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ABSTRACT 

This paper describes an automated 
process for designing electrical circuits 
in which "What You Want Is What You 
Get" ("WYWIWYG" – pronounced 
"wow-eee-wig").  The design process 
uses genetic programming to produce 
both the topology of the desired circuit 
and the sizing (numerical values) for all 
the components of a circuit.  Genetic 
programming successfully evolves both 
the topology and the sizing for an 
asymmetric bandpass filter that was 
described as being difficult-to-design in 
a leading electrical engineering journal. 
This evolved circuit is another instance 
in which a genetically evolved solution 
to a non-trivial problem is competitive 
with human performance.  

 

1. Introduction 
The problem of circuit synthesis involves designing an 
electrical circuit that satisfies user-specified design goals.  

A complete specification of an electrical circuit includes 
both its topology and the sizing of all its components.  The 
topology of a circuit consists of the number of components 
in the circuit, the type of each component, and a list of the 
connections between the components.  The sizing of a 
circuit consists of the component value(s) (typically 
numerical) associated with each component.   

Considerable progress has been made in automating the 
design of certain categories of purely digital circuits; 
however, analog circuits and mixed analog-digital circuits 
are not as amenable to automation (Rutenbar 1993).   

Once the user has specified the design goals for an 
electronic circuit, it would be ideal if an automated design 

process could create both the topology and the sizing of a 
circuit that satisfies the design goals.  That is, it would be 
ideal to have an automated  "What You Want Is What You 
Get" ("WYWIWYG" – pronounced "wow-eee-wig") 
process for circuit synthesis.  

This paper shows how genetic programming was used to 
design an asymmetric bandpass filter that was described as 
difficult-to-design in an article in the Analog Integrated 
Circuits and Signal Processing journal (Nielsen 1995).    

2. Automated Analog Design Tools 
Existing techniques to automate the design process for 
analog and mixed analog-digital circuits typically require 
the user to supply a suitable topology; require the user to 
supply a reasonably good prototype circuit as a starting 
point; require repeated interactive intervention by the user; 
limit the user to certain specialized types of circuits; or are 
otherwise highly constrained.  Examples include IDAC 
(Degrauwe 1987); OASYS (Harjani, Rutenbar, and Carley 
1989); OPASYN (Koh, Sequin, and Gray 1990); SEAS 
(Ning, Kole, Mouthaan, and Wallings 1992); the expert 
design knowledge system of Maulik, Carley, and Rutenbar 
(1992); the works of Hemmi, Mizoguchi, and Shimohara 
(1994); Mizoguchi, Hemmi, and Shimohara 1994; and 
Higuchi et al. (1993); the "C-T filter design tool" of Nielsen 
(1995); and DARWIN (Kruiskamp and Leenaerts 1995).  In 
DARWIN, circuit topologies are limited to a preestablished 
hand-designed set of 24 suitable opamp topologies while 
component values are adjusted by a genetic algorithm 
operating on a binary character string.   

3. The Mapping between Electrical 
Circuits and Program Trees 

Genetic programming is an extension of John Holland's 
genetic algorithm (1975) in which the population consists of 
computer programs of varying sizes and shapes (Koza 1992, 
1994a, 1994b; Koza and Rice 1992).  

Genetic programming breeds a population of rooted, 
point-labeled trees (i.e., graphs without cycles) with ordered 
branches.  There is a considerable difference between the 



 

kind of trees bred by genetic programming and the labeled 
cyclic graphs encountered in the world of electrical circuits. 
Electrical circuits are cyclic graphs in which every line 
belongs to a cycle (i.e., there are no loose wires or dangling 
components).  The lines of a graph that represent a circuit 
are each labeled.  The primary label on each line gives the 
type of an electrical component (e.g., resistor).  The 
secondary label(s), if any, give the component value(s).  

