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ABSTRACT 
This paper demonstrates the correctness of John 

Holland’s expectation that the genetic algorithm 
would have "applications to ... artificial 
intelligence" by showing examples of the 
automatic creation of human-competitive 
computer programs from a high-level statement of 
a problem’s requirements.  The paper argues that 
the field of design is a useful testbed for 
determining whether an automated technique can 
produce results that are competitive with human-
produced results and then presents several results 
that are competitive with the products of human 
creativity and inventiveness.  

 

1 Introduction 
The subtitle of John Holland's pioneering l975 book 
Adaptation in Natural and Artificial Systems correctly 
anticipated that the genetic algorithm would have 
"applications to ... artificial intelligence."  

When the entities in the evolving population are 
computer programs (as opposed to, say, fixed-length 
binary character strings), Holland’s genetic algorithm can 
be used to perform the task of searching the space of 
computer programs for a program that solves, or 
approximately solves, a problem.  This variation of the 
genetic algorithm (called genetic programming) can solve 
many types of problems, including problems of design, 
control, classification, and system identification.  

In particular, genetic programming can be used to 
address the challenge of getting a computer to solve a 
problem without explicitly programming it. This 
challenge calls for an automatic system whose input is a 
high-level statement of a problem's requirements and 
whose output is a working program that solves the 
problem. Paraphrasing Arthur Samuel (1959), this 
challenge concerns  

How can computers be made to do what needs to 
be done, without being told exactly how to do it? 

As Arthur Samuel (1983) further explained, 

“The aim [is] ... to get machines to exhibit 
behavior, which if done by humans, would be 
assumed to involve the use of intelligence.” 

There are now a number of instances where genetic 
programming has produced a computer program that is 
competitive with human performance on particular 
problems from the fields of computational molecular 
biology, cellular automata, sorting networks, and the 
synthesis of the design of complex structures, such as 
analog electrical circuits.   

Section 3 describes genetic programming.  Section 2 
states what we mean when we say that an automatically 
created solution to a problem is competitive with the 
product of human creativity. Section 4 discusses the 
suitability of design problems for evaluating whether an 
automatic technique can produce results that are 
competitive with human-produced results. Section 5 
describes three illustrative problems of automatic circuit 
synthesis (design) of analog electrical circuits. Section 6 
describes how genetic programming is applied to such 
problems.  Section 7 shows the results. Section 8 
mentions additional problems of automatic circuit 
synthesis.  Section 9 discusses the importance of illogic in 
creativity and inventiveness.  

2 Genetic Programming 
Genetic programming progressively breeds a population 
of computer programs over a series of generations by 
starting with a primordial ooze of thousands of randomly 
created computer programs and using the Darwinian 
principle of natural selection, recombination (crossover), 
mutation, gene duplication, gene deletion, and certain 
mechanisms of developmental biology.  Specifically, 
genetic programming starts with an initial population of 
randomly generated computer programs composed of the 
given primitive functions and terminals. The programs in 
the population are, in general, of different sizes and 
shapes. The creation of the initial random population is a 
blind random search of the space of computer programs 
composed of the problem's available functions and 
terminals.   

On each generation of a run of genetic programming, 
each individual in the population of programs is evaluated 



 

