb3@slip.net

Martin A. Keane
Econometrics Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

ABSTRACT

Genetic programming was used to
evolve both the topology and the sizing
(numerical values) for each component of
a low-distortion, low-bias 60 decibel (1000-
to-1) amplifier circuit with good frequency
generalization. The evolved circuit was
composed of two types of transistors
(active elements) as well as resistors and
capacitors.

1. Introduction
The problem of circuit synthesis involves designing an
electrical circuit that satisfies user-specified design goals. A
complete design of an electrical circuit includes both its
topology and the sizing of all its components. The topology
of a circuit consists of the number of components in the
circuit, the type of each component, and a list of all the
connections between the components. The sizing of a
circuit consists of the component value(s) of each
component.

Evolvable hardware is one approach to automated
circuit synthesis. Some of the early pioneering work in this
field includes that of Higuchi, Niwa, Tanaka, Iba, de Garis,
and Furuya (1993), Hemmi, Mizoguchi, and Shimohara
(1994); Mizoguchi, Hemmi, and Shimohara (1994); and the
work presented at the 1995 workshop on evolvable
hardware in Lausanne (Sanchez and Tomassini 1996).

The design of analog circuits and mixed analog-digital
circuits has not proved to be amenable to automation
(Rutenbar 1993). In DARWIN (Kruiskamp and Leenaerts
1995), a CMOS op amp circuit was evolved using a genetic
algorithm. However, the topology of each op amp was one
of 24 hand-designed topologies. Thompson (1996) used a
genetic algorithm to evolve a frequency discriminator on a
Xilinx 6216 reconfigurable processor in analog mode.

2. Genetic Programming
Genetic programming is an extension of the genetic
algorithm described in John Holland's pioneering

Adaptation in Natural and Artificial Systems (1975). The
book Genetic Programming: On the Programming of
Computers by Means of Natural Selection (Koza 1992)
provides evidence that genetic programming can solve, or
approximately solve, a variety of problems. See also Koza
and Rice 1992. The book Genetic Programming II:
Automatic Discovery of Reusable Programs (Koza 1994a,
1994b) describes multi-part programs consisting of a main
program and one or more reusable, parameterized,
hierarchically-called subprograms. See Kinnear 1994,
Angeline and Kinnear 1996, Koza, Goldberg, Fogel, and
Riolo 1996 for recent work.

Gruau's cellular encoding (1996) is an innovative
technique in which genetic programming is used to
concurrently evolve the architecture, weights, thresholds,
and biases of neurons in a neural network.

3. Evolution of Circuits
Genetic programming can be applied to circuits if a
mapping is established between the kind of rooted, point-
labeled trees with ordered branches found in the world of
genetic programming and the line-labeled cyclic graphs
encountered in the world of circuits.

Developmental biology provides the motivation for this
mapping. The starting point of the growth process used
herein is a very simple embryonic electrical circuit. There
is a circuit-constructing program tree of the type ordinarily
used in genetic programming. An electrical circuit is then
developed by progressively executing the functions in the
program tree. These functions manipulate the embryonic
circuit (and its successors) so as to produce valid electrical
circuits at each step.

The functions are divided into four categories:
(1) connection-modifying functions that modify the

topology of circuit (starting with the embryonic circuit), and
(2) component-creating functions that insert components

into the topology of the circuit,
(3) arithmetic-performing functions that appear in

arithmetic-performing subtrees as argument(s) to the
component-creating functions and specify the numerical
value of the component, and

(4) automatically defined functions in function-defining
branches.

Each branch of the program tree is created in accordance
with a constrained syntactic structure. Branches are
composed from construction-continuing subtree(s) that
continue the developmental process and arithmetic-
performing subtree(s) that determine the numerical value of
the component. Connection-modifying functions have one
or more construction-continuing subtrees, but no arithmetic-
performing subtrees. Component-creating functions have
one construction-continuing subtree and typically have one
arithmetic-performing subtree. This constrained syntactic
structure is preserved by using structure-preserving
crossover with point typing (Koza 1994a).

3.1. The Embryonic Circuit
The developmental process for converting a program tree
into an electrical circuit begins with an embryonic circuit.