Genetic programming can be applied to circuit synthesis 
if a mapping is established between the kind of point-
labeled trees found in the world of genetic programming 
and the line-labeled cyclic graphs employed in the world of 
circuits.  Developmental biology provides the motivation 
for this mapping.  In Cellular Encoding of Genetic Neural 
Networks, Frederic Gruau (1992) described a clever 
technique, called cellular encoding, in which genetic 
programming is used to evolve the architecture of a neural 
network.  Each individual program tree in the population is 
a specification for developing a complete neural network 
from a very simple embryonic neural network (consisting of 
a single neuron).  Genetic programming is then applied to 
populations of network-constructing program trees in order 
to evolve a neural network capable of solving a problem. 
The growth process used herein for electrical circuits 
similarly begins with a very simple embryonic electrical 
circuit and builds a more complex circuit by progressively 
executing the functions in a circuit-constructing program 
tree.  The result of this process is the topology of the circuit, 
the choice of the types of components that are situated at 
each location within the topology, and the sizing of the 
components.  

Each program tree can contain (1) connection-modifying 
functions that modify the topology of the circuit (starting 
with the embryonic circuit), (2) component-creating 
functions that insert particular components into locations 
within the topology of the circuit in lieu of wires (and other 
components) and whose arithmetic-performing subtrees 
specify the value (sizing) for each such component, and 
possibly (3) automatically defined functions.  

Program trees conform to a constrained syntactic 
structure.  Each component-creating function in a program 
tree has zero, one, or more arithmetic-performing subtrees 
and one or more construction-continuing subtrees.  Each 
connection-modifying function has one or more 
construction-continuing subtrees.  The arithmetic-
performing subtree(s) of each component-creating function 
consists of a composition of arithmetic functions and 
numerical constant terminals that together yield the 
numerical value for the component.  The construction-
continuing subtree specifies how the construction of the 
circuit is to be continued.  

Both the random program trees in the initial population 
(generation 0) and all random subtrees created by the 
mutation operation in later generations are created so as to 
conform to this constrained syntactic structure.  This 
constrained syntactic structure is then preserved by 
structure-preserving crossover with point typing (Koza 
1994a).   

4. The Problem 
A filter is a one-input, one-output circuit that receives a 
signal as its input and passes the frequency components of 
the incoming signal that lie in a certain specified range (the 
passband) while stopping the frequency components of the 
signal that lie in other frequency ranges (the stopband).   

In the Analog Integrated Circuits and Signal Processing 
journal, Ivan Riis Nielsen (1995) described stringent and 
asymmetric specifications for a difficult-to-design bandpass 
filter.  Nielsen's bandpass filter (1995) is targeted for a 
modem application where one band of frequencies (31.2 to 
45.6 kilohertz) must be isolated from another (69.6 to 84.0 
KHz). Using a standard bandpass filter on this problem 
would require a tenth-order elliptic function.   

A decibel (dB) is a unitless measure of relative voltage 
that is defined as 20 times the common logarithm of the 
ratio between the voltage at a particular probe point and a 
reference voltage (which, herein, is always 1.0 volts).   

Nielsen specified that it would be ideal if the relative 
voltage within the passband were in the narrow region 
between –0.6 dB and 0.6 dB (i.e., the passband ripple 
around 0 dB is less than 0.6 decibels) and all the relative 
voltages outside the passband were below –120 dB (i.e., the 
stopband attenuation were at least 120 dB).  These ideal 
characteristics are depicted by the dark region in figures 11, 
12, and 13 (where the height of the ripple band is 
exaggerated).   

Nielsen defined a set of acceptable characteristics 
(depicted by the light shading in figures 11, 12, and 13).  
Because of the importance of isolating the band of 
frequencies between 69.6 and 84.0 KHz, the attenuation 
there should be at least 73 dB (i.e., the relative voltage is 
below –73 dB).  Less stringency is demanded elsewhere.  
The attenuation for frequencies below 20 KHz should be at 
least 38 dB (i.e., the relative voltage is below –38 dB).  The 
relative voltages in the frequency band between 20 KHz and 
31.2 KHz and in the band  between 45.6 KHz and 69.6 KHz 
should be below 0 dB.  The relative voltages in the band  
above 84.0 KHz should be below –55 dB. Nielsen's filter 
has a fixed 1 Ohm source resistor RSOURCE and a fixed 
0.1 Ohm load resistor RLOAD.  

5. Embryonic Electrical Circuit 
The embryonic circuit used on a particular problem depends 
on the number of input signals and the number of output 
signals (probe points).   

