
Automated WYWIWYG Design of Both the Topology and
Component Values of Electrical Circuits

Using Genetic Programming

John R. Koza
Computer Science Dept.

258 Gates Building
Stanford University

Stanford, California 94305
koza@cs.stanford.edu

http://www-cs-
faculty.stanford.edu/~koza/

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
fhb3@slip.net

David Andre
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
andre@flamingo.stanford.ed

u

Martin A. Keane
Econometrics Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

ABSTRACT

This paper describes an automated
process for designing electrical circuits
in which "What You Want Is What You
Get" ("WYWIWYG" – pronounced
"wow-eee-wig"). The design process
uses genetic programming to produce
both the topology of the desired circuit
and the sizing (numerical values) for all
the components of a circuit. Genetic
programming successfully evolves both
the topology and the sizing for an
asymmetric bandpass filter that was
described as being difficult-to-design in
a leading electrical engineering journal.
This evolved circuit is another instance
in which a genetically evolved solution
to a non-trivial problem is competitive
with human performance.

1. Introduction
The problem of circuit synthesis involves designing an
electrical circuit that satisfies user-specified design goals.

A complete specification of an electrical circuit includes
both its topology and the sizing of all its components. The
topology of a circuit consists of the number of components
in the circuit, the type of each component, and a list of the
connections between the components. The sizing of a
circuit consists of the component value(s) (typically
numerical) associated with each component.

Considerable progress has been made in automating the
design of certain categories of purely digital circuits;
however, analog circuits and mixed analog-digital circuits
are not as amenable to automation (Rutenbar 1993).

Once the user has specified the design goals for an
electronic circuit, it would be ideal if an automated design

process could create both the topology and the sizing of a
circuit that satisfies the design goals. That is, it would be
ideal to have an automated "What You Want Is What You
Get" ("WYWIWYG" – pronounced "wow-eee-wig")
process for circuit synthesis.

This paper shows how genetic programming was used to
design an asymmetric bandpass filter that was described as
difficult-to-design in an article in the Analog Integrated
Circuits and Signal Processing journal (Nielsen 1995).

2. Automated Analog Design Tools
Existing techniques to automate the design process for
analog and mixed analog-digital circuits typically require
the user to supply a suitable topology; require the user to
supply a reasonably good prototype circuit as a starting
point; require repeated interactive intervention by the user;
limit the user to certain specialized types of circuits; or are
otherwise highly constrained. Examples include IDAC
(Degrauwe 1987); OASYS (Harjani, Rutenbar, and Carley
1989); OPASYN (Koh, Sequin, and Gray 1990); SEAS
(Ning, Kole, Mouthaan, and Wallings 1992); the expert
design knowledge system of Maulik, Carley, and Rutenbar
(1992); the works of Hemmi, Mizoguchi, and Shimohara
(1994); Mizoguchi, Hemmi, and Shimohara 1994; and
Higuchi et al. (1993); the "C-T filter design tool" of Nielsen
(1995); and DARWIN (Kruiskamp and Leenaerts 1995). In
DARWIN, circuit topologies are limited to a preestablished
hand-designed set of 24 suitable opamp topologies while
component values are adjusted by a genetic algorithm
operating on a binary character string.

3. The Mapping between Electrical
Circuits and Program Trees

Genetic programming is an extension of John Holland's
genetic algorithm (1975) in which the population consists of
computer programs of varying sizes and shapes (Koza 1992,
1994a, 1994b; Koza and Rice 1992).

Genetic programming breeds a population of rooted,
point-labeled trees (i.e., graphs without cycles) with ordered
branches. There is a considerable difference between the

kind of trees bred by genetic programming and the labeled
cyclic graphs encountered in the world of electrical circuits.
Electrical circuits are cyclic graphs in which every line
belongs to a cycle (i.e., there are no loose wires or dangling
components). The lines of a graph that represent a circuit
are each labeled. The primary label on each line gives the
type of an electrical component (e.g., resistor). The
secondary label(s), if any, give the component value(s).

Genetic programming can be applied to circuit synthesis
if a mapping is established between the kind of point-
labeled trees found in the world of genetic programming
and the line-labeled cyclic graphs employed in the world of
circuits. Developmental biology provides the motivation
for this mapping. In Cellular Encoding of Genetic Neural
Networks, Frederic Gruau (1992) described a clever
technique, called cellular encoding, in which genetic
programming is used to evolve the architecture of a neural
network. Each individual program tree in the population is
a specification for developing a complete neural network
from a very simple embryonic neural network (consisting of
a single neuron). Genetic programming is then applied to
populations of network-constructing program trees in order
to evolve a neural network capable of solving a problem.
The growth process used herein for electrical circuits
similarly begins with a very simple embryonic electrical
circuit and builds a more complex circuit by progressively
executing the functions in a circuit-constructing program
tree. The result of this process is the topology of the circuit,
the choice of the types of components that are situated at
each location within the topology, and the sizing of the
components.

