
Human-Competitive Machine Intelligence by Means of
Genetic Algorithms

John R. Koza

Section on Medical Informatics
Department of Medicine

Stanford University
Stanford, California 94305
koza@stanford.edu

http://www.smi.stanford.edu/people/koza

ABSTRACT
This paper demonstrates the correctness of John

Holland’s expectation that the genetic algorithm
would have "applications to ... artificial
intelligence" by showing examples of the
automatic creation of human-competitive
computer programs from a high-level statement of
a problem’s requirements. The paper argues that
the field of design is a useful testbed for
determining whether an automated technique can
produce results that are competitive with human-
produced results and then presents several results
that are competitive with the products of human
creativity and inventiveness.

1 Introduction
The subtitle of John Holland's pioneering l975 book
Adaptation in Natural and Artificial Systems correctly
anticipated that the genetic algorithm would have
"applications to ... artificial intelligence."

When the entities in the evolving population are
computer programs (as opposed to, say, fixed-length
binary character strings), Holland’s genetic algorithm can
be used to perform the task of searching the space of
computer programs for a program that solves, or
approximately solves, a problem. This variation of the
genetic algorithm (called genetic programming) can solve
many types of problems, including problems of design,
control, classification, and system identification.

In particular, genetic programming can be used to
address the challenge of getting a computer to solve a
problem without explicitly programming it. This
challenge calls for an automatic system whose input is a
high-level statement of a problem's requirements and
whose output is a working program that solves the
problem. Paraphrasing Arthur Samuel (1959), this
challenge concerns

How can computers be made to do what needs to
be done, without being told exactly how to do it?

As Arthur Samuel (1983) further explained,

“The aim [is] ... to get machines to exhibit
behavior, which if done by humans, would be
assumed to involve the use of intelligence.”

There are now a number of instances where genetic
programming has produced a computer program that is
competitive with human performance on particular
problems from the fields of computational molecular
biology, cellular automata, sorting networks, and the
synthesis of the design of complex structures, such as
analog electrical circuits.

Section 3 describes genetic programming. Section 2
states what we mean when we say that an automatically
created solution to a problem is competitive with the
product of human creativity. Section 4 discusses the
suitability of design problems for evaluating whether an
automatic technique can produce results that are
competitive with human-produced results. Section 5
describes three illustrative problems of automatic circuit
synthesis (design) of analog electrical circuits. Section 6
describes how genetic programming is applied to such
problems. Section 7 shows the results. Section 8
mentions additional problems of automatic circuit
synthesis. Section 9 discusses the importance of illogic in
creativity and inventiveness.

2 Genetic Programming
Genetic programming progressively breeds a population
of computer programs over a series of generations by
starting with a primordial ooze of thousands of randomly
created computer programs and using the Darwinian
principle of natural selection, recombination (crossover),
mutation, gene duplication, gene deletion, and certain
mechanisms of developmental biology. Specifically,
genetic programming starts with an initial population of
randomly generated computer programs composed of the
given primitive functions and terminals. The programs in
the population are, in general, of different sizes and
shapes. The creation of the initial random population is a
blind random search of the space of computer programs
composed of the problem's available functions and
terminals.

On each generation of a run of genetic programming,
each individual in the population of programs is evaluated