The embryonic circuit used herein contains one input 
signal, one output (probe point), Nielsen's fixed source 
resistor, and Nielsen's fixed load resistor, and two 
modifiable wires.  The two modifiable wires (Z0 and Z1) 
each initially possess a writing head (i.e., are highlighted 
with a circle in figure 1).  A circuit is progressively 
developed by modifying the component to which a writing 
head is pointing in accordance with the functions in the 
circuit-constructing program tree.  Each connection-
modifying and component-creating function in the program 
tree modifies the developing circuit in a particular way and 



 

each also specifies the future disposition of the writing 
head(s). 

The bottom part of figure 1 shows the embryonic circuit 
used for a one-input, one-output circuit.  The energy source 
is a 22 volt sinusoidal voltage source VSOURCE whose 
negative (–) end is connected to node 0 (ground) and whose 
positive (+) end is connected to node 1.  There is a fixed 
source resistor RSOURCE between nodes 1 and 2.  There 
is a modifiable wire Z1 between nodes 2 and 3 and another 
modifiable wire Z0 between nodes 3 and 4.  There is a 
fixed isolating wire ZOUT between nodes 3 and 5, a 
voltage probe labeled VOUT at node 5, and a fixed load 
resistor RLOAD between nodes 5 and ground.  There is an 
isolating wire ZGND between nodes 4 and 0 (ground).  All 
of the above elements of this embryonic circuit (except Z0 
and Z1) are fixed forever; they are not subject to 
modification during the process of developing the circuit. 
All subsequent development of the circuit originates from 
writing heads.  Note that the output of the embryonic circuit 
is a constant zero volt signal VOUT at node 5.   

C FLIP

LIST1

2 3

-

 
Figure 1  One-input, one-output embryonic electrical 
circuit.   

The domain knowledge that went into this embryonic 
circuit is minimal.  It consisted of the facts that (1) the 
embryo is a circuit, (2) the embryo has one input and one 
output, and (3)  there are modifiable connections between 
the output and the source and between the output and 
ground.   

A circuit is developed by modifying the component to 
which a writing head is pointing in accordance with the 
associated function in the circuit-constructing program tree.  
The figure shows a capacitor-creating C function and a 
polarity-reversing FLIP function just below the connective 
LIST function at the root of the program tree.  The figure 
also shows one writing head pointing from the C function to 
modifiable wire Z0 and another writing head pointing from 
the FLIP function to modifiable wire Z1.  As will be 
described below, this C function will cause Z0 to be 
changed into a capacitor and the FLIP function will cause 
the polarity of modifiable wire Z1 to be reversed.   

6. Component-Creating Functions 
Each individual circuit-constructing program tree in the 
population generally contains component-creating functions 
and connection-modifying functions.   

Each component-creating function inserts a component 
into the developing circuit and assigns component value(s) 
to the inserted component.  Each component-creating 
function in a program tree points to an associated 
highlighted component  (i.e., a component with a writing 
head) in the developing circuit and modifies the highlighted 
component in some way.  Each component-creating 
function spawns one or more writing heads (through its 
construction-continuing subtrees).  The construction-
continuing subtree of each component-creating function 
points to a successor function or terminal in the circuit-
constructing program tree.  

The arithmetic-performing subtree of a component-
creating function consists of a composition of arithmetic 
functions (addition and subtraction) and random constants 
(in the range –1.000 to +1.000).  The arithmetic-performing 
subtree specifies the numerical value of the component by 
returning a floating-point value that is, in turn, interpreted 
as the value for the component in a range of 10 orders of 
magnitude (using a unit of measure that is appropriate for 
the particular type of component involved).  The floating-
point value is interpreted as the value of the component in 
the following way:  If the return value is between –5.0 and 
+5.0, U is equated to the value returned by the subtree.  If 
the return value is less than –100 or greater than +100, U is 
set to zero.  If the return value is between –100 and –5.0, U 
is found from the straight line connecting the points (–100, 
0) and (–5, -5).  If the return value is between +5.0 and 
+100, U is found from the straight line connecting (5, 5) 
and (100, 0).  The value of the component is 10U in a unit 
that is appropriate for the type of component.  This mapping 
gives the component a value within a range of 10 orders of 
magnitude centered on a certain value.   