Each program tree can contain (1) connection-modifying
functions that modify the topology of the circuit (starting
with the embryonic circuit), (2) component-creating
functions that insert particular components into locations
within the topology of the circuit in lieu of wires (and other
components) and whose arithmetic-performing subtrees
specify the value (sizing) for each such component, and
possibly (3) automatically defined functions.

Program trees conform to a constrained syntactic
structure. Each component-creating function in a program
tree has zero, one, or more arithmetic-performing subtrees
and one or more construction-continuing subtrees. Each
connection-modifying function has one or more
construction-continuing subtrees. The arithmetic-
performing subtree(s) of each component-creating function
consists of a composition of arithmetic functions and
numerical constant terminals that together yield the
numerical value for the component. The construction-
continuing subtree specifies how the construction of the
circuit is to be continued.

Both the random program trees in the initial population
(generation 0) and all random subtrees created by the
mutation operation in later generations are created so as to
conform to this constrained syntactic structure. This
constrained syntactic structure is then preserved by
structure-preserving crossover with point typing (Koza
1994a).

4. The Problem
A filter is a one-input, one-output circuit that receives a
signal as its input and passes the frequency components of
the incoming signal that lie in a certain specified range (the
passband) while stopping the frequency components of the
signal that lie in other frequency ranges (the stopband).

In the Analog Integrated Circuits and Signal Processing
journal, Ivan Riis Nielsen (1995) described stringent and
asymmetric specifications for a difficult-to-design bandpass
filter. Nielsen's bandpass filter (1995) is targeted for a
modem application where one band of frequencies (31.2 to
45.6 kilohertz) must be isolated from another (69.6 to 84.0
KHz). Using a standard bandpass filter on this problem
would require a tenth-order elliptic function.

A decibel (dB) is a unitless measure of relative voltage
that is defined as 20 times the common logarithm of the
ratio between the voltage at a particular probe point and a
reference voltage (which, herein, is always 1.0 volts).

Nielsen specified that it would be ideal if the relative
voltage within the passband were in the narrow region
between –0.6 dB and 0.6 dB (i.e., the passband ripple
around 0 dB is less than 0.6 decibels) and all the relative
voltages outside the passband were below –120 dB (i.e., the
stopband attenuation were at least 120 dB). These ideal
characteristics are depicted by the dark region in figures 11,
12, and 13 (where the height of the ripple band is
exaggerated).

Nielsen defined a set of acceptable characteristics
(depicted by the light shading in figures 11, 12, and 13).
Because of the importance of isolating the band of
frequencies between 69.6 and 84.0 KHz, the attenuation
there should be at least 73 dB (i.e., the relative voltage is
below –73 dB). Less stringency is demanded elsewhere.
The attenuation for frequencies below 20 KHz should be at
least 38 dB (i.e., the relative voltage is below –38 dB). The
relative voltages in the frequency band between 20 KHz and
31.2 KHz and in the band between 45.6 KHz and 69.6 KHz
should be below 0 dB. The relative voltages in the band
above 84.0 KHz should be below –55 dB. Nielsen's filter
has a fixed 1 Ohm source resistor RSOURCE and a fixed
0.1 Ohm load resistor RLOAD.

5. Embryonic Electrical Circuit
The embryonic circuit used on a particular problem depends
on the number of input signals and the number of output
signals (probe points).

The embryonic circuit used herein contains one input
signal, one output (probe point), Nielsen's fixed source
resistor, and Nielsen's fixed load resistor, and two
modifiable wires. The two modifiable wires (Z0 and Z1)
each initially possess a writing head (i.e., are highlighted
with a circle in figure 1). A circuit is progressively
developed by modifying the component to which a writing
head is pointing in accordance with the functions in the
circuit-constructing program tree. Each connection-
modifying and component-creating function in the program
tree modifies the developing circuit in a particular way and

each also specifies the future disposition of the writing
head(s).