as to its fitness in solving the problem at hand. The
programs in generation 0 of a run almost always have
exceedingly poor fitness for non-trivial problems of
interest. Nonetheless, some individuals in a population
will turn out to be somewhat more fit than others. These
differences in performance are then exploited so as to
direct the remainder of the search into promising areas of
the search space. The Darwinian principle of reproduction
and survival of the fittest is used to probabilistically
select, on the basis of fitness, individuals from the
population to participate in various operations. A small
percentage (e.g., 9%) of the selected individuals are
reproduced (copied) from one generation to the next. A
very small percentage (e.g. 1%) of the selected
individuals are mutated in a random way. The vast
majority of the selected individuals participate in the
genetic operation of crossover (sexual recombination) in
which two offspring programs are created by recombining
genetic material from two parents. The creation of the
initial random population and the creation of offspring by
the genetic operations are all performed so as to create
syntactically valid, executable programs. After the genetic
operations are performed on the current generation of the
population, the population of offspring (i.e., the new
generation) replaces the old generation. The tasks of
measuring fitness, Darwinian selection, and genetic
operations are then iteratively repeated over many
generations. Detailed information about genetic
programming can be found in Koza 1992; Koza and Rice
1992; Koza 1994a, 1994b; Koza, Bennett, Andre, and
Keane 1999; Koza, Bennett, Andre, Keane, and Brave
1999, Banzhaf, Nordin, Keller, and Francone 1998;
Langdon 1998; Kinnear 1994; Angeline and Kinnear
1996; Spector, Langdon, O'Reilly, and Angeline 1999;
Koza, Goldberg, Fogel, and Riolo 1996; Koza, Deb,
Dorigo, Fogel, Garzon, Iba, and Riolo 1997; Koza,
Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon,
Goldberg, Iba, Riolo 1998; and Banzhaf, Poli,
Schoenauer, and Fogarty 1998; and Poli, Nordin,
Langdon, and Fogarty 1999.

3 Human-Competitive Machine
Intelligence

What do we mean when we say that an automatically
created solution to a problem is competitive with human-
produced results?

We are not referring to the fact that a computer can
rapidly print ten thousand payroll checks or that a
computer can compute π to a million decimal places.
Instead, we think it is fair to say that an automatically
created result is competitive with one produced by human
engineers, designers, mathematicians, or programmers if
it satisfies any of the following eight criteria (or any other
similarly stringent criterion):

(A) The result was patented as an invention in the
past, is an improvement over a patented

invention, or would qualify today as a
patentable new invention.

(B) The result is equal to or better than a result that
was accepted as a new scientific result at the
time when it was published in a peer-reviewed
scientific journal.

(C) The result is equal to or better than a result that
was placed into a database or archive of results
maintained by an internationally recognized
panel of scientific experts.

(D) The result is publishable in its own right as a new
scientific result  independent of the fact that
the result was mechanically created.

(E) The result is equal to or better than the most
recent human-created solution to a long-
standing problem for which there has been a
succession of increasingly better human-created
solutions.

(F) The result is equal to or better than a result that
was considered an achievement in its field at
the time it was first discovered.

(G) The result solves a problem of indisputable
difficulty in its field.

(H) The result holds its own or wins a regulated
competition involving human contestants (in
the form of either live human players or human-
written computer programs).

Note that each of these criteria are couched in terms of
producing results, that the results are measured in terms
of standards outside the fields of artificial intelligence and
machine learning.

Table 1 shows 14 instances of results where genetic
programming has produced results that are competitive
with the products of human creativity and inventiveness
(Koza, Bennett, Andre, and Keane 1999). Each claim is
accompanied by the particular criterion (from the list
above) that establishes the basis for the claim. The
instances in the table include classification problems from
the field of computational molecular biology, a long-
standing problem involving cellular automata, a problem
of synthesizing the design of a minimal sorting network,
and several problems of synthesizing the design of analog
electrical circuits. As can be seen, 10 of the 14 instances
in the table involve previously patented inventions.

4 Design as a Testbed for Machine
Intelligence

The design process entails creation of a complex structure
to satisfy user-defined requirements. The field of design
is a good source of problems that can be used for
determining whether an automated technique can produce
results that are competitive with human-produced results.
Design is a major activity of practicing engineers. Since
the design process typically entails tradeoffs between
competing considerations, the end product of the process
is usually a satisfactory and compliant design as opposed

to a perfect design. Design is usually viewed as requiring
creativity and human intelligence.

The design process for electrical circuits begins with a
high-level description of the circuit's desired behavior and
characteristics and entails creation of the topology and
sizing of a satisfactory circuit.
Table 1 Fourteen instances where genetic
programming has produced results that are
competitive with human-produced results.

