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ABSTRACT 

Most problem-solving techniques 
used by engineers involve the 
introduction of analytical and 
mathematical representations and 
techniques that are entirely foreign to 
the problem at hand.  Genetic 
programming offers the possibility of 
solving problems in a more direct way 
using the given ingredients of the 
problem.  This idea is explored by 
considering the problem of designing an 
electrical controller to implement a 
solution to the time-optimal fly-to 
control problem.  

 

1. Introduction 
Suppose an engineer is faced with the problem of designing 
an electronic device to control the flight of an aircraft with a 
constrained turning radius such that the aircraft flies to an 
arbitrary destination point in minimal time.   

The required end-product is an electronic device 
composed of a particular topological arrangement of 
transistors, diodes, power sources, and resistors of various 
values.  The required behavior is expressed in terms of time.  
However, even though the original given ingredients of the 
stated problem are electronic components and time, a 
practicing engineer would not ordinarily directly work with 
these original given ingredients in solving the problem.  
Instead, the engineer would typically inject into the 
problem-solving process a large number of additional 
technologies that are entirely foreign to the problem at hand 
and then try to solve the problem using those  technologies.  
The engineer's approach might well involve steps such as 
the following three.  

First, the engineer might introduce mathematics into the 
problem.  His goal would be to create a mathematical model 
that extracts key features of the problem and represents 

them as mathematical objects that can be manipulated using 
mathematical methods.  For example, the engineer might 
draw a geometric diagram containing points representing 
the aircraft and its destination, circles reflecting the 
aircraft's constrained turning radius, and various vectors 
representing trajectories of the aircraft.  The engineer might 
then use the diagram to write equations that capture certain 
key relationships of the problem.   

Second the engineer might solve the mathematical 
problem created by his geometric and mathematical 
analysis.  For the version of the fly-to problem involving an 
aircraft flying at constant speed and altitude, Clements 
(1990) found the Hamiltonian and La grange multipliers for 
this optimal control problem and then used the Pontryagin 
minimization theorem to find the aircraft's optimal control 
strategy.   

Third, the engineer might introduce computer science 
techniques and electronic design techniques into the 
problem so that he could design the desired electronic 
circuit for controlling the flight of an aircraft to implement 
the solution to the mathematical problem.   

If the engineer elected to implement the mathematical 
solution with a mixed analog-digital controller, he would 
use some programming language to write the computer 
program embodying the mathematical steps of the optimal 
control strategy.  A compiler would then be used to translate 
the individual instructions of the programming language 
into executable machine code.  This machine code would 
then be executed by a  digital microprocessor that would 
perform, say, floating-point addition, subtraction, 
multiplication, and division on binary numbers in the fixed-
size registers of the microprocessor.  Finally, a digital-to-
analog converter would be used to convert the output of the 
digital processor into the analog signal that will actually 
control the aircraft's heading.   

Alternatively, if the engineer elected to implement the 
mathematical solution with a purely analog controller, he 
would forego the purely digital processing and instead go 
through the process of designing an analog circuit 
(effectively an analog computer) that would perform the 
mathematical computations with analog electrical signals 
for optimally controlling the aircraft's heading.   



 

The design of analog circuits, in general, is difficult and 
has not proved to be amenable to automation.  Part of the 
difficulty of the analog design process stems from the fact 
that the behavior of analog circuits is specified by a system 
of integro-differential equations (one equation for each node 
and loop in the circuit in accordance with Kirchhoff's node 
and loop laws).  When the circuit contains only capacitors, 
inductors, and resistors, the equations in the system are 
"merely" linear integro-differential equations and 
mathematical techniques such as Laplace transforms can be 
used to solve the equations.  When the circuit contains 
components such as transistors and diodes (which are 
present in most electronic circuits and, in any event, are 
necessary for the problem at hand), the equations are non-
linear and vexatious.  Even when it is possible to solve 
these equations for the behavior of a circuit, it is difficult to 
design (synthesize) a circuit with that particular behavior.  
In discussing the difficulty of designing analog circuits, 
Aaserud and Nielsen (1995) observe,  

"Analog designers are few and far between.  In 
contrast to digital design, most of the analog circuits 
are still handcrafted by the experts or so-called 'zahs' 
of analog design.  The design process is characterized 
by a combination of experience and intuition and 
requires a thorough knowledge of the process 
characteristics and the detailed specifications of the 
actual product.  