The bottom part of figure 1 shows the embryonic circuit
used for a one-input, one-output circuit. The energy source
is a 22 volt sinusoidal voltage source VSOURCE whose
negative (–) end is connected to node 0 (ground) and whose
positive (+) end is connected to node 1. There is a fixed
source resistor RSOURCE between nodes 1 and 2. There
is a modifiable wire Z1 between nodes 2 and 3 and another
modifiable wire Z0 between nodes 3 and 4. There is a
fixed isolating wire ZOUT between nodes 3 and 5, a
voltage probe labeled VOUT at node 5, and a fixed load
resistor RLOAD between nodes 5 and ground. There is an
isolating wire ZGND between nodes 4 and 0 (ground). All
of the above elements of this embryonic circuit (except Z0
and Z1) are fixed forever; they are not subject to
modification during the process of developing the circuit.
All subsequent development of the circuit originates from
writing heads. Note that the output of the embryonic circuit
is a constant zero volt signal VOUT at node 5.

C FLIP

LIST1

2 3

-

Figure 1 One-input, one-output embryonic electrical
circuit.

The domain knowledge that went into this embryonic
circuit is minimal. It consisted of the facts that (1) the
embryo is a circuit, (2) the embryo has one input and one
output, and (3) there are modifiable connections between
the output and the source and between the output and
ground.

A circuit is developed by modifying the component to
which a writing head is pointing in accordance with the
associated function in the circuit-constructing program tree.
The figure shows a capacitor-creating C function and a
polarity-reversing FLIP function just below the connective
LIST function at the root of the program tree. The figure
also shows one writing head pointing from the C function to
modifiable wire Z0 and another writing head pointing from
the FLIP function to modifiable wire Z1. As will be
described below, this C function will cause Z0 to be
changed into a capacitor and the FLIP function will cause
the polarity of modifiable wire Z1 to be reversed.

6. Component-Creating Functions
Each individual circuit-constructing program tree in the
population generally contains component-creating functions
and connection-modifying functions.

Each component-creating function inserts a component
into the developing circuit and assigns component value(s)
to the inserted component. Each component-creating
function in a program tree points to an associated
highlighted component (i.e., a component with a writing
head) in the developing circuit and modifies the highlighted
component in some way. Each component-creating
function spawns one or more writing heads (through its
construction-continuing subtrees). The construction-
continuing subtree of each component-creating function
points to a successor function or terminal in the circuit-
constructing program tree.

The arithmetic-performing subtree of a component-
creating function consists of a composition of arithmetic
functions (addition and subtraction) and random constants
(in the range –1.000 to +1.000). The arithmetic-performing
subtree specifies the numerical value of the component by
returning a floating-point value that is, in turn, interpreted
as the value for the component in a range of 10 orders of
magnitude (using a unit of measure that is appropriate for
the particular type of component involved). The floating-
point value is interpreted as the value of the component in
the following way: If the return value is between –5.0 and
+5.0, U is equated to the value returned by the subtree. If
the return value is less than –100 or greater than +100, U is
set to zero. If the return value is between –100 and –5.0, U
is found from the straight line connecting the points (–100,
0) and (–5, -5). If the return value is between +5.0 and
+100, U is found from the straight line connecting (5, 5)
and (100, 0). The value of the component is 10U in a unit
that is appropriate for the type of component. This mapping
gives the component a value within a range of 10 orders of
magnitude centered on a certain value.

The two-argument capacitor-creating C function causes
the highlighted component to be changed into a capacitor.
The value of the capacitor is the antilogarithm of the
intermediate value U (previously described) in nano-
Farads. This mapping gives the capacitor a value within a
range of plus or minus 5 orders of magnitude centered on 1
nF.

The two-argument inductor-creating L function causes
the highlighted component to be changed into an inductor.
The value of the inductor is in micro-Henrys within a range
of plus or minus 5 orders of magnitude centered on 1 µH.

We describe one other function (not used in the main
problem herein) to illustrate that numerous other
component-creating functions may be used in this process.

Figure 2 Circuit with resistor R1.

Figure 3 Result of applying QT0 function.

Figure 2 shows a resistor R1 (with a writing head)
connecting nodes 1 and 2 of a partial circuit. Each of the
12 context-sensitive functions in the group of three-
argument QT ("transistor") functions (called QT0, ..., QT11)
causes a transistor to be inserted in place of one of the
nodes to which the highlighted component is currently
connected (while also deleting the highlighted component).
Each QT function also creates five new nodes and three new
modifiable wires. After execution of a QT function, there
are three writing heads that point to three new modifiable
wires. Figure 3 shows the result of applying the QT0
function to resistor R1 of figure 2, thereby creating
transistor Q6.