as to its fitness in solving the problem at hand. The 
programs in generation 0 of a run almost always have 
exceedingly poor fitness for non-trivial problems of 
interest. Nonetheless, some individuals in a population 
will turn out to be somewhat more fit than others. These 
differences in performance are then exploited so as to 
direct the remainder of the search into promising areas of 
the search space. The Darwinian principle of reproduction 
and survival of the fittest is used to probabilistically 
select, on the basis of fitness, individuals from the 
population to participate in various operations. A small 
percentage (e.g., 9%) of the selected individuals are 
reproduced (copied) from one generation to the next. A 
very small percentage (e.g. 1%) of the selected 
individuals are mutated in a random way. The vast 
majority of the selected individuals participate in the 
genetic operation of crossover (sexual recombination) in 
which two offspring programs are created by recombining 
genetic material from two parents. The creation of the 
initial random population and the creation of offspring by 
the genetic operations are all performed so as to create 
syntactically valid, executable programs. After the genetic 
operations are performed on the current generation of the 
population, the population of offspring (i.e., the new 
generation) replaces the old generation. The tasks of 
measuring fitness, Darwinian selection, and genetic 
operations are then iteratively repeated over many 
generations.  Detailed information about genetic 
programming can be found in Koza 1992; Koza and Rice 
1992; Koza 1994a, 1994b; Koza, Bennett, Andre, and 
Keane 1999; Koza, Bennett, Andre, Keane, and Brave 
1999, Banzhaf, Nordin, Keller, and Francone 1998; 
Langdon 1998; Kinnear 1994; Angeline and Kinnear 
1996; Spector, Langdon, O'Reilly, and Angeline 1999; 
Koza, Goldberg, Fogel, and Riolo 1996; Koza, Deb, 
Dorigo, Fogel, Garzon, Iba, and Riolo 1997; Koza, 
Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon, 
Goldberg, Iba, Riolo 1998; and Banzhaf, Poli, 
Schoenauer, and Fogarty 1998; and Poli, Nordin, 
Langdon, and Fogarty 1999.  

3 Human-Competitive Machine 
Intelligence 

What do we mean when we say that an automatically 
created solution to a problem is competitive with human-
produced results? 

We are not referring to the fact that a computer can 
rapidly print ten thousand payroll checks or that a 
computer can compute π to a million decimal places. 
Instead, we think it is fair to say that an automatically 
created result is competitive with one produced by human 
engineers, designers, mathematicians, or programmers if 
it satisfies any of the following eight criteria (or any other 
similarly stringent criterion):   

(A) The result was patented as an invention in the 
past, is an improvement over a patented 

invention, or would qualify today as a 
patentable new invention.  

(B) The result is equal to or better than a result that 
was accepted as a new scientific result at the 
time when it was published in a peer-reviewed 
scientific journal.   

(C) The result is equal to or better than a result that 
was placed into a database or archive of results 
maintained by an internationally recognized 
panel of scientific experts.   

(D) The result is publishable in its own right as a new 
scientific result  independent of the fact that 
the result was mechanically created.  

(E) The result is equal to or better than the most 
recent human-created solution to a long-
standing problem for which there has been a 
succession of increasingly better human-created 
solutions.  

(F) The result is equal to or better than a result that 
was considered an achievement in its field at 
the time it was first discovered.  

(G) The result solves a problem of indisputable 
difficulty in its field.   

(H) The result holds its own or wins a regulated 
competition involving human contestants (in 
the form of either live human players or human-
written computer programs).  

Note that each of these criteria are couched in terms of 
producing results, that the results are measured in terms 
of standards outside the fields of artificial intelligence and 
machine learning.   

Table 1 shows 14 instances of results where genetic 
programming has produced results that are competitive 
with the products of human creativity and inventiveness 
(Koza, Bennett, Andre, and Keane 1999).  Each claim is 
accompanied by the particular criterion (from the list 
above) that establishes the basis for the claim.  The 
instances in the table include classification problems from 
the field of computational molecular biology, a long-
standing problem involving cellular automata, a problem 
of synthesizing the design of a minimal sorting network, 
and several problems of synthesizing the design of analog 
electrical circuits.  As can be seen, 10 of the 14 instances 
in the table involve previously patented inventions.  

4 Design as a Testbed for Machine 
Intelligence 

The design process entails creation of a complex structure 
to satisfy user-defined requirements.  The field of design 
is a good source of problems that can be used for 
determining whether an automated technique can produce 
results that are competitive with human-produced results.  
Design is a major activity of practicing engineers. Since 
the design process typically entails tradeoffs between 
competing considerations, the end product of the process 
is usually a satisfactory and compliant design as opposed 



 

to a perfect design. Design is usually viewed as requiring 
creativity and human intelligence.  

The design process for electrical circuits begins with a 
high-level description of the circuit's desired behavior and 
characteristics and entails creation of the topology and 
sizing of a satisfactory circuit.  
Table 1 Fourteen instances where genetic 
programming has produced results that are 
competitive with human-produced results.  