 Claimed instance Basis for
claim

1 Creation of four different
algorithms for the
transmembrane segment
identification problem for
proteins

B, E

2 Creation of a sorting
network for seven items using
only 16 steps

A, D

3 Rediscovery of the
Campbell ladder topology for
lowpass and highpass filters

A, F

4 Rediscovery of “M-derived
half section” and “constant
K” filter sections

A, F

5 Rediscovery of the Cauer
(elliptic) topology for filters

A, F

6 Automatic decomposition
of the problem of
synthesizing a crossover filter

A, F

7 Rediscovery of a
recognizable voltage gain
stage and a Darlington
emitter-follower section of an
amplifier and other circuits

A, F

8 Synthesis of 60 and 96
decibel amplifiers

A, F

9 Synthesis of analog
computational circuits for
squaring, cubing, square root,
cube root, logarithm, and
Gaussian functions

A, D, G

10 Synthesis of a real-time
analog circuit for time-
optimal control of a robot

G

11 Synthesis of an electronic
thermometer

A, G

12 Synthesis of a voltage
reference circuit

A, G

13 Creation of a cellular
automata rule for the majority
classification problem that is
better than the Gacs-
Kurdyumov-Levin (GKL)
rule and all other known rules
written by humans

D, E

14 Creation of motifs that
detect the D–E–A-D box
family of proteins and the
manganese superoxide
dismutase family

C

The topology of a circuit includes specifying the gross

number of components in the circuit, the type of each
component (e.g., a capacitor), and a netlist specifying
where each lead of each component is to be connected.
Sizing involves specifying the values (typically
numerical) of each of the circuit's components.

The field of design of analog and mixed analog-digital
electrical circuits is especially challenging because there
is no previously known general technique for
automatically creating the topology and sizing of an
analog circuit from a high-level statement of the design
goals of the circuit.

Although considerable progress has been made in
automating the synthesis of certain categories of purely
digital circuits, the synthesis of analog circuits has not
proved to be as amenable to automation. As O. Aaserud
and I. Ring Nielsen (1995) observe,

“Analog designers are few and far between. In
contrast to digital design, most of the analog circuits
are still handcrafted by the experts or so-called 'zahs'
of analog design. The design process is
characterized by a combination of experience and
intuition and requires a thorough knowledge of the
process characteristics and the detailed
specifications of the actual product.

“Analog circuit design is known to be a
knowledge-intensive, multiphase, iterative task,
which usually stretches over a significant period of
time and is performed by designers with a large
portfolio of skills. It is therefore considered by many
to be a form of art rather than a science.”

The remainder of this paper focuses on problems of
synthesis of analog electrical circuits.

5 Three illustrative Problems of
Automatic Circuit Synthesis

We start with three particular problems of analog circuit
synthesis, namely the design of a lowpass filter circuit,
the design of a high-gain, low-distortion, low-bias
amplifier, and the design of a cube root computational
circuit.

A simple analog filter is a one-input, one-output circuit
that receives a signal as its input and passes the frequency
components of the incoming signal that lie in a specified
range (called the passband) while suppressing the
frequency components that lie in all other frequency
ranges (the stopband). Specifically, the goal is to design a
lowpass filter composed of capacitors and inductors that

passes all frequencies below 1,000 Hertz (Hz) and
suppresses all frequencies above 2,000 Hz.

An amplifier is a one-input, one-output circuit whose
output is a constant multiple of its input. We are seeking a
high-gain, low-distortion, low-bias amplifier composed of
transistors, diodes, capacitors, resistors, and connections
to power sources.

An analog computational circuit is a one-input, one-
output circuit whose output is a specified mathematical
function. The design of computational circuits is
exceedingly difficult even for seemingly mundane
mathematical functions. Success often relies on the
clever exploitation of some aspect of the underlying
device physics of the components that is unique to the
particular desired mathematical function. Because of this,
the implementation of each different mathematical
function typically requires an entirely different clever
insight and an entirely different circuit. We are seeking a
computational circuit composed of transistors, diodes,
capacitors, resistors, and connections to power sources.