7. Connection-Modifying Functions
The topology of the circuit is determined by the connection-
modifying functions. Each connection-modifying function
in a program tree points to an associated highlighted
component and modifies the topology of the developing
circuit in some way. Each connection-modifying function
spawns zero, one, or more writing heads.

The one-argument polarity-reversing FLIP function
attaches the positive end of the highlighted component to
the node to which its negative end is currently attached and
vice versa. After execution of the FLIP function, one
writing head points to the now-flipped original component.

Figure 4 Result of applying SERIES.

The three-argument SERIES division function operates
on one highlighted component and creates a series
composition consisting of the highlighted component, a
copy of the highlighted component, one new modifiable
wire, and two new nodes. After execution of the SERIES
function, there are three writing heads pointing to the
original component, the new modifiable wire, and the copy
of the original component. Figure 4 shows the result of
applying the SERIES division function to resistor R1 from
figure 2. First, the SERIES function creates two new
nodes, 3 and 4. Second, SERIES disconnects the negative
end of the original component (R1) from node 1 and
connects this negative end to the first new node, 4 (while

leaving its positive end connected to the node 2). Third,
SERIES creates a new wire (called Z6 in the figure)
between new nodes 3 and 4. The negative end of the new
wire is connected to the first new node 3 and the positive
end is connected to the second new node 4. Fourth,
SERIES inserts a duplicate (called R7 in the figure) of the
original component (including all its component values)
between new node 3 and original node 1. The positive end
of the duplicate is connected to the original node 1 and its
negative end is connected to new node 3.

The four-argument parallel division function PSS
operates on one highlighted component to create a parallel
composition consisting of the original highlighted
component, a duplicate of the highlighted component, two
new wires, and two new nodes. After execution of PSS,
there are four writing heads. They point to the original
component, the two new modifiable wires, and the copy of
the original component. First, the parallel division function
PSS creates two new nodes, 3 and 4. Second, PSS inserts a
duplicate of the highlighted component (including all of its
component values) between the new nodes 3 and 4 (with
the negative end of the duplicate connected to node 4 and
the positive end of the duplicate connected to 3. Third, PSS
creates a first new wire Z6 between the positive (+) end of
R1 (which is at original node 2) and first new node, 3.
Fourth, PSS creates a second new wire Z8 between the
negative (-) end of R1 (which is at original node 1) and
second new node, 4. Figure 5 shows the results of applying
the PSS function to resistor R1 from figure 2. The negative
end of the new component is connected to the smaller
numbered component of the two components that were
originally connected to the negative end of the highlighted
component. Since C4 bears a smaller number than C5, new
node 3 and new wire Z6 are located between original node
2 and C4. Since C2 bears a smaller number than C3, new
node 4 and new wire Z8 are located between original node
1 and C2.

Figure 5 Result of applying PSS.

Eight two-argument functions (called VIA0, ..., VIA7)
and the two-argument GND ("ground") function enable
distant parts of a circuit to be connected together. After
execution, writing heads point to two modifiable wires. The
VIA functions create a series composition consisting of two
wires that each possesses a successor writing head and a
numbered port (called a via) that possesses no writing head.
The port is connected to a designated one of eight imaginary
layers (numbered from 0 to 7) of an imaginary silicon
wafer. If more than one part of a circuit connects to a

particular numbered layer, all of these parts become
electrically connected as if wires were running between
them. The two-argument GND function is a special "via"
function that establishes a connection directly to ground.

The one-argument NOP function has no effect on the
highlighted component; however, it delays activity on the
developmental path on which it appears in relation to other
developmental paths in the overall program tree. After
execution of NOP, one writing head points to the original
highlighted component.

The zero-argument END function causes the highlighted
component to lose its writing head.

We describe two other functions (not used herein) to
illustrate that numerous other connection-modifying
functions can be employed in this process. The functions
in the group of three-argument Y division functions operate
on one highlighted component (and one adjacent node) and
create a Y-shaped composition consisting of the highlighted
component, two copies of the highlighted component (and
all of its values), and two new nodes. The Y functions
insert the two copies at the "active" node of the highlighted
component. For the Y1 function, the active node is the
node to which the negative end of the highlighted
component is connected. Figure 6 shows the result of
applying Y1 to resistor R1 of figure 2.

Figure 6 Result of applying the Y1 function.

The functions in the group of six-argument DELTA
functions operate on one highlighted component by
eliminating it (and one adjacent node) and creating a
triangular ∆−shaped composition consisting of three copies
of the original highlighted component (and all of its
component values), three new modifiable wires, and five
new nodes. Figure 7 illustrates the result of applying the
DELTA1 division function to resistor R1 of figure 2 when
the active node (node 1) is of degree 3.