 Claimed instance Basis for 
claim 

1 Creation of four different 
algorithms for the 
transmembrane segment 
identification problem for 
proteins 

B, E 

2 Creation of a sorting 
network for seven items using 
only 16 steps 

A, D 

3 Rediscovery  of the 
Campbell ladder topology for 
lowpass and highpass filters 

A, F 

4 Rediscovery  of “M-derived 
half section” and “constant 
K” filter sections 

A, F 

5 Rediscovery  of the Cauer 
(elliptic) topology for filters 

A, F 

6 Automatic decomposition 
of the problem of 
synthesizing a crossover filter 

A, F 

7 Rediscovery of a 
recognizable voltage gain 
stage and a Darlington 
emitter-follower section of an 
amplifier and other circuits 

A, F 

8 Synthesis of 60 and 96 
decibel amplifiers 

A, F 

9 Synthesis of analog 
computational circuits for  
squaring, cubing, square root, 
cube root, logarithm, and 
Gaussian functions 

A, D, G 

10 Synthesis of a real-time 
analog circuit for time-
optimal control of a robot 

G 

11 Synthesis of an electronic 
thermometer 

A, G 

12 Synthesis of a voltage 
reference circuit 

A, G 

13 Creation of a cellular 
automata rule for the majority 
classification problem that is 
better than the Gacs-
Kurdyumov-Levin (GKL) 
rule and all other known rules 
written by humans 

D, E 

14 Creation of motifs that 
detect the D–E–A-D box 
family of proteins and the 
manganese superoxide 
dismutase family 

C 

 
 
 
The topology of a circuit includes specifying the gross 

number of components in the circuit, the type of each 
component (e.g., a capacitor), and a netlist specifying 
where each lead of each component is to be connected. 
Sizing involves specifying the values (typically 
numerical) of each of the circuit's components.  

The field of design of analog and mixed analog-digital 
electrical circuits is especially challenging because there 
is no previously known general technique for 
automatically creating the topology and sizing of an 
analog circuit from a high-level statement of the design 
goals of the circuit.   

Although considerable progress has been made in 
automating the synthesis of certain categories of purely 
digital circuits, the synthesis of analog circuits has not 
proved to be as amenable to automation. As O. Aaserud 
and I. Ring Nielsen (1995) observe,  

“Analog designers are few and far between. In 
contrast to digital design, most of the analog circuits 
are still handcrafted by the experts or so-called 'zahs' 
of analog design. The design process is 
characterized by a combination of experience and 
intuition and requires a thorough knowledge of the 
process characteristics and the detailed 
specifications of the actual product.  

“Analog circuit design is known to be a 
knowledge-intensive, multiphase, iterative task, 
which usually stretches over a significant period of 
time and is performed by designers with a large 
portfolio of skills. It is therefore considered by many 
to be a form of art rather than a science.” 

The remainder of this paper focuses on problems of 
synthesis of analog electrical circuits.  

5 Three illustrative Problems of 
Automatic Circuit Synthesis 

We start with three particular problems of analog circuit 
synthesis, namely the design of a lowpass filter circuit, 
the design of a high-gain, low-distortion, low-bias 
amplifier, and the design of a cube root computational 
circuit.  

A simple analog filter is a one-input, one-output circuit 
that receives a signal as its input and passes the frequency 
components of the incoming signal that lie in a specified 
range (called the passband) while suppressing the 
frequency components that lie in all other frequency 
ranges (the stopband). Specifically, the goal is to design a 
lowpass filter composed of capacitors and inductors that 



 

passes all frequencies below 1,000 Hertz (Hz) and 
suppresses all frequencies above 2,000 Hz.  

An amplifier is a one-input, one-output circuit whose 
output is a constant multiple of its input. We are seeking a 
high-gain, low-distortion, low-bias amplifier composed of 
transistors, diodes, capacitors, resistors, and connections 
to power sources.   