The two-argument capacitor-creating C function causes 
the highlighted component to be changed into a capacitor.  
The value of the capacitor is the antilogarithm of the 
intermediate value U  (previously described) in nano-
Farads.  This mapping gives the capacitor a value within a 
range of plus or minus 5 orders of magnitude centered on 1 
nF.   

The two-argument inductor-creating L function causes 
the highlighted component to be changed into an inductor.  
The value of the inductor is in micro-Henrys within a range 
of plus or minus 5 orders of magnitude centered on 1 µH.   

We describe one other function (not used in the main 
problem herein) to illustrate that numerous other 
component-creating functions may be used in this process.  

 
Figure 2  Circuit with resistor R1.  



 

 
Figure 3  Result of applying QT0 function.   

Figure 2 shows a resistor R1 (with a writing head) 
connecting nodes 1 and 2 of a partial circuit.  Each of the 
12 context-sensitive functions in the group of three-
argument QT ("transistor") functions (called QT0, ..., QT11) 
causes a transistor to be inserted in place of one of the 
nodes to which the highlighted component is currently 
connected (while also deleting the highlighted component).   
Each QT function also creates five new nodes and three new 
modifiable wires.  After execution of a QT function, there 
are three writing heads that point to three new modifiable 
wires.  Figure 3 shows the result of applying the QT0 
function to resistor R1 of figure 2, thereby creating 
transistor Q6.   

7. Connection-Modifying Functions 
The topology of the circuit is determined by the connection-
modifying functions.  Each connection-modifying function 
in a program tree points to an associated highlighted 
component and modifies the topology of the developing 
circuit in some way.  Each connection-modifying function 
spawns zero, one, or more writing heads.    

The one-argument polarity-reversing FLIP function 
attaches the positive end of the highlighted component to 
the node to which its negative end is currently attached and 
vice versa.  After execution of the FLIP function, one 
writing head points to the now-flipped original component.   

 
Figure 4 Result of applying SERIES.  

The three-argument SERIES division function operates 
on one highlighted component and creates a series 
composition consisting of the highlighted component, a 
copy of the highlighted component, one new modifiable 
wire, and two new nodes.  After execution of the SERIES 
function, there are three writing heads pointing to the 
original component, the new modifiable wire, and the copy 
of the original component.  Figure 4 shows the result of 
applying the SERIES division function to resistor R1 from 
figure 2.  First, the SERIES function creates two new 
nodes, 3 and 4.  Second, SERIES disconnects the negative 
end of the original component (R1) from node 1 and 
connects this negative end to the first new node, 4 (while 

leaving its positive end connected to the node 2). Third, 
SERIES creates a new wire (called Z6 in the figure) 
between new nodes 3 and 4.  The negative end of the new 
wire is connected to the first new node 3 and the positive 
end is connected to the second new node 4. Fourth, 
SERIES inserts a duplicate (called R7 in the figure) of the 
original component (including all its component values) 
between new node 3 and original node 1.  The positive end 
of the duplicate is connected to the original node 1 and its 
negative end is connected to new node 3.  

The four-argument parallel division function PSS 
operates on one highlighted component to create a parallel 
composition consisting of the original highlighted 
component, a duplicate of the highlighted component, two 
new wires, and two new nodes.   After execution of PSS, 
there are four writing heads.  They point to the original 
component, the two new modifiable wires, and the copy of 
the original component.  First, the parallel division function 
PSS creates two new nodes, 3 and 4.  Second, PSS inserts a 
duplicate of the highlighted component (including all of its 
component values) between the new nodes 3 and 4 (with 
the negative end of the duplicate connected to node 4 and 
the positive end of the duplicate connected to 3.  Third, PSS 
creates a first new wire Z6 between the positive (+) end of 
R1 (which is at original node 2) and first new node, 3.  
Fourth, PSS creates a second new wire Z8 between the 
negative (-) end of R1 (which is at original node 1) and 
second new node, 4.  Figure 5 shows the results of applying 
the PSS function to resistor R1 from figure 2. The negative 
end of the new component is connected to the smaller 
numbered component of the two components that were 
originally connected to the negative end of the highlighted 
component.  Since C4 bears a smaller number than C5, new 
node 3 and new wire Z6 are located between original node 
2 and C4.  Since C2 bears a smaller number than C3, new 
node 4 and new wire Z8 are located between original node 
1 and C2.  