Figure 1 shows a one-input, one-output embryonic
circuit that serves as a test harness for the evolving circuits.
VSOURCE is the incoming signal. VOUT is the output
signal. There is a fixed 1,000 Ohm load resistor RLOAD
and a fixed 1,000 Ohm source resistor RSOURCE.
Because we are evolving an amplifier, there is also a fixed
1,000,000 Ohm feedback resistor RFEEDBACK, a fixed
1,000 Ohm balancing source resistor
RBALANCE_SOURCE, and a fixed 1,000,000 Ohm
balancing feedback resistor RBALANCE_FEEDBACK.
This arrangement limits the possible amplification of the
evolving circuit to the 1000-to-1 ratio (which corresponds
to 60 dB) of the feedback resistor to the source resistor.

R FLIP

LIST

C

1

3
42

Figure 1 Embryonic circuit.

There are three modifiable wires Z0, Z1, and Z2
arranged in a triangle so as to provide connectivity between
the input, the output, and ground. All of the above elements
(except Z0, Z1, and Z2) are fixed and not modified during
the developmental process. At the beginning of the
developmental process, there is a writing head pointing to
(highlighting) each of the three modifiable wires. All
development occurs at wires or components to which a
writing head points.

The top part of this figure shows a portion of an
illustrative circuit-constructing program tree. It contains a
resistor-creating R function (labeled 2 and described later),
a capacitor-creating C function (labeled 3), and a polarity-
reversing FLIP function (labeled 4) and a connective LIST
function (labeled 1). The R and C functions cause
modifiable wires Z0 and Z1 to become a resistor and

capacitor, respectively; the FLIP function reverses the
polarity of modifiable wire Z2.

3.2. Component-Creating Functions
Each circuit-constructing program tree in the population
contains component-creating functions and connection-
modifying functions.

Each component-creating function inserts a component
into the developing circuit and assigns component value(s)
to the component. Each component-creating function has a
writing head that points to an associated highlighted
component in the developing circuit and modifies the
highlighted component in some way. The construction-
continuing subtree of each component-creating function
points to a successor function or terminal in the circuit-
constructing program tree.

The arithmetic-performing subtree of a component-
creating function consists of a composition of arithmetic
functions (addition and subtraction) and random constants
(in the range –1.000 to +1.000). The arithmetic-performing
subtree specifies the numerical value of a component by
returning a floating-point value that is, in turn, interpreted,
in a logarithmic way, as the value for the component in a
range of 10 orders of magnitude (using a unit of measure
that is appropriate for the particular type of component
involved). The floating-point value is interpreted as the
value of the component as described in Koza, Andre,
Bennett, and Keane (1996, 1997)

 The two-argument resistor-creating R function causes
the highlighted component to be changed into a resistor.
The value of the resistor in kilo-Ohms is specified by its
arithmetic-performing subtree.

Figure 2 shows a modifiable wire Z0 connecting nodes
1 and 2 of a partial circuit containing four capacitors.

Figure 2 Modifiable wire Z0.

Figure 3 shows the result of applying the R function to
the modifiable wire Z0 of figure 2.

Figure 3 Result of applying the R function.

Similarly, the two-argument capacitor-creating C
function causes the highlighted component to be changed
into a capacitor. The value of the capacitor in nano Farads
is specified by its arithmetic-performing subtree.

Space does not permit a detailed description of each
function herein. See Koza, Andre, Bennett, and Keane

(1996, 1997), and Koza, Bennett, Andre, and Keane (1996a,
1996b, 1996c, 1996d) for details.

The one-argument Q_D_PNP diode-creating function
causes a diode to be inserted in lieu of the highlighted
component, where the diode is implemented using a PNP
transistor whose collector and base are connected to each
other. The Q_D_NPN function inserts a diode using an
NPN transistor in a similar manner.

There are also six one-argument transistor-creating
functions (called Q_POS_COLL_NPN,
Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN,
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP,
Q_NEG_COLL_PNP) that insert a transistor in lieu of the
highlighted component. For example, the
Q_POS_COLL_NPN function inserts a NPN transistor
whose collector is connected to the positive voltage source.

The three-argument transistor-creating Q_3_NPN
function causes an NPN transistor (model Q2N3904) to be
inserted in place of the highlighted component and one of
the nodes to which the highlighted component is connected.
The Q_3_NPN function creates five new nodes and three
new modifiable wires. There is no writing head on the new
transistor. Similarly, the three-argument transistor-creating
Q_3_PNP function causes a PNP transistor (model
Q2N3906) to be inserted.