Figure 7 Result of applying DELTA1 function.

8. Preparatory Steps for the Run
8.1. Architecture and Embryonic Circuit
Since this LC filter design problem calls for a one-input,
one-output circuit with a source resistor and a load resistor,
the embryonic circuit in figure 1 is suitable. Since no
automatically defined functions are used in this problem, the
architecture of the overall program tree consists of two
result-producing branches joined by the connective LIST
function. That is, the embryonic circuit initially has two

writing heads – one associated with each of the result-
producing branches. The terminal set and function sets are
the same for both result-producing branches.

8.2. Function and Terminal Sets
The function set, Faps for an arithmetic-performing subtree
associated with each component-creating function contains
two two-argument arithmetic functions. That is,
Faps = {+, -}.

The terminal set, Taps, for an arithmetic-performing
subtree consists of
Taps = {←},
where ← represents floating-point random constants
between –1.000 and +1.000.

The function set, Fccs, for the construction-continuing
subtree of each component-creating function is
Fccs = {C, L, SERIES, PSS, FLIP, NOP, GND, VIA0,

VIA1, VIA2, VIA3, VIA4, VIA5, VIA6, VIA7}.
The terminal set, Tccs, for the construction-continuing

subtree consists of
Tccs = {END}.

8.3. Fitness Measure
Note that all of the above could be applied to any one-input,
one-output LC circuit. It is the fitness measure that directs
the evolutionary process (in the search space of circuit-
constructing program trees) to a program tree that constructs
the desired asymmetric bandpass filter. In other words,
circuit structure arises from fitness.

The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with its
execution. This execution applies the functions in the
program tree to the very simple embryonic circuit, thereby
developing the embryonic circuit into a fully developed
circuit. A netlist describing the circuit is then created. The
netlist identifies each component of the circuit, the nodes to
which that component is connected, and the value of that
component. Each circuit is then simulated to determine its
behavior. The 217,000-line SPICE simulator was modified
to run as a submodule within the genetic programming
system. SPICE (an acronym for Simulation Program with
Integrated Circuit Emphasis) is a large family of programs
written over several decades at the University of California
at Berkeley for the simulation of analog, digital, and mixed
analog/digital electrical circuits (Quarles et al. 1994). The
input to a SPICE simulation consists of a netlist describing
the circuit to be analyzed and certain commands that
instruct SPICE as to the type of analysis to be performed
and the nature of the output to be produced.

In general, the fitness measure may incorporate any
calculable characteristic or combination of characteristics of
the circuit, including the circuit's behavior in the time
domain, its behavior in the frequency domain, its power
consumption, or the number, cost, or surface area of its
components.

Since we are designing a filter, the focus is on the
behavior of the circuit in the frequency domain. SPICE is
requested to perform an AC small signal analysis and to

report the circuit's behavior for each of 101 frequency
values chosen from the range between 10,000 Hz to
200,000 Hz (in equal increments on a logarithmic scale).

Fitness is measured in terms of the sum, over these 101
fitness cases, of the absolute weighted deviation between
the actual value of the relative voltage (in decibels) that is
produced by the circuit at the probe point VOUT and the
target value for relative voltage. The smaller the value of
fitness, the better. A fitness of zero represents an ideal
filter. Specifically, the standardized fitness is

F(t) =
i=0

100
∑ [W (d (f i), f)d (f i)]

where fi is the frequency of fitness case i; d(x) is the
difference between the target and the observed values at
frequency x; and W(y, x) is the weighting for a difference of
y at frequency x.

The fitness measure does not penalize ideal values; it
slightly penalizes every acceptable deviation; and it heavily
penalizes every unacceptable deviation.

First consider the 87 sample points outside the desired
passband. If the relative voltage is below –120 dB for a
particular fitness case outside the desired passband, then the
deviation is deemed to be zero for that fitness case. If the
relative voltage is in the acceptable region (light shading in
figures 11, 12, and 13) for a particular fitness case outside
the desired passband, the absolute value of the deviation
from –120 dB is weighted by 1 for that fitness case. If the
relative voltage is in the unacceptable region (white in
figures 11, 12, and 13) for a particular fitness case outside
the desired passband, the absolute value of the deviation
from –120 dB is weighted by 10 for that fitness case. This
arrangement reflects the fact that the ideal relative voltage
outside the desired passband is –120 dB or less, the fact that
the previously described deviations are acceptable, and the
fact that other deviations are unacceptable.