An analog computational circuit is a one-input, one-
output circuit whose output is a specified mathematical 
function. The design of computational circuits is 
exceedingly difficult even for seemingly mundane 
mathematical functions.  Success often relies on the 
clever exploitation of some aspect of the underlying 
device physics of the components that is unique to the 
particular desired mathematical function.  Because of this, 
the implementation of each different mathematical 
function typically requires an entirely different clever 
insight and an entirely different circuit. We are seeking a 
computational circuit composed of transistors, diodes, 
capacitors, resistors, and connections to power sources. 

6 Applying Genetic Programming 
to Circuit Synthesis 

Genetic programming can be applied to the problem of 
synthesizing circuits if a mapping is established between 
the program trees (rooted, point-labeled trees with 
ordered branches) used in genetic programming and the 
labeled cyclic graphs germane to electrical circuits. The 
principles of developmental biology provide the 
motivation for mapping trees into circuits by means of a 
developmental process that begins with a simple embryo. 
For circuits, the initial circuit typically includes a test 
fixture consisting of certain fixed components (such as a 
source resistor, a load resistor, an input port, and an 
output port) as well as an embryo consisting of one or 
more modifiable wires. Until the modifiable wires are 
modified, the circuit does not produce interesting output. 
An electrical circuit is developed by progressively 
applying the functions in a circuit-constructing program 
tree to the modifiable wires of the embryo (and, during 
the developmental process, to succeeding modifiable 
wires and components).  A single electrical circuit is 
created by executing the functions in an individual 
circuit-constructing program tree from the population. 
The functions are progressively applied in a 
developmental process to the embryo and its successors 
until all of the functions in the program tree are executed. 
That is, the functions in the circuit-constructing program 
tree progressively side-effect the embryo and its 
successors until a fully developed circuit eventually 
emerges.  The functions are applied in a breadth-first 
order.  

The functions in the circuit-constructing program trees 
are divided into five categories:  

(1) topology-modifying functions that alter the 
topology of a developing circuit,,  

(2) component-creating functions that insert 
components into a developing circuit,  

(3) development-controlling functions that control the 
development process by which the embryo and 
its successors become a fully developed circuit,  

(4) arithmetic-performing functions that appear in 
subtrees as argument(s) to the component-
creating functions and specify the numerical 
value of the component, and  

(5) automatically defined functions that appear in the 
automatically defined functions and potentially 
enable certain substructures of the circuit to be 
reused (with parameterization). 

Before applying genetic programming to a problem of 
circuit design, seven major preparatory steps are required: 
(1) identify the embryonic circuit, (2) determine the 
architecture of the circuit-constructing program trees, (3) 
identify the primitive functions of the program trees, (4) 
identify the terminals of the program trees, (5) create the 
fitness measure, (6) choose control parameters for the 
run, and (7) determine the termination criterion and 
method of result designation.   

A detailed discussion concerning how to apply these 
seven preparatory steps to particular problems is found in 
Koza, Bennett, Andre, and Keane 1999 (chapter 25).  

7 Results for Illustrative Problems 
7. 1 Campbell 1917 Ladder Filter 

Patent 
The best circuit (figure 1) of generation 49 of one run of 
genetic programming on the problem of synthesizing a 
lowpass filter is a 100% compliant circuit.  

 
Figure 1  Evolved Campbell filter.  

The evolved circuit is what is now called a cascade 
(ladder) of identical π sections and is shown and analyzed 
in Koza, Bennett, Andre, and Keane 1999 (chapter 25). 
The evolved circuit has the recognizable topology of the 
circuit for which George Campbell of American 
Telephone and Telegraph received U. S. patent 1,227,113 
in 1917. Claim 2 of Campbell’s patent covered,  

“An electric wave filter consisting of a 
connecting line of negligible attenuation composed 
of a plurality of sections, each section including a 
capacity element and an inductance element, one of 
said elements of each section being in series with the 
line and the other in shunt across the line, said 
capacity and inductance elements having 
precomputed values dependent upon the upper 
limiting frequency and the lower limiting frequency 
of a range of frequencies it is desired to transmit 
without attenuation, the values of said capacity and 
inductance elements being so proportioned that the 
structure transmits with practically negligible 
attenuation sinusoidal currents of all frequencies 



 

lying between said two limiting frequencies, while 
attenuating and approximately extinguishing 
currents of neighboring frequencies lying outside of 
said limiting frequencies.” 