Figure 4 shows the result of applying the Q_3_NPN0
function, thereby creating transistor Q6 in lieu of
modifiable wire Z0 of figure 2.

Figure 4 Result of applying Q_3_NPN0 function.

3.3. Connection-Modifying Functions
Each connection-modifying function in a program tree
points to an associated highlighted component and modifies
the topology of the developing circuit in some way.

The one-argument polarity-reversing FLIP function
attaches the positive end of the highlighted component to
the node to which its negative end is currently attached and
vice versa. After execution of the FLIP function, there is
one writing head pointing to the component.

The three-argument SERIES division function creates a
series composition consisting of the highlighted component,
a copy of it, one new modifiable wire, and two new nodes
(each with a writing head).

Figure 5 illustrates the result of applying the SERIES
division function to resistor R1 from figure 3.

Figure 5 Result after applying the SERIES function.

The four-argument PSS and PSL parallel division
functions create a parallel composition consisting of the
original highlighted component, a copy of it two new wires,
and two new nodes. Figure 6 shows the result of applying
PSS to the resistor R1 from figure 3.

Figure 6 Result of the PSS parallel division function.

There are six three-argument functions (called
T_GND_0, T_GND_1, T_POS_0, T_POS_1, T_NEG_0,
T_NEG_1) that insert two new nodes and two new
modifiable wires and make a connection to ground, positive
voltage source, or negative voltage source, respectively.
Figure 7 shows the T_GND_0 function connecting resistor
R1 to ground.

Figure 7 Result of applying the T_GND_0 function.

The three-argument PAIR_CONNECT_0 and
PAIR_CONNECT_1 functions enable distant parts of a
circuit to be connected together. The first PAIR_CONNECT
to occur in the development of a circuit creates two new
wires, two new nodes, and one temporary port. The next
PAIR_CONNECT to occur (whether PAIR_CONNECT_0 or
PAIR_CONNECT_1) creates two new wires and one new
node, connects the temporary port (TEMP) to the end of one
of these new wires, and then removes the temporary port.

The one-argument NOP function has no effect on the
highlighted component; however, it delays activity on the
developmental path on which it appears in relation to other
developmental paths in the overall program tree.

The zero-argument END function causes the highlighted
component to lose its writing head. The END function

causes its writing head to be lost – thereby ending that
particular developmental path.

The zero-argument SAFE_CUT function causes the
highlighted component to be removed from the circuit
provided that the degree of the nodes at both ends of the
highlighted component is three (i.e., no dangling
components or wires are created).

4. Preparatory Steps
Our goal in this paper is to evolve a design a 60 decibel
amplifier with low distortion and low bias. Before applying
genetic programming to circuit synthesis, the user must
perform seven major preparatory steps, namely

(1) identifying the embryonic circuit that is suitable for
the problem, (2) determining the architecture of the overall
circuit-constructing program trees, (3) identifying the
terminals of the to-be-evolved programs, (4) identifying the
primitive functions contained in the to-be-evolved
programs, (5) creating the fitness measure, (6) choosing
certain control parameters (notably population size and the
maximum number of generations to be run), and (7)
determining the termination criterion and method of result
designation. The feedback embryo of figure 1 is suitable
for this problem.

Since the embryonic circuit has three writing heads –
one associated with each of the result-producing branches –
there are three result-producing branches (called RPB0,
RPB1, and RPB2) in each program tree. We decided to
include two one-argument automatically defined functions
(called ADF0 and ADF1) in each program tree and that there
would be no hierarchical references among the
automatically defined functions. Thus, there are two
function-defining branches in each program tree.
Consequently, the architecture of each overall program tree
in the population consists of a total of five branches (i.e.,
two function-defining branches and three result-producing
branches) joined by a LIST function.

The terminal sets are identical for all three result-
producing branches of the program trees. The function sets
are identical for all three result-producing branches. For the
three result-producing branches, the function set, Fccs-rpb,
for each construction-continuing subtree is
Fccs-rpb = {ADF0, ADF1, R, C, SERIES, PSS, PSL,

FLIP, NOP, T_GND_0, T_GND_1, T_POS_0,
T_POS_1, T_NEG_0, T_NEG_1,
PAIR_CONNECT_0, PAIR_CONNECT_1,
Q_D_NPN, Q_D_PNP, Q_3_NPN0, ...,
Q_3_NPN11, Q_3_PNP0, ..., Q_3_PNP11,
Q_POS_COLL_NPN, Q_GND_EMIT_NPN,
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP,
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP}.