6 Applying Genetic Programming
to Circuit Synthesis

Genetic programming can be applied to the problem of
synthesizing circuits if a mapping is established between
the program trees (rooted, point-labeled trees with
ordered branches) used in genetic programming and the
labeled cyclic graphs germane to electrical circuits. The
principles of developmental biology provide the
motivation for mapping trees into circuits by means of a
developmental process that begins with a simple embryo.
For circuits, the initial circuit typically includes a test
fixture consisting of certain fixed components (such as a
source resistor, a load resistor, an input port, and an
output port) as well as an embryo consisting of one or
more modifiable wires. Until the modifiable wires are
modified, the circuit does not produce interesting output.
An electrical circuit is developed by progressively
applying the functions in a circuit-constructing program
tree to the modifiable wires of the embryo (and, during
the developmental process, to succeeding modifiable
wires and components). A single electrical circuit is
created by executing the functions in an individual
circuit-constructing program tree from the population.
The functions are progressively applied in a
developmental process to the embryo and its successors
until all of the functions in the program tree are executed.
That is, the functions in the circuit-constructing program
tree progressively side-effect the embryo and its
successors until a fully developed circuit eventually
emerges. The functions are applied in a breadth-first
order.

The functions in the circuit-constructing program trees
are divided into five categories:

(1) topology-modifying functions that alter the
topology of a developing circuit,,

(2) component-creating functions that insert
components into a developing circuit,

(3) development-controlling functions that control the
development process by which the embryo and
its successors become a fully developed circuit,

(4) arithmetic-performing functions that appear in
subtrees as argument(s) to the component-
creating functions and specify the numerical
value of the component, and

(5) automatically defined functions that appear in the
automatically defined functions and potentially
enable certain substructures of the circuit to be
reused (with parameterization).

Before applying genetic programming to a problem of
circuit design, seven major preparatory steps are required:
(1) identify the embryonic circuit, (2) determine the
architecture of the circuit-constructing program trees, (3)
identify the primitive functions of the program trees, (4)
identify the terminals of the program trees, (5) create the
fitness measure, (6) choose control parameters for the
run, and (7) determine the termination criterion and
method of result designation.

A detailed discussion concerning how to apply these
seven preparatory steps to particular problems is found in
Koza, Bennett, Andre, and Keane 1999 (chapter 25).

7 Results for Illustrative Problems
7. 1 Campbell 1917 Ladder Filter

Patent
The best circuit (figure 1) of generation 49 of one run of
genetic programming on the problem of synthesizing a
lowpass filter is a 100% compliant circuit.

Figure 1 Evolved Campbell filter.

The evolved circuit is what is now called a cascade
(ladder) of identical π sections and is shown and analyzed
in Koza, Bennett, Andre, and Keane 1999 (chapter 25).
The evolved circuit has the recognizable topology of the
circuit for which George Campbell of American
Telephone and Telegraph received U. S. patent 1,227,113
in 1917. Claim 2 of Campbell’s patent covered,

“An electric wave filter consisting of a
connecting line of negligible attenuation composed
of a plurality of sections, each section including a
capacity element and an inductance element, one of
said elements of each section being in series with the
line and the other in shunt across the line, said
capacity and inductance elements having
precomputed values dependent upon the upper
limiting frequency and the lower limiting frequency
of a range of frequencies it is desired to transmit
without attenuation, the values of said capacity and
inductance elements being so proportioned that the
structure transmits with practically negligible
attenuation sinusoidal currents of all frequencies

lying between said two limiting frequencies, while
attenuating and approximately extinguishing
currents of neighboring frequencies lying outside of
said limiting frequencies.”