Next consider the 14 points inside the desired passband.
If the relative voltage is between –0.6 dB and 0.6 dB, the
absolute value of the deviation from 0 dB is weighted by a
factor of 10.0; however, if the relative voltage lies outside
that narrow region, the absolute value of the deviation from
0 dB is weighted by a factor of 100. This arrangement
reflects the fact that the ideal relative voltage in the
passband is 0 dB, the fact that a ripple of up to 0.6 dB
centered at 0 dB is acceptable, and the fact that a relative
voltage more than 0.6 dB away from 0 dB in either direction
is unacceptable. The factors of 10 and 100 (rather than 1
and 10) were selected to approximately equalize the weight
given to the relatively few sample points (i.e., 14) within the
desired passband as compared to the relatively large number
of sample points (i.e., 87) outside the desired passband.

Hits are defined as the number (0 to 101) of fitness cases
for which the relative voltage is acceptable or ideal.

Some of the bizarre circuits that are created by genetic
programming cannot be simulated by SPICE. Such circuits
are assigned a high penalty value of fitness (108).

8.4. Control Parameters
The population size, M, is 640,000. Each subsequent
generation of the run is created from the population of the
preceding generation by performing 569,600 one-offspring
crossover operations (89% of 640,000), 64,000
reproduction operations (10% of 640,000), and 6,400
mutation operations (1% of 640,000). A maximum size of
200 points was established for each of the two result-
producing branches. The other minor parameters for
controlling the runs were the default values specified in
Koza 1994a (appendix D).

8.5. Parallel Implementation
This problem was run on a medium-grained parallel
Parsytec computer system consisting of 64 80 MHz
PowerPC 601 processors arranged in a toroidal mesh with a
host PC Pentium type computer (running Windows). The
so-called distributed genetic algorithm for parallelization
was used with a subpopulation (deme) size of Q = 10,000
at each of D = 64 demes. On each generation, four
boatloads of emigrants, each consisting of B = 2% (the
migration rate) of the node's subpopulation (selected on the
basis of fitness) were dispatched to each of the four
toroidally adjacent processing nodes. Details of the parallel
implementation of genetic programming can be found in
Andre and Koza 1996.

9. Results
We made three runs of this problem. Two came close to
solving the problem. We now discuss in detail the one run
that produced an individual scoring 101 hits.

The best circuit of the 640,000 circuits from generation
0 has a fitness of 59,191, scores 72 hits, and is shown in
figure 8. Figure 11 shows its behavior in the frequency
domain. The horizontal scale is linear and ranges from
10,000 Hz to 200,000 Hz. The vertical scale is relative
voltage in decibels. The curve represents the behavior of
this circuit in the frequency domain. As can be seen, the
curve in this figure peaks at –14.7 dB when the frequency is
38.40 KHz. This behavior does not even remotely satisfy
Nielsen's design goals. However, the narrow peak at 38.40
KHz (which falls far short of the desired height) does, in
fact, lie within the desired passband. That is, this
inadequate circuit differentially passes frequencies near
38.40 KHz.

About 78% of the programs of generation 0 for this
problem produce circuits that cannot be simulated by
SPICE. However, the percentage of unsimulatable circuits
drops rapidly as new offspring are created by genetic
programming using Darwinian selection, crossover, and
mutation. The percentage of unsimulatable programs drops
to 37% by generation 1. Between generations 2 and 202,
the average percentage of unsimulatable circuits is 13.7%.
That is, starting as early as the third generation, the vast
majority of the circuits are simulatable.

This observation supports the general principle that the
individuals in the population in intermediate generations of
a run of genetic programming (and random subtrees picked

from them by the crossover operation) differ markedly from
the individuals (and their randomly picked subtrees) in the
randomly created population of generation 0 of the same
run.

Crossover fragments from intermediate generations of a
run of genetic programming are very different from the

randomly grown subtrees supplied by the mutation
operation. This fact is experimental evidence, for this non-
trivial problem, that the population serves the vital role in
the genetic algorithm of providing a reservoir of useful
fragments to rapidly advance the search.

Figure 8 Best circuit of generation 0.

Figure 9 Best circuit of generation 32.

Figure 10 Best-of-run circuit of generation 199.

.

-150

-100

-50

0

50

D
ec

ib
el

s

Ideal
Acceptable
Unacceptable

Gen 0

20010 31.2
Frequency (in 1000 Hz)

45.6 69.9 84.0
20

Figure 11 Frequency domain behavior of best circuit of
generation 0.

.

-150

-100

-50

0

50

D
ec

ib
el

s

Ideal
Acceptable
Unacceptable

Gen 32

20010 31.2
Frequency (in 1000 Hz)

45.6 69.9 84.0
20

Figure 12 Frequency domain behavior of best circuit of
generation 32.