 
Figure 5  Result of applying PSS.  

Eight two-argument functions (called VIA0, ..., VIA7) 
and the two-argument GND ("ground") function enable 
distant parts of a circuit to be connected together.  After 
execution, writing heads point to two modifiable wires.  The 
VIA functions create a series composition consisting of two 
wires that each possesses a successor writing head and a 
numbered port (called a via) that possesses no writing head.  
The port is connected to a designated one of eight imaginary 
layers (numbered from 0 to 7) of an imaginary silicon 
wafer.  If more than one part of a circuit connects to a 



 

particular numbered layer, all of these parts become 
electrically connected as if wires were running between 
them.  The two-argument GND function is a special "via" 
function that establishes a connection directly to ground.   

The one-argument NOP function has no effect on the 
highlighted component; however, it delays activity on the 
developmental path on which it appears in relation to other 
developmental paths in the overall program tree.  After 
execution of NOP, one writing head points to the original 
highlighted component.  

The zero-argument END function causes the highlighted 
component to lose its writing head.   

We describe two other functions (not used herein) to 
illustrate that numerous other connection-modifying 
functions can be employed in this process.  The  functions 
in the group of three-argument Y division functions operate 
on one highlighted component (and one adjacent node) and 
create a Y-shaped composition consisting of the highlighted 
component, two copies of the highlighted component (and 
all of its values), and two new nodes.  The Y functions 
insert the two copies at the "active" node of the highlighted 
component.  For the Y1 function, the active node is the 
node to which the negative end of the highlighted 
component is connected.  Figure 6  shows the result of 
applying Y1 to resistor R1 of figure 2.   

 
Figure 6   Result of applying the Y1 function.  

The functions in the group of six-argument DELTA 
functions operate on one highlighted component by 
eliminating it (and one adjacent node) and creating a 
triangular ∆−shaped composition consisting of three copies 
of the original highlighted component (and all of its 
component values), three new modifiable wires, and five 
new nodes.   Figure 7  illustrates the result of applying the 
DELTA1 division function to resistor R1 of figure 2 when 
the active node (node 1) is of degree 3.   

 
Figure 7   Result of applying DELTA1 function. 

8. Preparatory Steps for the Run 
8.1. Architecture and Embryonic Circuit 
Since this LC filter design problem calls for a one-input, 
one-output circuit with a source resistor and a load resistor, 
the embryonic circuit in figure 1 is suitable. Since no 
automatically defined functions are used in this problem, the 
architecture of the overall program tree consists of two 
result-producing branches joined by the connective LIST 
function.  That is, the embryonic circuit initially has two 

writing heads – one associated with each of the result-
producing branches.  The terminal set and function sets are 
the same for both result-producing branches.   

8.2. Function and Terminal Sets 
The function set, Faps for an arithmetic-performing subtree 
associated with each component-creating function contains 
two two-argument arithmetic functions. That is, 
Faps = {+, -}. 

The terminal set, Taps, for an arithmetic-performing 
subtree consists of 
Taps = {←}, 
where ← represents floating-point random constants 
between –1.000 and +1.000.   

The function set, Fccs, for the construction-continuing 
subtree of each component-creating function is 
Fccs = {C, L, SERIES, PSS, FLIP, NOP, GND, VIA0, 

VIA1, VIA2, VIA3, VIA4, VIA5, VIA6, VIA7}. 
The terminal set, Tccs, for the construction-continuing 

subtree consists of 
Tccs = {END}.   

8.3. Fitness Measure 
Note that all of the above could be applied to any one-input, 
one-output LC circuit.  It is the fitness measure that directs 
the evolutionary process (in the search space of circuit-
constructing program trees) to a program tree that constructs 
the desired asymmetric bandpass filter.  In other words, 
circuit structure arises from fitness.   

