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Abstract – It would be desirable if computers could 

solve problems without the need for a human to write the 
detailed programmatic steps.  That is, it would be 
desirable to have a domain-independent automatic 
programming technique in which "What You Want Is 
What You Get" ("WYWIWYG" – pronounced "wow-
eee-wig").   

Genetic programming is such a technique. This paper 
surveys three recent examples of problems (from the 
fields of cellular automata and molecular biology) in 
which genetic programming evolved a computer program 
that produced results that were slightly better than 
human performance for the same problem.   

This paper then discusses the problem of electronic 
circuit synthesis in greater detail.  It shows how genetic 
programming can evolve both the topology of a desired 
electrical circuit and the sizing (numerical values) for 
each component in a crossover (woofer and tweeter) 
filter.  Genetic programming has also evolved the design 
for a lowpass filter, the design of an amplifier, and the 
design for an asymmetric bandpass filter that was 
described as being difficult-to-design in an article in a 
leading electrical engineering journal.   

 

I. INTRODUCTION 
Automatic programming is one of the central goals of 
computer science.  Paraphrasing Arthur Samuel (1959), the 
problem of automatic programming concerns the question of 

How can computers be made to do what needs to 
be done, without being told exactly how to do it?  

John Holland's pioneering Adaptation in Natural and 
Artificial Systems (1975) described how an analog of the 
naturally-occurring evolutionary process can be applied to 
solving scientific and engineering problems using what is 
now called the genetic algorithm.  

The books Genetic Programming: On the Programming 
of Computers by Means of Natural Selection (Koza 1992) 
and Genetic Programming II: Automatic Discovery of 

Reusable Programs (Koza 1994a) describe an extension to 
Holland's genetic algorithm in which the genetic population 
consists of computer programs (that is, compositions of 
primitive functions and terminals).  Genetic programming 
starts with a primordial ooze of randomly generated computer 
programs composed of the available programmatic 
ingredients and then applies the principles of animal 
husbandry to breed a new (and often improved) population of 
programs.  The breeding is done in a domain-independent 
way using the Darwinian principle of survival of the fittest, 
an analog of the naturally-occurring genetic operation of 
crossover (sexual recombination), and occasional mutation.  
The crossover operation is designed to create syntactically 
valid offspring programs (given closure amongst the set of 
ingredients).  Genetic programming combines the expressive 
high-level symbolic representations of computer programs 
with the near-optimal efficiency of learning of Holland's 
genetic algorithm.  A computer program that solves (or 
approximately solves) a given problem often emerges from 
this process.  (See also Koza and Rice 1992 and Koza 
1994b).   

Genetic programming breeds computer programs to solve 
problems by executing the following three steps: 
(1) Generate an initial population of random compositions of 
the functions and terminals of the problem. 
(2) Iteratively perform the following substeps until the 
termination criterion has been satisfied: 

(A) Execute each program in the population and assign it 
a fitness value using the fitness measure. 
(B) Create a new population of computer programs by 
applying the following operations.  The operations are 
applied to computer program(s) chosen from the 
population with a probability based on fitness. 

(i)Reproduction: Copy an existing program to the new 
population. 
(ii)Crossover: Create new offspring program(s) for 
the new population by recombining randomly chosen 
parts of two existing programs. 
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(iii) Mutation.  Create one new offspring program for 
the new population by randomly mutating a randomly 
chosen part of one existing program. 

(3) The program that is identified by the method of result 
designation (e.g., the best-so-far individual) is designated as 
the result of the genetic programming system for the run.  
This result may be a solution (or approximate solution) to the 
problem.   

Sections II, III, and IV of this paper briefly describe three 
examples of problems where genetic programming has 
produced a result that is slightly better than human 
performance on the same problem.  Section V then discusses, 
in greater detail, how genetic programming can be used to 
automate the process of electronic circuit synthesis for a 
crossover (woofer and tweeter) filter.  Section VI then briefly 
shows a genetically evolved lowpass filter, a difficult-to-
design asymmetric bandpass filter, and an amplifier.   