"Analog circuit design is known to be a knowledge-
intensive, multiphase, iterative task, which usually 
stretches over a significant period of time and is 
performed by designers with a large portfolio of skills.  
It is therefore considered by many to be a form of art 
rather than a science."  
Notice that regardless of whether the engineer elects to 

implement the solution as a mixed analog-digital circuit or a 
purely analog circuit, he must inject into the problem-
solving process numerous representations and technologies 
that are entirely foreign to the problem at hand, including 

• geometry, 
• mathematical equations 
• Hamiltonians, 
• Lagrande multipliers, and 
• Pontryagin's principle 

plus either 
• digital microprocessors, 
• programming languages,  
• compilers 
• digital-to-analog converters 

or plus 
• integro-differential equations, 
• Laplace transforms, and 
• analog design techniques.   
This paper discusses genetic programming as a problem-

solving approach that works in a more direct way with the 
original given ingredients of the problem and, specifically, 
avoids or minimizes the introduction of additional 
representations and technology that are foreign to the 

problem at hand.  This approach is applied to the problem of 
building an electrical controller device to discover the 
solution to the time-optimal fly-to control problem.  The 
approach that is used herein could be directly applied to 
many other problem areas. 

Section 2 presents the fly-to problem and its 
mathematical solution.  Section 3 presents the preparatory 
steps for the solution to the fly-to problem using genetic 
programming.  Section 4 presents the results.    

2. The Fly-To Problem 
In the fly-to problem (Clements 1990), the goal is to find a 
program for controlling the flight of an aircraft (flying at 
constant speed and altitude) such that the aircraft flies to an 
arbitrary destination point in minimal time.   

The difficulty of this optimal control problem arises 
from the fact that the aircraft's nonzero minimum turning 
radius generally precludes flying directly to the destination.   
Like other non-trivial optimal control problems, this 
problem cannot be solved merely by repetitively executing a 
hill-climbing action that greedily improves the distance 
between the aircraft and the destination at every 
intermediate point along the aircraft's trajectory.  Instead, 
such problems require executing various seemingly 
disadvantageous actions in order to later achieve the 
globally optimal result.   

In figure 1, the aircraft is initially positioned at the 
origin (0, 0) of the coordinate system and is headed east 
(i.e., along the positive x axis).  The aircraft files at a 
constant air speed, A.    The aircraft's maximum turn angle 
Θmax defines a turning radius, R, for the aircraft.   The two 
circles centered at (0, +R) and (0, –R) in the figure each 
have a radius equal to this turning radius.  The aircraft's 
constant-altitude flight is controlled by the turn angle Θ, 
which controls the aircraft's change in heading.  Angles are 
measured in radians counterclockwise from the positive x 
axis.   
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Figure 1  The first three cases of the fly-to problem.  

Suppose the fly-to (target) point lies on the positive x 
axis, such as point (x1, y1) in the figure.  In this first case, 
flying straight ahead (i.e., east) will bring the aircraft to the 
target in minimum time.  Thus, the time-optimal control 
strategy for the aircraft is to fly straight ahead along the 
positive x axis (i.e., with Θ = 0 radians).  The aircraft's time-
optimal trajectory will be the straight line between the 
origin and the target (x1, y1) along the positive x axis.   