For the three result-producing branches, the terminal set,
Tccs-rpb, for each construction-continuing subtree consists
of
Tccs-rpb = {END, SAFE_CUT}.

For the function-defining branches (automatically
defined functions), the function set, Fccs-adf, for each
construction-continuing subtree is

Fccs-adf = Fccs-rpb – {ADF0, ADF1}.
The terminal sets are identical for both function-defining

branches (automatically defined functions) of the program
trees. The function sets are identical for both function-
defining branches (automatically defined functions). For
the function-defining branches, the terminal set, Tccs-adf,
for each construction-continuing subtree is
Tccs-adf = Tccs-adf ≈ {ARG0},
where ARG0 is the dummy variable (formal parameter) of
the automatically defined function.

The terminal set, Taps, for each arithmetic-performing
subtree consists of
Taps = {←},
where ← represents floating-point random constants from –
1.0 to +1.0.

The function set, Faps, for each arithmetic-performing
subtree is,
Faps = {+, -}.
each taking two arguments.

The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with its
execution. This execution applies the functions in the
program tree to the embryonic circuit, thereby developing
the embryonic circuit into a fully developed circuit. A
netlist describing the fully developed circuit is then created.
The netlist identifies each component of the circuit, the
nodes to which that component is connected, and the value
of that component. Each circuit is then simulated to
determine its behavior. The 217,000-line SPICE simulator
was modified to run as a submodule within the genetic
programming system. SPICE (Simulation Program with
Integrated Circuit Emphasis) is a large simulation program
written at the University of California (Quarles et al. 1994).

An amplifier can be viewed in terms of its response to a
DC input. An ideal amplifier circuit would receive a DC
input, invert it, and multiply it by the amplification factor.
A circuit is flawed to the extent that it does not achieve the
desired amplification; to the extent that the output signal is
not centered on 0 volts (i. e., it has a bias); and to the extent
that the DC response of the circuit at several different DC
input voltages is not linear.

Thus, for this problem, we used a fitness measure based
on SPICE's DC sweep. The DC sweep analysis measures
the DC response of the circuit at several different DC input
voltages. The circuits were analyzed with a 5 point DC
sweep ranging from –10 millvolts to +10 MV, with input
points at –10 MV, –5 MV, 0 MV, +5 MV, and +10 MV.
SPICE produced the circuit's output for each of these input
values.

Fitness is based on the four penalties derived from these
five DC output values It is the sum of the amplification
penalty, the bias penalty, and the two non-linearity
penalties.

First, the amplification factor of the circuit is measured
using the overall value for gain of the circuit as measured
by the slope of the straight line between the output for –10
MV and the output for +10 MV (i.e., between the outputs

for the endpoints of the DC sweep). If the amplification
factor is less than the target (which is 60 dB for this
problem), there is a penalty equal to the shortfall in
amplification.

Second, the bias is computed using the DC output
associated with a DC input of 0 volts. There is a penalty
equal to the bias times a weight (1.0 for this problem).

Finally, the linearity is measured by the deviation
between the slope of each of two shorter lines and the
overall amplification factor of the circuit. The first shorter
line segment connects the output value associated with an
input of –10 MV and the output value for –5 MV. The
second shorter line segment connects the output value for
+5 MV and the output for +10 MV. There is a penalty for
each of these shorter line segments equal to the absolute
value of the difference in slope between the respective
shorter line segment and the slope of the straight line
between the output for –10 MV and the output for +10 MV.

 Many of the circuits that are randomly created in the
initial random population and that are subsequently created
by the crossover and mutation operations are so bizarre that
they cannot be simulated by SPICE. Such circuits are
assigned a high penalty value of fitness (108).

The population size, M, was 640,000. The crossover
percentage was 89%; the reproduction percentage was 10%;
and the mutation percentage was 1%. A maximum size of
300 points was established for each of the branches in each
overall program. The other minor parameters were the
default values in Koza 1994a (appendix D).