In addition to possessing the topology of the Campbell
filter, the numerical value of all the components in the
evolved circuit closely approximate the numerical values
specified in Campbell’s 1917 patent. But for the fact that
this 1917 patent has expired, the evolved circuit would
infringe on the Campbell patent.

The legal criteria for obtaining a U. S. patent are that
the proposed invention be "new” and “useful" and

“... the differences between the subject matter
sought to be patented and the prior art are such that
the subject matter as a whole would [not] have been
obvious at the time the invention was made to a
person having ordinary skill in the art to which said
subject matter pertains.” (35 United States Code
103a).

The fact that genetic programming rediscovered both
the topology and sizing of an electrical circuit that was
unobvious "to a person having ordinary skill in the art"
establishes that this evolved result satisfies Arthur
Samuel's criterion for artificial intelligence and machine
learning (quoted in section 1).

Since filing for a patent entails the expenditure of a
considerable amount of time and money, patents are
generally sought, in the first place, only if an individual
or business believes the inventions are likely to be useful
in the real world and economically rewarding. Patents are
only issued if an arms-length examiner is convinced that
the proposed invention is novel, useful, and satisfies the
statutory test for unobviousness.

7.2 Zobel 1925 “M-Derived Half
Section” Patent

Since the genetic algorithm is a probabilistic algorithm,
different runs produce different results. In another run of
this same problem of synthesizing a lowpass filter, a
100%-compliant circuit (figure 2) was evolved in
generation 34.

Figure 2 Evolved Zobel filter.

This evolved circuit (presented in Koza, Bennett,
Andre, and Keane 1999, chapter 25) is equivalent to a
cascade of three symmetric T-sections and an M-derived
half section. Otto Zobel of American Telephone and
Telegraph Company invented and received a patent for an
“M-derived half section” used in conjunction with one or
more “constant K” sections.

7.3 Cauer 1934 – 1936 Elliptic Patents
In yet another run of this same problem of synthesizing a
lowpass filter, a 100% compliant circuit (figure 3)
emerged in generation 31 (Koza, Bennett, Andre, and
Keane 1999, chapter 27).

This circuit has the recognizable elliptic topology that
was invented and patented by Wilhelm Cauer in 1934,
1935, and 1936. The Cauer filter was a significant
advance (both theoretically and commercially) over the
earlier filter designs of Campbell, Zobel, Johnson,
Butterworth, and Chebychev. For example, for one
commercially important set of specifications for
telephones, a fifth-order elliptic filter matches the
behavior of a 17th-order Butterworth filter or an eighth-
order Chebychev filter. The fifth-order elliptic filter has
one less component than the eighth-order Chebychev
filter. As Van Valkenburg (1982) relates in connection
with the history of the elliptic filter:

“Cauer first used his new theory in solving a filter
problem for the German telephone industry. His new
design achieved specifications with one less
inductor than had ever been done before. The world
first learned of the Cauer method not through
scholarly publication but through a patent
disclosure, which eventually reached the Bell
Laboratories. Legend has it that the entire
Mathematics Department of Bell Laboratories spent
the next two weeks at the New York Public library
studying elliptic functions. Cauer had studied
mathematics under Hilbert at Goettingen, and so
elliptic functions and their applications were
familiar to him.”

Genetic programming did not, of course, study
mathematics under Hilbert or anybody else. Instead, the
elliptic topology emerged from a run of genetic
programming as a natural consequence of the problem's
fitness measure and natural selection – not because the
run was primed with domain knowledge about elliptic
functions or filters or electrical circuitry. Genetic
programming opportunistically reinvented the elliptic
topology because necessity (fitness) is the mother of
invention.

Figure 3 Evolved Cauer (elliptic) filter topology.

7.4 Darlington 1952 Emitter-Follower
Patent
Sidney Darlington of the Bell Telephone Laboratories
obtained some 40 patents on numerous fundamental
electronic circuits. In particular, he obtained U. S. patent
2,663,806 for what is now called the Darlington emitter-
follower section. Darlington emitter-follower sections
have been evolved on numerous occasions in the process
of solving problems of analog circuit synthesis.