The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with its 
execution.  This execution applies the functions in the 
program tree to the very simple embryonic circuit, thereby 
developing the embryonic circuit into a fully developed 
circuit.  A netlist describing the circuit is then created.  The 
netlist identifies each component of the circuit, the nodes to 
which that component is connected, and the value of that 
component.  Each circuit is then simulated to determine its 
behavior.  The 217,000-line SPICE simulator was modified 
to run as a submodule within the genetic programming 
system.  SPICE (an acronym for Simulation Program with 
Integrated Circuit Emphasis) is a large family of programs 
written over several decades at the University of California 
at Berkeley for the simulation of analog, digital, and mixed 
analog/digital electrical circuits (Quarles et al. 1994).  The 
input to a SPICE simulation consists of a netlist describing 
the circuit to be analyzed and certain commands that 
instruct SPICE as to the type of analysis to be performed 
and the nature of the output to be produced.  

In general, the  fitness measure may incorporate any 
calculable characteristic or combination of characteristics of 
the circuit, including the circuit's behavior in the time 
domain, its behavior in the frequency domain, its power 
consumption, or the number, cost, or surface area of its 
components.   

Since we are designing a filter, the focus is on the 
behavior of the circuit in the frequency domain.  SPICE is 
requested to perform an AC small signal analysis and to 



 

report the circuit's behavior for each of 101 frequency 
values chosen from the range between 10,000 Hz to 
200,000 Hz (in equal increments on a logarithmic scale).   

Fitness is measured in terms of the sum, over these 101 
fitness cases, of the absolute weighted deviation between 
the actual value of the relative voltage (in decibels) that is 
produced by the circuit at the probe point VOUT and the 
target value for relative voltage.  The smaller the value of 
fitness, the better.  A fitness of zero represents an ideal 
filter.  Specifically, the standardized fitness is 

F(t) = 
i=0

100
∑ [W (d ( f i ), f )d ( f i )] 

where fi is the frequency of fitness case i; d(x) is the 
difference between the target and the observed values at 
frequency x; and W(y, x) is the weighting for a difference of 
y at frequency x. 

The fitness measure does not penalize ideal values; it 
slightly penalizes every acceptable deviation; and it heavily 
penalizes every unacceptable deviation.   

First consider the 87 sample points outside the desired 
passband.  If the relative voltage is below –120 dB for a 
particular fitness case outside the desired passband, then the 
deviation is deemed to be zero for that fitness case.  If the 
relative voltage is in the acceptable region (light shading in 
figures 11, 12, and 13) for a particular fitness case outside 
the desired passband, the absolute value of the deviation 
from –120 dB is weighted by 1 for that fitness case.  If the 
relative voltage is in the unacceptable region (white in 
figures 11, 12, and 13) for a particular fitness case outside 
the desired passband, the absolute value of the deviation 
from –120 dB is weighted by 10 for that fitness case.  This 
arrangement reflects the fact that the ideal relative voltage 
outside the desired passband is –120 dB or less, the fact that 
the previously described deviations are acceptable, and the 
fact that other deviations are unacceptable.   

Next consider the 14 points inside the desired passband.  
If the relative voltage is between –0.6 dB and 0.6 dB, the 
absolute value of the deviation from 0 dB is weighted by a 
factor of 10.0; however, if the relative voltage lies outside 
that narrow region, the absolute value of the deviation from 
0 dB is weighted by a factor of 100.  This arrangement 
reflects the fact that the ideal relative voltage in the 
passband is 0 dB, the fact that a ripple of up to 0.6 dB 
centered at 0 dB is acceptable, and the fact that a relative 
voltage more than 0.6 dB away from 0 dB in either direction 
is unacceptable.  The factors of 10 and 100 (rather than 1 
and 10) were selected to approximately equalize the weight 
given to the relatively few sample points (i.e., 14) within the 
desired passband as compared to the relatively large number 
of sample points (i.e., 87) outside the desired passband.   

Hits are defined as the number (0 to 101) of fitness cases 
for which the relative voltage is acceptable or ideal.   

Some of the bizarre circuits that are created by genetic 
programming cannot be simulated by SPICE.  Such circuits 
are assigned a high penalty value of fitness (108).   

8.4. Control Parameters 
The population size, M, is 640,000. Each subsequent 
generation of the run is created from the population of the 
preceding generation by performing 569,600 one-offspring 
crossover operations (89% of 640,000), 64,000 
reproduction operations (10% of 640,000), and 6,400 
mutation operations (1% of 640,000).  A maximum size of 
200 points was established for each of the two result-
producing branches.  The other minor parameters for 
controlling the runs were the default values specified in 
Koza 1994a (appendix D).   