This problem was run on a medium-grained parallel
Parsytec computer system consisting of 64 80 MHz Power
PC 601 processors arranged in a toroidal mesh with a host
PC Pentium type computer. The distributed genetic
algorithm was used with a population size of Q = 10,000 at
each of the D = 64 demes. On each generation, four
boatloads of emigrants, each consisting of B = 2% (the
migration rate) of the node's subpopulation (selected on the
basis of fitness) were dispatched to the four toroidally
adjacent processing nodes. See Andre and Koza 1996.

5. Results
The best circuit (figure 11) from generation 0 achieves a
fitness of 986.1 and has nine transistors, three capacitors,
and two resistors (and five resistors of the embryo).

About 45% of the circuits of generation 0 cannot be
simulated by SPICE. However, the percentage of
unsimulatable programs drops to 8% by generation 1.
Moreover, this percentage does not exceed 2% after
generation 16 and does not exceed 1% after generation 58.

The best circuit (figure 12) from generation 49 achieves
a fitness of 404.0 and has 16 transistors, no capacitors, and
four resistors (and five resistors of the feedback embryo).

The best circuit (figure 13) from generation 109 has 22
transistors, no capacitors, and 11 resistors (and five resistors
of the feedback embryo). It achieves a fitness of 0.178. Its
circuit-constructing program tree has 40, 98, and 27 points,
respectively, in its first, second, and third result-producing
branches and 33 and 144 points, respectively, in its first and
second automatically defined functions.

The amplification of an op amp can be measured from
the DC sweep (figure 8). The amplification in decibels is
the 20 times the common logarithm of the ratio of the
change in the output divided by the change of the input (i.e.,
20 millivolts here) . The amplification is 60 dB here (i.e.,
1,000-to-1 ratio). There is a bias of 0.2 volts. Notice the
linearity of the DC sweep in this figure.

Figure 8 DC sweep of best circuit from generation 109.

Figure 9 shows the time domain behavior of the best
circuit from generation 109. The vertical axis is voltage
from –10 volts to +10 volts. The input is the 10 millivolt
sinusoidal signal; however, this sinusoidal input signal
appears as a nearly straight line because of the scale of this
figure. At 1,000 Hz, the amplification is 59.7 dB; the bias is
0.18 volts; and the distortion is very low (0.17%).

Figure 9 Time domain behavior of best of generation
109.

The amplification of an op amp can also be measured
from an AC sweep. Figure 10 shows that the amplification
at 1,000 Hz is 59.7 dB. The amplification is within 3 dB of
the nominal (flatband) level of 60 dB up to 79, 333 Hz.

Figure 10 AC sweep for best circuit from generation
109.

In summary, the best circuit of generation 109 achieves
60 dB amplification (based on the DC sweep), has almost

no bias or distortion, and generalizes well in the frequency
domain.

We then tested whether the genetically evolved 22-
transistor best circuit from generation 109 provided more
than 60 dB amplification when embedded in a test harness
that is appropriate for testing application of up to 80 dB.
The amplification is 80.15 dB when SPICE's DC sweep is
applied. The amplification is 77.79 dB at 1,000 Hz in the
time domain. When the AC sweep is applied, the circuit
delivers over 80 dB of amplification from 1 Hz to 36 Hz;
the circuit delivers over 77.86 dB from 36 Hz to 55,000 Hz.

6. Conclusion
Genetic programming successfully evolved a 22-transistor
amplifier that delivers a gain of 60 dB amplification (based
on the DC sweep), that has almost no bias or distortion, and
that generalizes well in the frequency domain. Moreover,
this genetically evolved 60 dB amplifier generalizes in such
a way as to deliver 80 dB of amplification (as measured by
the DC sweep) when it is embedded in a test harness that
allows 80 dB of amplification.

Acknowledgments
Simon Handley made helpful comments on various drafts of
this paper.

References
Andre, David and Koza, John R. 1996. Parallel genetic

programming: A scalable implementation using the
transputer architecture. In Angeline, P. J. and Kinnear, K.
E. Jr. (editors). 1996. Advances in Genetic Programming
2. Cambridge: MIT Press.

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors).
1996. Advances in Genetic Programming 2. Cambridge,
MA: The MIT Press.