II. CELLULAR AUTOMATA 
It is difficult to program cellular automata.  This is especially 
true when the desired computation requires global 
communication and integration of local information across 
great distances in the cellular space.  Various human-written 
algorithms have appeared in the past two decades for the  
majority classification task for one-dimensional cellular 
automata.  Genetic programming with automatically defined 
functions has evolved a rule for this task with an accuracy of 
82.326% (Andre, Bennett, and Koza 1996).  This level of 
accuracy exceeds that of the original Gacs-Kurdyumov-Levin 
(GKL) rule, all other known subsequent human-written rules, 
and all other  known rules produced by automated 
approaches for this problem.  The genetically evolved rule is 
qualitatively different from all previous rules in that it 
employs a larger and more intricate repertoire of domains and 
particles to represent and communicate information in the 
cellular space.  

III. TRANSMEMBRANE DOMAINS 
The goal in the transmembrane segment identification 
problem is to classify a given protein segment (i.e., a 
subsequence of amino acid residues from a protein sequence) 
as being a transmembrane domain or non-transmembrane 
area of the protein (without using biochemical knowledge 
concerning hydrophobicity typically used by human-written 
algorithms for this task).  Four different versions of genetic 
programming have been applied to this problem (Koza 
1994a, Koza and Andre 1996a, 1996b).  The performance of 
all four versions using genetic programming is slightly 
superior to that of algorithms written by knowledgeable 
human investigators.  

IV. PROTEIN MOTIFS 
Automated methods of machine learning may prove to be 
useful in discovering biologically meaningful information 
hidden in the rapidly growing databases of DNA sequences 
and protein sequences.  Genetic programming successfully 

evolved motifs for detecting the D-E-A-D box family of 
proteins and for detecting the manganese superoxide 
dismutase family (Koza and Andre 1996c).  Both motifs were 
evolved without prespecifying their length.  Both evolved 
motifs employed automatically defined functions to capture 
the repeated use of common subexpressions.  The two 
genetically evolved consensus motifs detect the two families 
either as well as, or slightly better than, the comparable 
human-written motifs found in the PROSITE database.   

V. AUTOMATED CIRCUIT SYNTHESIS 
The problem of circuit synthesis involves designing an 
electrical circuit that satisfies user-specified design goals. 
Considerable progress has been made in automating the 
design of certain categories of purely digital circuits; 
however, the design of analog circuits and mixed analog-
digital circuits are not as amenable to automation (Rutenbar 
1993).  

A complete specification of an electrical circuit includes 
both its topology and the sizing of all its components.  The 
topology of a circuit consists of the number of components in 
the circuit, the type of each component, and a list (i.e., the 
netlist) of the connections between the leads (interface 
points) of the components.  The sizing of a circuit consists of 
the component value(s) associated with each component.   

V.1. Automated Analog Design Tools 
Hemmi, Mizoguchi, and Shimohara (1994) and Higuchi et al. 
(1993) have applied genetic methods to the design of digital 
circuits using a hardware description language (HDL).  

The design of analog circuits and mixed analog-digital 
circuits has not proved to be as amenable to automation. In 
DARWIN (Kruiskamp and Leenaerts 1995), CMOS opamp 
circuits are designed using the genetic algorithm. In 
DARWIN, the topology of each opamp is picked randomly 
from a preestablished hand-designed set of 24 topologies in 
order to ensure that each circuit behaves as an opamp.  

V.2. The Mapping between Electrical 
Circuits and Program Trees 

Genetic programming breeds a population of rooted, point-
labeled trees (i.e., graphs without cycles) with ordered 
branches.  There is a considerable difference between the 
kind of trees bred by genetic programming and the labeled 
cyclic graphs encountered in the world of electrical circuits.   

Electrical circuits are cyclic graphs in which every line 
belongs to a cycle.  The primary label on each line identifies 
the type of electrical component.  The secondary label(s), if 
any, on each line specify the value(s) of the component.   

Genetic programming can be applied to circuits if a 
mapping is established between the kind of point-labeled 
trees found in the world of genetic programming and the line-
labeled cyclic graphs employed in the world of circuits.  
Developmental biology provides the motivation for this 
mapping.  In Cellular Encoding of Genetic Neural Networks, 
Frederic Gruau (1992) described an innovative technique, 
called cellular encoding, in which genetic programming is 
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used to concurrently evolve the architecture of a neural 
network, along with all weights, thresholds, and biases of the 
neurons in the network.  In this technique, genetic 
programming is applied to populations of network-
constructing program trees in order to evolve a neural 
network capable of solving a problem.  