-150

-100

-50

0

50

D
ec

ib
el

s Ideal
Acceptable
Unacceptable

Gen 199

20010 31.2
Frequency (in 1000 Hz)

45.6 69.9 84.0
20

Figure 13 Frequency domain behavior of best-of-run
circuit of generation 199.

Point-to-point search techniques (e.g., simulated
annealing, hillclimbing) do not have this reservoir from
which to draw.

In embarking on this project of trying to evolve
electronic circuits using genetic programming, one of our
major threshold concerns was whether any significant
percentage of the randomly created circuits of generation 0

in this highly epistatic search space would be simulatable at
all by SPICE. A second concern was whether the crossover
operation would create any significant percentage of
simulatable circuits. Neither of these concerns materialized
with genetic programming on this problem. Darwinian
selection apparently is very effective in quickly steering the
population on successive generations into the portion of the

search space where parents can successfully sire simulatable
offspring by means of the crossover operation.

The best individual program in generation 32 has a
fitness of 10,343.0, scores 87 hits, and is shown in figure 9.
Figure 12 shows its frequency domain behavior.

 The first 100%-compliant program achieving 101 hits
appeared in generation 132 and has a fitness of 2252.5.
However, we allowed the run to continue. The best-of-run
program emerged in generation 199, has a fitness of 2024.0,
scores 101 hits, and is shown in figure 10. Figure 13 shows
its frequency domain behavior. As can be seen, 100% of
the points are in compliance with the design specifications.
Moreover, all the points in the passband are within 0.39 dB
of 0 dB whereas the specifications merely require a
passband ripple of less than 0.6 dB.

10. Related Work
The above techniques have recently been successfully
applied to a variety of different problems of circuit
synthesis.

10.1. Lowpass "Brick Wall" Filter
Consider the problem of designing a lowpass filter with
passband below 1,000 Hz and a stopband above 2,000 Hz
(as described in Koza, Bennett, Andre, and Keane 1996a).
The voltages in the passband are to be between 970
millivolts and 1 volt (i.e., the passband ripple is 30
millivolts) and the voltages in the stopband between 0 volts
and 1 millivolt.

In some runs of this problem, the genetically evolved
lowpass filter has a topology that is similar to that employed
by human engineers. For example, in one run, the 100%
compliant evolved circuit (figure 14) had the recognizable
ladder topology of a Butterworth or Chebychev filter (i.e., a
composition of inductors horizontally with capacitors as
vertical shunts).

Figure 14 Seven-rung ladder circuit from generation 32.

In another run, a 100%-compliant recognizable "bridged
T" arrangement (figure 15) was evolved (involving
capacitors C3 and C15 and inductor L11 in conjunction
with L14).

Figure 15 "Bridged T" from generation 64.

Figure 16 shows a 100%-compliant circuit from
generation 212 of yet another run. It has a novel topology
that no electrical engineer would be likely to create.

Figure 16 Best circuit from generation 212.

10.2. A 5 dB Amplifier using Transistors
Now consider the problem of designing an amplifier with an
amplification factor of 3.5 over the frequency range of 20
Hz to 20,000 Hz. Amplifiers are active circuits; they
require active components such as transistors. The major
change in the function set needed to evolve the amplifier is
to add the resistor-creating R function and the transistor-
creating QT functions.

Figure 17 shows a genetically evolved 5 dB amplifier.
The boxes highlight a recognizable voltage gain stage and a
quasi-Darlington emitter-follower stage.

Voltage Gain Stage

Darlington
Emitter-
Follower
Stage

Figure 17 Genetically evolved 5 dB amplifier from
generation 45.

10.3. A Crossover Filter
Now consider the problem of designing a crossover (woofer
and tweeter) filter with a crossover frequency of 2,512 Hz
(as described more fully in Koza, Bennett, Andre, and
Keane 1996b). The voltages in the passband are to be
between 970 millivolts and 1 volt (i.e., the passband ripple
is 30 millivolts) and the voltages in the stopband between 0
volts and 1 millivolt. This problem requires a one-input,
two-output embryonic circuit and requires that the fitness be
measured at two probe points, but is otherwise similar to the
previously discussed circuits. In one run, the best-of-run
circuit (figure 18) from generation 137 scores 192 hits. The
lowpass part of the best-of-run circuit has the Butterworth
topology (but not the Butterworth component values). The
highpass part of the best-of-run circuit also has the
Butterworth topology (but not the Butterworth component
values), except for additional capacitor C36. Note that
highpass Butterworth filters have capacitors in series
horizontally and inductors as vertical shunts. An analysis of
this genetically evolved circuit in the frequency domain
indicates that it delivers a response that is slightly better
than the combination of lowpass and highpass Butterworth
filters of order 7.