8.5. Parallel Implementation 
This problem was run on a medium-grained parallel 
Parsytec computer system consisting of 64  80 MHz 
PowerPC 601 processors arranged in a toroidal mesh with a 
host PC Pentium type computer (running Windows).  The 
so-called distributed genetic algorithm for parallelization 
was used with a subpopulation (deme) size of Q =  10,000 
at each of D = 64 demes.  On each generation, four 
boatloads of emigrants, each consisting of B = 2% (the 
migration rate) of the node's subpopulation (selected on the 
basis of fitness) were dispatched to each of the four 
toroidally adjacent processing nodes.  Details of the parallel 
implementation of genetic programming can be found in 
Andre and Koza 1996.  

9. Results 
We made three runs of this problem.  Two came close to 
solving the problem.  We now discuss in detail the one run 
that produced an individual scoring 101 hits.   

The best circuit of the 640,000 circuits from generation 
0 has a fitness of 59,191, scores 72 hits, and is shown in 
figure 8.  Figure 11 shows its behavior in the frequency 
domain.  The horizontal scale is linear and ranges from 
10,000 Hz to 200,000 Hz.  The vertical scale is relative 
voltage in decibels.  The curve represents the behavior of 
this circuit in the frequency domain.  As can be seen, the 
curve in this figure peaks at –14.7 dB when the frequency is 
38.40 KHz.  This behavior does not even remotely satisfy 
Nielsen's design goals.  However, the narrow peak at 38.40 
KHz (which falls far short of the desired height) does, in 
fact, lie within the desired passband.  That is, this 
inadequate circuit differentially passes frequencies near 
38.40 KHz.  

About 78% of the programs of generation 0 for this 
problem produce circuits that cannot be simulated by 
SPICE.  However, the percentage of unsimulatable circuits 
drops rapidly as new offspring are created by genetic 
programming using Darwinian selection, crossover, and 
mutation.  The percentage of unsimulatable programs drops 
to 37% by generation 1.  Between generations 2 and 202, 
the average percentage  of unsimulatable circuits is 13.7%.  
That is, starting as early as the third generation, the vast 
majority of the circuits are simulatable.  

This observation supports the general principle that the 
individuals in the population in intermediate generations of 
a run of genetic programming (and random subtrees picked 



 

from them by the crossover operation) differ markedly from 
the individuals (and their randomly picked subtrees) in the 
randomly created population of generation 0 of the same 
run.   

Crossover fragments from intermediate generations of a 
run of genetic programming are very different from the 

randomly grown subtrees supplied by the mutation 
operation.  This fact is experimental evidence, for this non-
trivial problem, that the population serves the vital role in 
the genetic algorithm of providing a reservoir of useful 
fragments to rapidly advance the search.   

 
Figure 8  Best circuit of generation 0.   

 
Figure 9  Best circuit of generation 32.   

 
Figure 10  Best-of-run circuit of generation 199. 
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Figure 11  Frequency domain behavior of best circuit of 
generation 0.   

.

-150

-100

-50

0

50

D
ec

ib
el

s

Ideal
Acceptable
Unacceptable

Gen 32

20010 31.2
Frequency (in 1000 Hz)

45.6 69.9 84.0
20  

Figure 12  Frequency domain behavior of best circuit of 
generation 32.  
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Figure 13  Frequency domain behavior of best-of-run 
circuit of generation 199.  

Point-to-point search techniques (e.g., simulated 
annealing, hillclimbing) do not have this reservoir from 
which to draw.  

In embarking on this project of trying to evolve 
electronic circuits using genetic programming, one of our 
major threshold concerns was whether any significant 
percentage of the randomly created circuits of generation 0 

in this highly epistatic search space would be simulatable at 
all by SPICE.  A second concern was whether the crossover 
operation would create any significant percentage of 
simulatable circuits.  Neither of these concerns materialized 
with genetic programming on this problem.  Darwinian 
selection apparently is very effective in quickly steering the 
population on successive generations into the portion of the 



 

search space where parents can successfully sire simulatable 
offspring by means of the crossover operation.   