 

In the second case, the target point, such as (x3, y3), lies 
on the circumference of the upper circle of radius R.  For 
this second case, the time-optimal control strategy is to turn 
with a heading equal to the maximum turn angle Θ = 
+Θmax (i.e., initially northeast)  The aircraft's time-optimal 
trajectory will be the portion of the circumference of the 
circle between the origin and the target (x3, y3).  By 
symmetry, the minimum-time control strategy for any point, 
such as (x6, y6), on the circumference of the lower circle 
involves heading at the maximum turn angle of Θ = –Θmax 
(i.e., initially southeast).   

The remaining points can be classified into two 
additional cases based on whether they are outside or inside 
the circles.  The strategies for these next two cases employ 
portions of the aircraft trajectories used by one or both of 
the above strategies.  

In the third case, the target point is in the first and 
second quadrants but outside the upper circle.  For a point 
such as (x2, y2), there is a unique first point P on the 
circumference of the upper circle such that the tangent line 
to the upper circle at point P passes through (x2, y2).  For 
this third case, the minimum-time control strategy for the 
aircraft is to turn at the maximum angle Θ = +Θmax until 
the aircraft reaches point P on the circumference of the 
upper circle and then to fly straight ahead (i.e., with an 
angle of Θ = 0) to the target.  The aircraft's time-optimal 
trajectory will be the portion of the circumference of the 
upper circle between the origin and P combined with the 
tangent line between P and the target (x2, y2).  Note that 
this strategy works regardless of the location of (x2, y2) in 
the first or second quadrants and outside the upper circle 
(including, specifically, points in the second quadrant 
behind the aircraft).  By symmetry, a similar strategy (of 
first turning southeast at the maximum angle of Θ = –Θmax 
and then flying straight)  works for target points outside the 
lower circle, such as (x5, y5).  Points on the negative x axis 
(i.e., behind the aircraft) can be reached equally well in this 
manner (initially going around the circle in either direction).  

In the fourth case, the target point is in the first or 
second quadrants but inside the upper circle.   None of the 
points inside the upper circle can be reached by pursuing a 
hill-climbing action that greedily improves the distance 
between the aircraft and the target at every intermediate 
point along the aircraft's trajectory.   Such points can only 
be reached by incurring a substantial temporary increasing 
of the distance between the aircraft and the target.  Figure 2 
shows, for a point such as (x4, y4), that there is a unique 
point Q to the east of the origin on the circumference of the 
lower circle such that a unique circle is tangent to the lower 
circle at point Q and passes through (x4, y4) of the upper 
circle.   For this fourth case, the minimum-time control 
strategy for the aircraft is to turn at the maximum angle Θ = 
–Θmax (i.e., initially turning southeast thereby increasing 
the distance between the aircraft and the target) until the 
aircraft reaches point Q and then to reverse directions and 

turn at the maximum angle +Θmax until the aircraft reaches 
the target.  The aircraft's time-optimal trajectory will be the 
portion of the circumference of the lower circle between the 
origin and Q and the portion of the circumference of the 
new tangent circle between Q and the target.   Note that this 
strategy works regardless of the location of (x4, y4), in the 
first or second quadrants and inside the upper circle 
(including, specifically, points behind the aircraft in the 
second quadrant).  By symmetry, a similar strategy (of first 
turning northeast at the maximum angle of Θ = +Θmax and 
then turning at the maximum angle of Θ = –Θmax) works 
for target points inside the lower circle, such as (x7, y7).   
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Figure 2  The fourth case of the fly-to problem.  

The above optimal control strategies and trajectories 
were described as if the state of the system were the 
aircraft's changing position relative to the ground, namely 
(xground(t), yground(t)).  If the control variable for the 
aircraft is the turn angle Θ, then the state-transition 
equations for the system are 

xground(t + 1) = xground(t) + A  ∆t  Cos Θ 

yground(t + 1) = yground(t) + A  ∆t  Sin Θ 
The more natural viewpoint for an aircraft controller is 

the view from the aircraft.   In this view, whenever the 
aircraft travels in a particular direction, the coordinate 
system is immediately adjusted so that the aircraft is 
repositioned to the origin (0, 0) of the coordinate system 
with the aircraft heading due east.  In this view, the state of 
the system is the changing location of the target (fly-to) 
point.  