Figure 18 Best circuit from generation 137.

10.4. Related Paper in this Volume
Another paper (appearing next in this volume) on the
subject of evolving circuits was presented at this
conference.

Acknowledgments
Tom L. Quarles provided helpful advice concerning SPICE.
Simon Handley and Scott Brave commented on earlier
drafts.

Bibliography
Andre, David and Koza, John R. 1996. Parallel genetic

programming: A scalable implementation using the
transputer architecture. In Angeline, P. J. and Kinnear,
K. E. Jr. (editors). Advances in Genetic Programming 2.
Cambridge: MIT Press.

Degrauwe, M. 1987. IDAC: An interactive design tool for
analog integrated circuits. IEEE Journal of Solid State
Circuits. 22:1106–1116.

Gruau, Frederic. 1992. Cellular Encoding of Genetic
Neural Networks. Technical report 92-21. Laboratoire
de l'Informatique du Parallélisme. Ecole Normale
Supérieure de Lyon. May 1992.

Harjani, R., Rutenbar, R. A., and Carley, L. R. 1989.
OASYS: A framework for analog circuit synthesis. IEEE
Transactions on Computer Aided Design. 8:1247–1266.

Hemmi, Hitoshi, Mizoguchi, Jun'ichi, and Shimohara,
Katsunori. 1994. Development and evolution of
hardware behaviors. In Brooks, R. and Maes, P.
(editors). Artificial Life IV: Proceedings of the Fourth
International Workshop on the Synthesis and Simulation
of Living Systems. Cambridge, MA: MIT Press. Pages
371–376.

Higuchi, T., Niwa, T., Tanaka, H., Iba, H., de Garis, H. and
Furuya, T. 1993. Evolvable hardware – Genetic-based
generation of electric circuitry at gate and hardware
description language (HDL) levels. Electrotechnical
Laboratory technical report 93-4, Tsukuba, Ibaraki,
Japan.

Holland, John H. 1975. Adaptation in Natural and
Artificial System. Ann Arbor, MI: University of Michigan
Press.

Koh, H. Y., Sequin, C. H. and Gray, P. R. 1990. OPASYN:
A compiler for MOS operational amplifiers. IEEE
Trans. on Computer Aided Design. 9:113–125.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996a. Automated design of both the
topology and sizing of analog electrical circuits using
genetic programming. In Gero, John S. and Sudweeks,
Fay (editors). Artificial Intelligence in Design '96.
Dordrecht: Kluwer Academic Publishers. 151-170.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996b. Four problems for which a
computer program evolved by genetic programming is
competitive with human performance. Proceedings of
the 1996 IEEE International Conference on Evolutionary
Computation. IEEE Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

Kruiskamp, Wim and Leenaerts, Domine. 1995. DARWIN:
CMOS opamp synthesis by means of a genetic algorithm.
Proceedings of the 32nd Design Automation Conference.
New York, NY: Association for Computing Machinery.
Pages 433–438.

Maulik, P. C. Carley, L. R., and Rutenbar, R. A. 1992. A
mixed-integer nonlinear programming approach to
analog circuit synthesis. Proceedings of the 29th Design
Automation Conference. Los Alamitos, CA: IEEE Press.
Pages 698–703.

Mizoguchi, Junichi, Hemmi, Hitoshi, and Shimohara,
Katsunori. 1994. Production genetic algorithms for
automated hardware design through an evolutionary
process. Proceedings of the First IEEE Conference on
Evolutionary Computation. IEEE Press. Volume I. Pages
661-664.

Nielsen, Ivan Riis. 1995. A C-T filter compiler - From
specification to layout. Analog Integrated Circuits and
Signal Processing. 7(1):21–33.

Ning, Z., Kole, M., Mouthaan, T., and Wallings, H. 1992.
Analog circuit design automation for performance.
Proceedings of the 14th IEEE CICC. New York: IEEE
Press. Pages 8.2.1–8.2.4.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and
Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version 3F5
User's Manual. Department of Electrical Engineering
and Computer Science, University of California,
Berkeley, California. March 1994.

Rutenbar, R. A. 1993. Analog design automation: Where
are we? Where are we going? Proceedings of the l5th
IEEE CICC. New York: IEEE Press. 13.1.1-13.1.8.