In addition to possessing the topology of the Campbell 
filter, the numerical value of all the components in the 
evolved circuit closely approximate the numerical values 
specified in Campbell’s 1917 patent. But for the fact that 
this 1917 patent has expired, the evolved circuit would 
infringe on the Campbell patent.  

The legal criteria for obtaining a U. S. patent are that 
the proposed invention be "new” and “useful" and  

“... the differences between the subject matter 
sought to be patented and the prior art are such that 
the subject matter as a whole would [not] have been 
obvious at the time the invention was made to a 
person having ordinary skill in the art to which said 
subject matter pertains.” (35 United States Code 
103a).  

The fact that genetic programming rediscovered both 
the topology and sizing of an electrical circuit that was 
unobvious "to a person having ordinary skill in the art" 
establishes that this evolved result satisfies Arthur 
Samuel's criterion for artificial intelligence and machine 
learning (quoted in section 1).  

Since filing for a patent entails the expenditure of a 
considerable amount of time and money, patents are 
generally sought, in the first place, only if an individual 
or business believes the inventions are likely to be useful 
in the real world and economically rewarding. Patents are 
only issued if an arms-length examiner is convinced that 
the proposed invention is novel, useful, and satisfies the 
statutory test for unobviousness.  

7.2 Zobel 1925 “M-Derived Half 
Section” Patent 

Since the genetic algorithm is a probabilistic algorithm, 
different runs produce different results. In another run of 
this same problem of synthesizing a lowpass filter, a 
100%-compliant circuit (figure 2) was evolved in 
generation 34.   

 
Figure 2  Evolved Zobel filter.  

This evolved circuit (presented in Koza, Bennett, 
Andre, and Keane 1999, chapter 25) is equivalent to a 
cascade of three symmetric T-sections and an M-derived 
half section. Otto Zobel of American Telephone and 
Telegraph Company invented and received a patent for an 
“M-derived half section” used in conjunction with one or 
more “constant K” sections.  

7.3 Cauer 1934 – 1936 Elliptic Patents 
In yet another run of this same problem of synthesizing a 
lowpass filter, a 100% compliant circuit (figure 3) 
emerged in generation 31 (Koza, Bennett, Andre, and 
Keane 1999, chapter 27).  

This circuit has the recognizable elliptic topology that 
was invented and patented by Wilhelm Cauer in 1934, 
1935, and 1936. The Cauer filter was a significant 
advance (both theoretically and commercially) over the 
earlier filter designs of Campbell, Zobel, Johnson, 
Butterworth, and Chebychev. For example, for one 
commercially important set of specifications for 
telephones, a fifth-order elliptic filter matches the 
behavior of a 17th-order Butterworth filter or an eighth-
order Chebychev filter. The fifth-order elliptic filter has 
one less component than the eighth-order Chebychev 
filter. As Van Valkenburg (1982) relates in connection 
with the history of the elliptic filter:  

“Cauer first used his new theory in solving a filter 
problem for the German telephone industry. His new 
design achieved specifications with one less 
inductor than had ever been done before. The world 
first learned of the Cauer method not through 
scholarly publication but through a patent 
disclosure, which eventually reached the Bell 
Laboratories. Legend has it that the entire 
Mathematics Department of Bell Laboratories spent 
the next two weeks at the New York Public library 
studying elliptic functions. Cauer had studied 
mathematics under Hilbert at Goettingen, and so 
elliptic functions and their applications were 
familiar to him.”  

Genetic programming did not, of course, study 
mathematics under Hilbert or anybody else. Instead, the 
elliptic topology emerged from a run of genetic 
programming as a natural consequence of the problem's 
fitness measure and natural selection – not because the 
run was primed with domain knowledge about elliptic 
functions or filters or electrical circuitry. Genetic 
programming opportunistically reinvented the elliptic 
topology because necessity (fitness) is the mother of 
invention.  

 
Figure 3  Evolved Cauer (elliptic) filter topology.  