Each of the above four optimal control strategies can be 
restated in accordance with this new view from the aircraft.  
For the first case, the strategy of flying straight ahead 
toward a target on the positive x axis has the effect of 
moving the target point west along the positive x axis until 
it reaches the aircraft.   For the second case, the strategy of 
turning with a turn angle Θmax for a target point on the 
circumference of the upper circle has the effect of moving 
the target point around the circumference of the circle until 
it reaches the aircraft.   For the third case, the strategy for a 
target point in the first or second quadrants and outside the 
upper circle has the effect of first rotating the target to the 
positive x axis and then moving the target west along the 
positive x axis until it reaches the aircraft.  For the fourth 
case, the strategy for a target point inside the upper circle 
has the effect of first rotating the target away from the 



 

aircraft to the circumference and then moving the target 
point around the circumference until it reaches the aircraft.  

As a specific example, consider an aircraft whose 
constant air speed, A, is 200 knots and whose maximum 
performance rate of turn corresponds to a turn angle of 
0.197 radians.   The aircraft is located at the origin of a 
coordinate system representing a world extending 4 nautical 
miles in each of the four directions.   A total of 80 time 
steps of 0.001 hour each are used in simulating the 
trajectory of the aircraft.  The total simulation time of 0.080 
hours generously permits a trajectory equivalent to the 
aircraft flying twice across its world of 64 square nautical 
miles.   

3. Preparatory Steps  
We used genetic programming (an extension of the genetic 
algorithm described in Holland 1975) in which the 
population consists of computer programs of varying sizes 
and shapes as described in Koza 1992, 1994a, 1994b; Koza 
and Rice 1992; Kinnear 1994; Angeline and Kinnear 1996, 
and Koza, Goldberg, Fogel, and Riolo 1996).   

We used the methods for designing analog electrical 
circuits with genetic programming described in Koza, 
Andre, Bennett, and Keane (1996), and Koza, Bennett, 
Andre, and Keane (1996a, 1996b, 1996c, 1996d, 1997).  
See also Gruau's innovative work on cellular encoding 
(1996).  

Before applying genetic programming to a problem of 
circuit synthesis, the user must perform seven major 
preparatory steps, namely (1) identifying a suitable 
embryonic circuit,  (2) determining the architecture of the 
overall circuit-constructing program trees, (3) identifying 
the terminals of the to-be-evolved programs, (4) identifying 
the primitive functions contained in the to-be-evolved 
programs, (5) creating the fitness measure, (6) choosing 
certain control parameters (notably population size and the 
maximum number of generations to be run), and (7) 
determining the termination criterion and method of result 
designation.   

 
Figure 3  Two-input, one-output embryonic circuit.   

The electrical circuit to solve the fly-to problem requires 
two analog inputs and one analog output.  The two inputs 
consist of the current location (xfly-to(t), yfly-to(t)) of the 
target fly-to point in relation to an aircraft heading due east 
and positioned at the origin of the coordinate system.  The 
output is interpreted by the wrapper (output interface) to be 

the aircraft's turn angle Θ.   Figure 3 shows an embryonic 
circuit for a two-input, one-output circuit.   

The number of automatically defined functions, if any, 
will emerge as a consequence of the evolutionary process 
using the architecture-altering operations (Koza 1994c). 
Since the embryonic circuit has three modifiable wires, 
there are three writing heads and three result-producing 
branches (RPB0, RPB1, RPB2) in each circuit-constructing 
program tree.  Each program in the initial population of 
programs has a uniform architecture with no automatically 
defined functions (i.e., three result-producing branches).    