Gruau, Frederic. 1996. Artificial cellular development in
optimization and compilation. In Sanchez, Eduardo and
Tomassini, Marco (editors). 1996. Towards Evolvable
Hardware. Lecture Notes in Computer Science, Volume
1062. Berlin: Springer-Verlag. Pages 48 – 75.

Hemmi, Hitoshi, Mizoguchi, Jun'ichi, and Shimohara,
Katsunori. 1994. Development and evolution of
hardware behaviors. In Brooks, R. and Maes, P.
(editors). Artificial Life IV: Proceedings of the Fourth
International Workshop on the Synthesis and Simulation
of Living Systems. Cambridge, MA: MIT Press. Pages
371–376.

Higuchi, T., Niwa, T., Tanaka, H., Iba, H., de Garis, H. and
Furuya, T. 1993. Evolvable hardware – Genetic-based
generation of electric circuitry at gate and hardware
description language (HDL) levels. Electrotechnical
Laboratory technical report 93-4, Tsukuba, Ibaraki,
Japan.

Holland, John H. 1975. Adaptation in Natural and
Artificial System. Ann Arbor, MI: University of
Michigan Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic
Programming. Cambridge, MA: The MIT Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press.

Koza, John R., Andre, David, Bennett III, Forrest H, and
Keane, Martin A. 1996. Use of automatically defined
functions and architecture-altering operations in
automated circuit synthesis using genetic programming.
In Koza, John R., Goldberg, David E., Fogel, David B.,
and Riolo, Rick L. (editors). 1996. Genetic
Programming 1996: Proceedings of the First Annual
Conference, July 28-31, 1996, Stanford University.
Cambridge, MA: The MIT Press.

Koza, John R., Andre, David, Bennett III, Forrest H, and
Keane, Martin A. 1997. Genetic Programming III. In
preparation.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996a. Toward evolution of electronic
animals using genetic programming. Artificial Life V:
Proceedings of the Fifth International Workshop on the
Synthesis and Simulation of Living Systems. Cambridge,
MA: The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996b. Four problems for which a
computer program evolved by genetic programming is
competitive with human performance. Proceedings of
the 1996 IEEE International Conference on Evolutionary
Computation. IEEE Press. Pages 1–10.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996c. Automated design of both the
topology and sizing of analog electrical circuits using
genetic programming. In Gero, John S. and Sudweeks,
Fay (editors). Artificial Intelligence in Design '96.
Dordrecht: Kluwer. 151-170.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996d. Automated WYWIWYG
design of both the topology and component values of
analog electrical circuits using genetic programming. In
Koza, John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). 1996. Genetic Programming
1996: Proceedings of the First Annual Conference, July
28-31, 1996, Stanford University. Cambridge, MA: The
MIT Press.

Koza, John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). 1996. Genetic Programming
1996: Proceedings of the First Annual Conference, July
28-31, 1996, Stanford University. Cambridge, MA: The
MIT Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

Kruiskamp, Wim and Leenaerts, Domine. 1995. DARWIN:
CMOS opamp synthesis by means of a genetic algorithm.
Proceedings of the 32nd Design Automation Conference.
New York, NY: Association for Computing Machinery.
Pages 433–438.

Mizoguchi, Junichi, Hemmi, Hitoshi, and Shimohara,
Katsunori. 1994. Production genetic algorithms for
automated hardware design through an evolutionary
process. Proceedings of the First IEEE Conference on
Evolutionary Computation. IEEE Press. Vol. I. 661-664.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and
Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version 3F5
User's Manual. Department of Electrical Engineering
and Computer Science, University of California,
Berkeley, CA. March 1994.

Rutenbar, R. A. 1993. Analog design automation: Where
are we? Where are we going? Proceedings of the l5th
IEEE CICC. New York: IEEE Press. 13.1.1-13.1.8.

Sanchez, Eduardo and Tomassini, Marco (editors). 1996.
Towards Evolvable Hardware. Lecture Notes in
Computer Science, Volume 1062. Berlin: Springer-
Verlag.

Thompson, Adrian. 1996. Silicon evolution. In Koza,
John R., Goldberg, David E., Fogel, David B., and Riolo,
Rick L. (editors). 1996. Genetic Programming 1996:
Proceedings of the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA: MIT Press.

Figure 11 Best circuit from generation 0.

Figure 12 Best circuit from generation 49.

Figure 13 Best circuit from generation 109.