Claim 1 of Darlington's 1952 patent covers
“A signal translating device comprising a pair of

transistors of like conductivity type and each
including a base, an emitter and a collector, means
directly connecting the collectors together, means
directly connecting the emitter of one transistor to
the base of the other, and individual electrical
connections to the other emitter and base.”

In a similar vein, claim 3 covers
“A signal translating device comprising a pair of

transistors of like conductivity type and each
including a base, an emitter and a collector, means
directly connecting the emitters together, means
directly connecting the collector of one transistor to
the base of the other, and individual electrical
connections to the other collector and base.”

Claim 5 is more general and covers the case where any
two like electrodes of the transistor are connected.

“A signal translating device comprising a pair of
transistors of like conductivity type and each
including a base, an emitter and a collector, means
directly connecting two like electrodes of said
transistors together, means directly connecting
another electrode of one transistor to an unlike
electrode, other than one of said like electrodes, of
the other transistor, and individual electrical
connections to the other emitter and base.”

The Darlington patent also refers to an optional external
connection to the connection between the leads of the two
transistors. For example, claim 2 is a dependent claim
based on claim 1 (where the collectors are connected
together) and covers

“A signal translating device in accordance with
claim 1 comprising an additional electrical
connection to the connected emitter and base.”

Similarly, claim 4 is based on claim 3 (where the
emitters are connected together) and covers

“A signal translating device in accordance with
claim 3 comprising an additional electrical
connection to the connected collector and base.”

Table 2 shows 12 instances in Koza, Bennett, Andre,
and Keane 1999 where genetic programming evolved a
circuit containing one of the canonical Darlington
sections. The table identifies the particular claims (1, 2,
3, or 4) of U. S. patent 2,663,806 that genetic
programming has infringed.

For example, figure 4 shows the best circuit from
generation 86 of a run of the problem of evolving a high-
gain, low-distortion, low-bias amplifier.

Figure 4 Evolved 96 dB amplifier.

The circuit has 25 transistors, no diodes, two capacitors,
and two resistors and contains a Darlington emitter-
follower section (involving transistors Q25 and Q5).

As another example, figure 5 shows the best-of-run
circuit from generation 57 of the problem of synthesizing
a cube root computational circuit. The circuit has 38
transistors, seven diodes, and 18 resistors.

Table 2 Twelve instances where genetic programming
appears to have infringed Darlington's emitter-
follower patent.
Problem Type Patent

claim
96 dB amplifier npn 1
96 dB amplifier npn 3
Squaring circuit npn 1
Squaring circuit pnp 4
Cubing circuit pnp 3
Cubing circuit pnp 3
Cubing circuit pnp 3
Square root circuit pnp 2
Cube root circuit pnp 2
Cube root circuit pnp 1
Cube root circuit pnp 2
Logarithmic circuit pnp 4

Figure 5 Evolved cube root computational circuit.

8 Additional Results
In addition, genetic programming has been applied to the
problem of automatic synthesis of both the topology and
sizing of additional analog electrical circuits, including
other filters (highpass, bandpass, crossover, comb, and
asymmetric filters), other amplifiers, other computational
circuits (square root, squaring, cubing, logarithmic, and
Gaussian), a time-optimal controller circuit, source
identification circuits, a temperature-sensing circuit, and a
voltage reference circuits. See Koza, Bennett, Andre,
Keane, and Dunlap 1997; Koza, Bennett, Andre, and
Keane 1999; Koza, Bennett, Andre, Keane, and Brave
1999). High-gain amplifiers, computational circuits,
electronic thermometers, and voltage reference circuits
were all covered by one or more patents when they were
first invented.

9 The Illogical Nature of Creativity
and Evolution

The biological metaphor underlying the genetic algorithm
and genetic programming is very different from the
underpinnings of all other techniques that have previously
been tried in pursuit of the goal of automatically creating
computer programs.