For this problem, the function set, Fccs, for each 
construction-continuing subtree is 
Fccs = {R, SERIES, PSS, PSL, FLIP, NOP, 

NEW_T_GND_0, NEW_T_GND_1, NEW_T_POS_0,  
NEW_T_POS_1, NEW_T_NEG_0, NEW_T_NEG_1, 
PAIR_CONNECT_0, PAIR_CONNECT_1, 
Q_D_NPN, Q_D_PNP, Q_3_NPN0, ..., 
Q_3_NPN11, Q_3_PNP0, ..., Q_3_PNP11, 
Q_POS_COLL_NPN, Q_GND_EMIT_NPN, 
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, 
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP} 

SPICE's default npn and pnp transistor model 
parameters were used.   

Space does not permit a detailed description of each 
component-creating and connection-modifying function.  
For details, see Koza, Andre, Bennett, and Keane (1996), 
and Koza, Bennett, Andre, and Keane (1996a, 1996b, 
1996c, 1996d, 1997).   

The terminal set, Tccs, for the construction-continuing 
subtree is 
Tccs = {END, SAFE_CUT}.   

The function set, Faps, for each arithmetic-performing 
subtree is, 
Faps = {+, -}.  

The terminal set, Taps, for each arithmetic-performing 
subtree consists of 
Taps = {←},  
where ← represents floating-point random constants from –
1.0 to +1.0.   

The fitness of a controller was evaluated using 72 
randomly chosen fitness cases each representing a different 
target (fly-to) point.   Fitness was the sum, over the 72 
fitness cases, of the fly-to times.  A smaller sum is better.    
If the aircraft came within a capture radius of 0.28 nautical 
miles of its target point before the end of the 80 time steps 
allowed for a particular fitness case, the contribution to 
fitness for that fitness case was the actual fly-to time.  
However, if the aircraft failed to come within the capture 
radius during the 80 time steps, the contribution to fitness 
was 0.160 hours (i.e., double the worst possible time).   

The calculation of fitness requires up to 5,760 
executions (72 ∞ 80) of each individual program.  The 
world of 64 square nautical miles was discretized into a 40 
∞ 40 grid of 1,600 discrete squares (with each square being 
0.2 ∞ 0.2 nautical miles).  A table was computed for each 



 

individual program in the population giving the value of the 
control variable Θ as if the target points were in the center 
of each of the 1,600 squares and the aircraft were at (0,0).  
When an individual program was executed for a particular 
one of the 80 time steps of a particular one of the 72 fitness 
cases, the state of the system was computed from the above 
state-transition equations using floating-point arithmetic.  
However, the value of the control variable, Θ, was obtained 
from the table as if the target were located in the center of 
its square.   In addition, if the aircraft flew outside of its 
world of 64 square nautical miles or if the target point was 
moved out of the world relative to the aircraft's frame of 
reference, the simulation was terminated and that fitness 
case was assigned the penalty value of fitness of 0.160 
hours.  

For this problem, the voltage VOUT is probed at node 5. 
The SPICE simulator (Quarles et al. 1994) is requested to 
perform a nested DC sweep.  The nested DC sweep 
provides a way to simulate the DC behavior of a circuit with 
two inputs.  A nested DC sweep resembles a nested pair of 
FOR loops in a computer program in that both of the loops 
have a starting value for the voltage, an increment, and an 
ending value for the voltage.   For each voltage value in the 
outer loop, the inner loop simulates the behavior of the 
circuit by stepping through its range of voltages.   
Specifically, the starting value for voltage is –4 volts, the 
step size is 0.2 volts, and the ending value is +4 volts.  
These values correspond to the dimensions of the aircraft's 
world of 64 square nautical mile extending 4 nautical miles 
in each of the four directions from the origin of a coordinate 
system (i.e., 1 volt equals 1 nautical mile).   

When an individual program is executed, it produces a 
numeric value, x, which the wrapper transforms into the 
turn angle Θ.  Figure 4 shows that the wrapper interprets the 
numeric value, x, returned by execution of an individual 
program by taking the output modulo 2π and clamping the 
absolute value to be less than or equal to Θmax.   

xπ

θ

−π θmax−θmax

θmax

−2π 2π

2π+θmax2π−θmax−2π+θmax−2π−θmax

−θmax  
Figure 4  Wrapper for the fly-to problem.    