 

7.4 Darlington 1952 Emitter-Follower 
Patent 
Sidney Darlington of the Bell Telephone Laboratories 
obtained some 40 patents on numerous fundamental 
electronic circuits. In particular, he obtained U. S. patent 
2,663,806 for what is now called the Darlington emitter-
follower section. Darlington emitter-follower sections 
have been evolved on numerous occasions in the process 
of solving problems of analog circuit synthesis.   

Claim 1 of Darlington's 1952 patent covers 
“A signal translating device comprising a pair of 

transistors of like conductivity type and each 
including a base, an emitter and a collector, means 
directly connecting the collectors together, means 
directly connecting the emitter of one transistor to 
the base of the other, and individual electrical 
connections to the other emitter and base.” 

In a similar vein, claim 3 covers 
“A signal translating device comprising a pair of 

transistors of like conductivity type and each 
including a base, an emitter and a collector, means 
directly connecting the emitters together, means 
directly connecting the collector of one transistor to 
the base of the other, and individual electrical 
connections to the other collector and base.” 

Claim 5 is more general and covers the case where any 
two like electrodes of the transistor are connected.   

“A signal translating device comprising a pair of 
transistors of like conductivity type and each 
including a base, an emitter and a collector, means 
directly connecting two like electrodes of said 
transistors together, means directly connecting 
another electrode of one transistor to an unlike 
electrode, other than one of said like electrodes, of 
the other transistor, and individual electrical 
connections to the other emitter and base.” 

The Darlington patent also refers to an optional external 
connection to the connection between the leads of the two 
transistors.  For example, claim 2 is a dependent claim 
based on claim 1 (where the collectors are connected 
together) and covers 

“A signal translating device in accordance with 
claim 1 comprising an additional electrical 
connection to the connected emitter and base.”   

Similarly, claim 4 is based on claim 3 (where the 
emitters are connected together) and covers 

“A signal translating device in accordance with 
claim 3 comprising an additional electrical 
connection to the connected collector and base.”   

Table 2 shows 12 instances in Koza, Bennett, Andre, 
and Keane 1999 where genetic programming evolved a 
circuit containing one of the canonical Darlington 
sections.  The table identifies the particular claims (1, 2, 
3, or 4) of U. S. patent 2,663,806 that genetic 
programming has infringed.   

For example, figure 4 shows the best circuit from 
generation 86 of a run of the problem of evolving a high-
gain, low-distortion, low-bias amplifier.  

 
Figure 4  Evolved 96 dB amplifier.  

The circuit has 25 transistors, no diodes, two capacitors, 
and two resistors and contains a Darlington emitter-
follower section (involving transistors Q25 and Q5).  

As another example, figure 5 shows the best-of-run 
circuit from generation 57 of the problem of synthesizing 
a cube root computational circuit. The circuit has 38 
transistors, seven diodes, and 18 resistors.   

 
Table 2 Twelve instances where genetic programming 
appears to have infringed Darlington's emitter-
follower patent.   
Problem Type Patent 

claim 
96 dB amplifier npn 1 
96 dB amplifier npn 3 
Squaring circuit npn 1 
Squaring circuit pnp 4 
Cubing circuit pnp 3 
Cubing circuit pnp 3 
Cubing circuit pnp 3 
Square root circuit pnp 2 
Cube root circuit pnp 2 
Cube root circuit pnp 1 
Cube root circuit pnp 2 
Logarithmic circuit pnp 4 

 
 
 



 

 
Figure 5  Evolved cube root computational circuit.  

8 Additional Results 
In addition, genetic programming has been applied to the 
problem of automatic synthesis of both the topology and 
sizing of additional analog electrical circuits, including 
other filters (highpass, bandpass, crossover, comb, and 
asymmetric filters), other amplifiers, other computational 
circuits (square root, squaring, cubing, logarithmic, and 
Gaussian), a time-optimal controller circuit, source 
identification circuits, a temperature-sensing circuit, and a 
voltage reference circuits.  See Koza, Bennett, Andre, 
Keane, and Dunlap 1997; Koza, Bennett, Andre, and 
Keane 1999; Koza, Bennett, Andre, Keane, and Brave 
1999). High-gain amplifiers, computational circuits, 
electronic thermometers, and voltage reference circuits 
were all covered by one or more patents when they were 
first invented.  