The best individual program in generation 32 has a 
fitness of 10,343.0, scores 87 hits, and is shown in figure 9.  
Figure 12 shows its frequency domain behavior. 

  The first 100%-compliant program achieving 101 hits 
appeared in generation 132 and has a fitness of 2252.5.  
However, we allowed the run to continue.  The best-of-run 
program emerged in generation 199, has a fitness of 2024.0, 
scores 101 hits, and is shown in figure 10.  Figure 13 shows 
its frequency domain behavior.  As can be seen, 100% of 
the points are in compliance with the design specifications.  
Moreover, all the points in the passband are within 0.39 dB 
of 0 dB whereas the specifications merely require a 
passband ripple of less than 0.6 dB.   

10. Related Work 
The above techniques have recently been successfully 
applied to a variety of different problems of circuit 
synthesis.  

10.1. Lowpass "Brick Wall" Filter 
Consider the problem of designing a lowpass filter with 
passband below 1,000 Hz and a stopband above 2,000 Hz 
(as described in Koza, Bennett, Andre, and Keane 1996a).  
The voltages in the passband are to be between 970 
millivolts and 1 volt (i.e., the passband ripple is 30 
millivolts) and the voltages in the stopband between 0 volts 
and 1 millivolt.   

In some runs of this problem, the genetically evolved 
lowpass filter has a topology that is similar to that employed 
by human engineers.  For example, in one run, the 100% 
compliant evolved circuit (figure 14) had the recognizable 
ladder topology of a Butterworth or Chebychev filter (i.e., a 
composition of inductors horizontally with capacitors as 
vertical shunts).   

 
Figure 14  Seven-rung ladder circuit from generation 32. 

In another run, a 100%-compliant recognizable "bridged 
T" arrangement (figure 15) was evolved (involving 
capacitors C3 and C15 and inductor L11 in conjunction 
with L14).   

 
Figure 15  "Bridged T" from generation 64.   

Figure 16 shows a 100%-compliant circuit from 
generation 212 of yet another run.  It has a novel topology 
that no electrical engineer would be likely to create.   

 
Figure 16  Best circuit from generation 212.  

10.2. A 5 dB Amplifier using Transistors 
Now consider the problem of designing an amplifier with an 
amplification factor of 3.5 over the frequency range of 20 
Hz to 20,000 Hz.   Amplifiers are active circuits; they 
require active components such as transistors.  The major 
change in the function set needed to evolve the amplifier is 
to add the resistor-creating R function and the transistor-
creating QT functions.  

Figure 17 shows a genetically evolved 5 dB amplifier.  
The boxes highlight a recognizable voltage gain stage and a 
quasi-Darlington emitter-follower stage.   

Voltage Gain Stage

Darlington
Emitter-
Follower
Stage

 
Figure 17  Genetically evolved 5 dB amplifier from 
generation 45. 



 

10.3. A Crossover Filter 
Now consider the problem of designing a crossover (woofer 
and tweeter) filter with a crossover frequency of 2,512 Hz 
(as described more fully in Koza, Bennett, Andre, and 
Keane 1996b).  The voltages in the passband are to be 
between 970 millivolts and 1 volt (i.e., the passband ripple 
is 30 millivolts) and the voltages in the stopband between 0 
volts and 1 millivolt.  This problem requires a one-input, 
two-output embryonic circuit and requires that the fitness be 
measured at two probe points, but is otherwise similar to the 
previously discussed circuits.  In one run, the best-of-run 
circuit (figure 18) from generation 137 scores 192 hits.  The 
lowpass part of the best-of-run circuit has the Butterworth 
topology (but not the Butterworth component values).  The 
highpass part of the best-of-run circuit also has the 
Butterworth topology (but not the Butterworth component 
values), except for additional capacitor C36.  Note that 
highpass Butterworth filters have capacitors in series 
horizontally and inductors as vertical shunts.  An analysis of 
this genetically evolved circuit in the frequency domain 
indicates that it delivers a response that is slightly better 
than the combination of lowpass and highpass Butterworth 
filters of order 7.  

  
Figure 18  Best circuit from generation 137.  

10.4. Related Paper in this Volume 
Another paper (appearing next in this volume) on the 
subject of evolving circuits was presented at this 
conference.  
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