Many computer scientists and mathematicians
unquestioningly assume that every problem-solving
technique must be logically sound, deterministic,
logically consistent, and parsimonious. Accordingly, most

conventional methods of artificial intelligence and
machine learning are constructed so as to possess these
characteristics. However, logic does not govern two of
the most important and significant types of processes for
solving complex problems, namely the invention process
(performed by creative humans) and the evolutionary
process (occurring in nature).

A new idea that can be logically deduced from facts that
are known in a field, using transformations that are
known in a field, is not considered to be an invention.
There must be what the patent law refers to as an
"illogical step" (i.e., an unjustified step) to distinguish a
putative invention from that which is readily deducible
from that which is already known. Humans supply the
critical ingredient of “illogic” to the invention process.
Interestingly, everyday usage parallels the patent law
concerning inventiveness: People who mechanically
apply existing facts in well-known ways are summarily
dismissed as being uncreative. Logical thinking is
unquestionably useful for many purposes. It usually plays
an important role in setting the stage for an invention.
But, at the end of the day, logical thinking is not
sufficient in the invention process.

Recalling his invention in 1927 of the negative
feedback amplifier, Harold S. Black (1977) said,

"Then came the morning of Tuesday, August 2,
1927, when the concept of the negative feedback
amplifier came to me in a flash while I was crossing
the Hudson River on the Lackawanna Ferry, on my
way to work. For more than 50 years, I have
pondered how and why the idea came, and I can't
say any more today than I could that morning. All I
know is that after several years of hard work on the
problem, I suddenly realized that if I fed the
amplifier output back to the input, in reverse phase,
and kept the device from oscillating (singing, as we
called it then), I would have exactly what I wanted:
a means of canceling out the distortion of the output.
I opened my morning newspaper and on a page of
The New York Times I sketched a simple canonical
diagram of a negative feedback amplifier plus the
equations for the amplification with feedback."

Of course, inventors are not oblivious to logic and
knowledge. They do not thrash around using blind
random search. Black did not try to construct the negative
feedback amplifier from neon bulbs or doorbells. Instead,
"several years of hard work on the problem" set the stage
and brought his thinking into the proximity of a solution.
Then, at the critical moment, Black made his “illogical”
leap. This unjustified leap constituted the invention.

The design of complex entities by the evolutionary
process in nature is another important type of problem-
solving that is not governed by logic. In nature, solutions
to design problems are discovered by the probabilistic
process of evolution and natural selection. This process is
not guided by mathematical logic. Indeed, inconsistent
and contradictory alternatives abound. In fact, such
genetic diversity is necessary for the evolutionary process

to succeed. Significantly, the solutions evolved by
evolution and natural selection almost always differ from
those created by conventional methods of artificial
intelligence and machine learning in one very important
respect. Evolved solutions are not brittle; they are usually
able to grapple with the perpetual novelty of real
environments.

Since genetic programming is a probabilistic process
that is not encumbered by the preconceptions that often
channel human thinking down familiar paths, it often
creates novel designs.

Similarly, genetic programming is not guided by the
inference methods of formal logic in its search for a
computer program to solve a given problem. When the
goal is the automatic creation of computer programs, we
believe that the non-logical approach used in the
invention process and in natural evolution are far more
fruitful than the logic-driven and knowledge-based
principles of conventional artificial intelligence and
machine learning.

10 Conclusion
This paper has demonstrated the correctness of Holland’s
expectation that genetic algorithms would have
"applications to ... artificial intelligence" and, in
particular, to the automatic creation of computer
programs from a high-level statement of a problem’s
requirements.

Acknowledgments
The work described in various parts of this paper has
been done in collaboration with Forrest H Bennett III,
David Andre, Martin A. Keane, Frank Dunlap, and Jason
Lohn.

References
Aaserud, O. and Nielsen, I. Ring. 1995. Trends in current

analog design: A panel debate. Analog Integrated
Circuits and Signal Processing. 7(1) 5-9.