9 The Illogical Nature of Creativity 
and Evolution 

The biological metaphor underlying the genetic algorithm 
and genetic programming is very different from the 
underpinnings of all other techniques that have previously 
been tried in pursuit of the goal of automatically creating 
computer programs.   

Many computer scientists and mathematicians 
unquestioningly assume that every problem-solving 
technique must be logically sound, deterministic, 
logically consistent, and parsimonious. Accordingly, most 

conventional methods of artificial intelligence and 
machine learning are constructed so as to possess these 
characteristics. However, logic does not govern two of 
the most important and significant types of processes for 
solving complex problems, namely the invention process 
(performed by creative humans) and the evolutionary 
process (occurring in nature).  

A new idea that can be logically deduced from facts that 
are known in a field, using transformations that are 
known in a field, is not considered to be an invention. 
There must be what the patent law refers to as an 
"illogical step" (i.e., an unjustified step) to distinguish a 
putative invention from that which is readily deducible 
from that which is already known. Humans supply the 
critical ingredient of “illogic” to the invention process. 
Interestingly, everyday usage parallels the patent law 
concerning inventiveness: People who mechanically 
apply existing facts in well-known ways are summarily 
dismissed as being uncreative. Logical thinking is 
unquestionably useful for many purposes. It usually plays 
an important role in setting the stage for an invention. 
But, at the end of the day, logical thinking is not 
sufficient in the invention process.  

Recalling his invention in 1927 of the negative 
feedback amplifier, Harold S. Black (1977) said, 

"Then came the morning of Tuesday, August 2, 
1927, when the concept of the negative feedback 
amplifier came to me in a flash while I was crossing 
the Hudson River on the Lackawanna Ferry, on my 
way to work. For more than 50 years, I have 
pondered how and why the idea came, and I can't 
say any more today than I could that morning. All I 
know is that after several years of hard work on the 
problem, I suddenly realized that if I fed the 
amplifier output back to the input, in reverse phase, 
and kept the device from oscillating (singing, as we 
called it then), I would have exactly what I wanted: 
a means of canceling out the distortion of the output. 
I opened my morning newspaper and on a page of 
The New York Times I sketched a simple canonical 
diagram of a negative feedback amplifier plus the 
equations for the amplification with feedback."  

Of course, inventors are not oblivious to logic and 
knowledge. They do not thrash around using blind 
random search. Black did not try to construct the negative 
feedback amplifier from neon bulbs or doorbells. Instead, 
"several years of hard work on the problem" set the stage 
and brought his thinking into the proximity of a solution. 
Then, at the critical moment, Black made his “illogical” 
leap. This unjustified leap constituted the invention.  

The design of complex entities by the evolutionary 
process in nature is another important type of problem-
solving that is not governed by logic. In nature, solutions 
to design problems are discovered by the probabilistic 
process of evolution and natural selection. This process is 
not guided by mathematical logic. Indeed, inconsistent 
and contradictory alternatives abound. In fact, such 
genetic diversity is necessary for the evolutionary process 



 

to succeed. Significantly, the solutions evolved by 
evolution and natural selection almost always differ from 
those created by conventional methods of artificial 
intelligence and machine learning in one very important 
respect. Evolved solutions are not brittle; they are usually 
able to grapple with the perpetual novelty of real 
environments.  

Since genetic programming is a probabilistic process 
that is not encumbered by the preconceptions that often 
channel human thinking down familiar paths, it often 
creates novel designs. 

Similarly, genetic programming is not guided by the 
inference methods of formal logic in its search for a 
computer program to solve a given problem. When the 
goal is the automatic creation of computer programs, we 
believe that the non-logical approach used in the 
invention process and in natural evolution are far more 
fruitful than the logic-driven and knowledge-based 
principles of conventional artificial intelligence and 
machine learning.  

10 Conclusion 
This paper has demonstrated the correctness of Holland’s 
expectation that genetic algorithms would have 
"applications to ... artificial intelligence" and, in 
particular, to the automatic creation of computer 
programs from a high-level statement of a problem’s 
requirements.  
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