The growth process used herein for circuit synthesis 
begins with a very simple embryonic electrical circuit and 
builds a more complex circuit by progressively executing the 
functions in a circuit-constructing program tree.  The result is 
the topology of the circuit, the choice of the type of 
component that is situated at each location within the 
topology, and the sizing of all components.   

Each program tree can contain (1) connection-modifying 
functions that modify the topology of the circuit (starting 
with the embryonic circuit), (2) component-creating 
functions that insert particular components into locations 
within the topology of the circuit in lieu of wires (and other 
components) and whose arithmetic-performing subtrees 
specify the numerical value (sizing) for each such 
component, and possibly (3) automatically defined functions.  

Program trees conform to a constrained syntactic 
structure.  Each component-creating function in a program 
tree has zero, one, or more arithmetic-performing subtrees 
and one or more construction-continuing subtrees.  Each 
connection-modifying function has one or more construction-
continuing subtrees.  The arithmetic-performing subtree(s) of 
each component-creating function consists of a composition 
of arithmetic functions and numerical constant terminals that 
together yield the numerical value for the component.  The 
construction-continuing subtree specifies how the 
construction of the circuit is to be continued.  

Both the random program trees in the initial population 
(generation 0) and all random subtrees created by the 
mutation operation in later generations are created so as to 
conform to this constrained syntactic structure.  This 
constrained syntactic structure is preserved by using 
structure-preserving crossover with point typing (Koza 
1994a).   

The bottom of figure 1 shows the embryonic circuit for a 
one-input, two-output circuit.  The energy source is a 2 volt 
sinusoidal voltage source VSOURCE whose negative (–) 
end is connected to node 0 (ground) and whose positive (+) 
end is connected to node 1.  There is a source resistor 
RSOURCE between nodes 1 and 2.  There is a modifiable 
wire (i.e., a wire with a writing head) Z0 between nodes 2 
and 3, a second modifiable wire Z1 between nodes 2 and 6, 
and third modifiable wire Z2 between nodes 3 and 6.   There 
is an isolating wire ZOUT1 between nodes 3 and 4, a voltage 
probe labeled VOUT1 at node 4, and a fixed load resistor 
RLOAD1 between nodes 4 and ground.  Also, there is an 
isolating wire ZOUT2 between nodes 6 and 5, a voltage 
probe labeled VOUT2 at node 5, and a load resistor 
RLOAD2 between nodes 5 and ground.   The resistors are 
0.00794 Kilo Ohms.  All of the above elements of this 
embryonic circuit (except Z0, Z1, and Z2) are fixed forever; 

they are not subject to modification during the process of 
developing the circuit.  Note that little domain knowledge 
went into this embryonic circuit.  Specifically, (1) the 
embryonic circuit is a circuit, (2) this embryonic circuit has 
one input and two outputs, and (3) there are modifiable 
connections Z0, Z1, and Z2 providing full point-to-point 
connectivity between the one input (node 2) and the two 
outputs VOUT1 and VOUT2 (nodes 4 and 5).   
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Figure 1  One-input, two-output embryonic electrical 
circuit.   

A circuit is developed by modifying the component to 
which a writing head is pointing in accordance with the 
associated function in the circuit-constructing program tree.  
The figure shows L, C, and C functions just below the LIST 
and three writing heads pointing to Z0, Z1, and Z2.  The L, 
C, and C functions will cause Z0, Z1, and Z2 to be changed 
into an inductor and two capacitors, respectively.  

V.3. Component-Creating Functions 
Each individual circuit-constructing program tree in the 
population generally contains component-creating functions 
and connection-modifying functions.   