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors).
1996. Advances in Genetic Programming 2. Cambridge,
MA: The MIT Press.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and
Francone, Frank D. 1998. Genetic Programming – An
Introduction. San Francisco, CA: Morgan Kaufmann
and Heidelberg: dpunkt.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc,
and Fogarty, Terence C. 1998. Genetic Programming:
First European Workshop. EuroGP'98. Paris, France,
April 1998 Proceedings. Paris, France. April l998.
Lecture Notes in Computer Science. Volume 1391.
Berlin, Germany: Springer-Verlag.

Black, Harold S. 1977. Inventing the negative feedback
amplifier. IEEE Spectrum. December 1977. Pp. 55 – 60.

Campbell, George A. 1917. Electric Wave Filter. Filed
July 15, 1915. U. S. Patent 1,227,113. Issued May 22,
1917.

Cauer, Wilhelm. 1934. Artificial Network. U. S. Patent
1,958,742. Filed June 8, 1928 in Germany. Filed
December 1, 1930 in United States. Issued May 15,
1934.

Cauer, Wilhelm. 1935. Electric Wave Filter. U. S. Patent
1,989,545. Filed June 8, 1928. Filed December 6, 1930
in United States. Issued January 29, 1935.

Cauer, Wilhelm. 1936. Unsymmetrical Electric Wave
Filter. Filed November 10, 1932 in Germany. Filed
November 23, 1933 in United States. Issued July 21,
1936.

Holland, John H. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to
Biology, Control, and Artificial Intelligence. Ann
Arbor, MI: University of Michigan Press 1975. Second
edition. Cambridge, MA: The MIT Press 1992.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in
Genetic Programming. Cambridge, MA: MIT Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge, MA: MIT
Press.

Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar,
Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B.,
Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and
Riolo, Rick. (editors). 1998. Genetic Programming
1998: Proceedings of the Third Annual Conference. San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1999. Genetic Programming III:
Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David,
Keane, Martin A., and Brave, Scott. 1999. Genetic
Programming III Videotape: Human-Competitive
Machine Intelligence. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David,
Keane, Martin A, and Dunlap, Frank. 1997. Automated
synthesis of analog electrical circuits by means of
genetic programming. IEEE Transactions on
Evolutionary Computation. 1(2). Pages 109 – 128.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel,
David B., Garzon, Max, Iba, Hitoshi, and Riolo, Rick L.
(editors). 1997. Genetic Programming 1997:
Proceedings of the Second Annual Conference San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). 1996. Genetic Programming
1996: Proceedings of the First Annual Conference.
Cambridge, MA: The MIT Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

Langdon, W. B. 1998. Genetic Programming and Data
Structures: Genetic Programming + Data Structures =
Automatic Programming! Amsterdam: Kluwer.

Poli, Riccardo, Nordin, Peter, Langdon, William B., and
Fogarty, Terence C. 1999. Genetic Programming:
Second European Workshop. EuroGP'99. Proceedings.
Lecture Notes in Computer Science. Volume 1598.
Berlin, Germany: Springer-Verlag.

Samuel, Arthur L. 1959. Some studies in machine
learning using the game of checkers. IBM Journal of
Research and Development. 3(3): 210–229.

Samuel, Arthur L. 1983. AI: Where it has been and where
it is going. Proceedings of the Eighth International
Joint Conference on Artificial Intelligence. Los Altos,
CA: Morgan Kaufmann. Pages 1152 – 1157.

Spector, Lee, Langdon, William B., O'Reilly, Una-May,
and Angeline, Peter (editors). 1999. Advances in
Genetic Programming 3. Cambridge, MA: The MIT
Press.

Valkenburg, M. E. 1982. Analog Filter Design. Fort
Worth, TX: Harcourt Brace Jovanovich.

Zobel, Otto Julius. 1925. Wave Filter. Filed January 15,
1921. U. S. Patent 1,538,964. Issued May 26, 1925.