The number of hits is defined as the number of fitness 
cases (from 0 to 72) for which the aircraft reaches its 
destination within 80 time steps (i.e., does not time out).   

The population size, M, was 640,000.  The architecture-
altering operations are used sparingly on each generation.  
The percentage of operations on each generation after 
generation 5 were 86.5% one-offspring crossovers; 10% 
reproductions; 1% mutations; 1% branch duplications; 0.5% 
branch deletions; and 1% branch creations.  Since we did 
not want to waste large amounts of computer time in early 
generations where only a few programs have any 
automatically defined functions at all, the percentage of 
operations on each generation before generation 6 was 

78.0% one-offspring crossovers; 10% reproductions; 1% 
mutations; 5.0% branch duplications; 1% branch deletions; 
and 5.0% branch creations.  The maximum size, Hrpb, for 
each of the three result-producing branches was 300 points. 
The maximum number of automatically defined functions 
was 2.  The number of arguments for each automatically 
defined function was 1.  The maximum size, Hadf, for each 
of the automatically defined functions, if any, was 300 
points.  The other parameters for controlling the runs were 
the default values specified in Koza 1994a (appendix D). 

This problem was run on a medium-grained parallel 
Parsytec computer system consisting of 64 80-MHz Power 
PC 601 processors arranged in a toroidal mesh with a host 
PC Pentium type computer.  The distributed genetic 
algorithm was used with a population size of Q =  10,000 at 
each of the D = 64 demes.  On each generation, four 
boatloads of emigrants, each consisting of B = 2% (the 
migration rate) of the node's subpopulation (selected on the 
basis of fitness) were dispatched to each of the four 
toroidally adjacent processing nodes (Andre and Koza 
1996).  

4. Results 
The best circuit from generation 0 scores 61 hits (out of 72) 
and achieves a fitness of 3.005 hours and has seven 
transistors, one diode, and one resistor (not counting the 
three resistors of the embryo and those embedded in the 
power supplies).      

The best circuit from generation 8 scores 67 hits and 
achieves a fitness of 2.57 hours and has seven transistors, 
one diode, and one resistor (not counting the three resistors 
of the embryo and those embedded in the power supplies).   

The best circuit from generation 17 scores 69 hits and 
achieves a fitness of 2.06 hours while the best circuit of 
generation 20 scores 72 hits and achieves a fitness of 1.602 
hours.    

The best-of-run circuit (figure 5) appeared in generation 
31 scores 72 hits and achieves a near-optimal fitness of 
1.541 hours.   This circuit has 10 transistors and four 
resistors.  Its circuit-constructing program tree has 24, 11, 
and 54 points, respectively, in its three result-producing 
branches.  Its ADF0 has 12 points and is called twice.   



 

 
Figure 5  Best-of-run circuit from generation 31.    

In comparison, the optimal value of fitness for this 
problem is known (from Clements 1990) to be 1.518 hours 
(which is an average of about 21 time steps of about 0.001 
hour each for each of the 72 fitness cases).  

This genetically evolved result is an electronic circuit 
that was created without resort to analytical or mathematical 
methods.  Implementation and realization of this evolved 
result does not require programming of a digital processor 
or the design of an analog computational circuit.  In this 
instance, the genetically evolved result is the final solution 
to the original stated problem, namely the problem of 
designing an electronic device for controlling the flight of 
an aircraft such that the aircraft flies to an arbitrary 
destination point in minimal time.  

5. Conclusion 
The problem of designing an electrical controller to 
implement the solution to the time-optimal fly-to control 
problem was used to illustrate that genetic programming can 
solve problems in a holistic way using the original given 
ingredients of the problem and without introducing non-
indigenous analytical or mathematical techniques.   
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