Each component-creating function inserts a component 
into the developing circuit and assigns component value(s) to 
the inserted component.  Each component-creating function 
in a program tree points to an associated highlighted 
component  (i.e., a component with a writing head) in the 
developing circuit and modifies the highlighted component in 
some way.  Each component-creating function spawns one or 
more writing heads (through its construction-continuing 
subtrees).  The construction-continuing subtree of each 
component-creating function points to a successor function or 
terminal in the circuit-constructing program tree.  

The arithmetic-performing subtree of a component-
creating function consists of a composition of arithmetic 
functions (addition and subtraction) and random constants (in 
the range –1.000 to +1.000).  The arithmetic-performing 
subtree specifies the numerical value of the component by 
returning a floating-point value that is, in turn, interpreted as 
the value for the component in a range of 10 orders of 
magnitude (using a unit of measure that is appropriate for the 
particular type of component involved).  The floating-point 
value is interpreted as the value of the component as 
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described more fully in Koza, Andre, Bennett, and Keane 
1996. 

The two-argument capacitor-creating C function causes 
the highlighted component to be changed into a capacitor.  
The value of the capacitor in nano Farads is specified by its 
arithmetic-performing subtree.    

The two-argument inductor-creating L function causes the 
highlighted component to be changed into an inductor.  The 
value of the inductor in micro-Henrys is specified by its 
arithmetic-performing subtree.   

The functions in the group of three-argument transistor-
creating QT functions cause a transistor to be inserted in 
place of one of the nodes to which the highlighted component 
is connected (while deleting the highlighted component).   
Each QT function creates five new nodes and three new 
modifiable wires.  After execution of a QTn, there are three 
writing heads that point to three new modifiable wires.  
Figure 2 shows a resistor R1 (with a writing head) 
connecting nodes 1 and 2.  Figure 3 shows the result of 
applying the QT0 function to R1, thereby creating transistor 
Q6.   

 
Figure 2  Circuit with resistor R1.  

 
Figure 3  Result of applying QT0 function.   

V.4. Connection-Modifying Functions 
The topology of the circuit is determined by the connection-
modifying functions.  Each connection-modifying function in 
a program tree points to an associated highlighted component 
and modifies the topology of the developing circuit in some 
way.  Each connection-modifying function spawns zero, one, 
or more writing heads.    

The one-argument polarity-reversing FLIP function 
attaches the positive end of the highlighted component to the 
node to which its negative end is currently attached and vice 
versa.  After execution of the FLIP function, one writing 
head points to the now-flipped original component.   

 
Figure 4 Result of applying SERIES.   

The three-argument SERIES division function operates 
on one highlighted component and creates a series 
composition consisting of the highlighted component, a copy 
of the highlighted component, one new modifiable wire, and 
two new nodes.  After execution of the SERIES function, 
there are three writing heads pointing to the original 
component, the new modifiable wire, and the copy of the 
original component.  Figure 4 shows the result of applying 
the SERIES division function to resistor R1 from figure 2.  
First, the SERIES function creates two new nodes, 3 and 4.  
Second, SERIES disconnects the negative end of the original 
component (R1) from node 1 and connects this negative end 
to the first new node, 4 (while leaving its positive end 
connected to the node 2). Third, SERIES creates a new wire 
(called Z6 in the figure) between new nodes 3 and 4.  The 
negative end of the new wire is connected to the first new 
node 3 and the positive end is connected to the second new 
node 4. Fourth, SERIES inserts a duplicate (called R7 in the 
figure) of the original component (including all its 
component values) between new node 3 and original node 1.  
The positive end of the duplicate is connected to the original 
node 1 and its negative end is connected to new node 3.  

  
Figure 5  Result of applying PSS.   

The four-argument parallel division function PSS 
operates on one highlighted component to create a parallel 
composition consisting of the original highlighted 
component, a duplicate of the highlighted component, two 
new wires, and two new nodes.   After execution of PSS, 
there are four writing heads.  They point to the original 
component, the two new modifiable wires, and the copy of 
the original component.  First, the parallel division function 
PSS creates two new nodes, 3 and 4.  Second, PSS inserts a 
duplicate of the highlighted component (including all of its 
component values) between the new nodes 3 and 4 (with the 
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negative end of the duplicate connected to node 4 and the 
positive end of the duplicate connected to 3.  Third, PSS 
creates a first new wire Z6 between the positive (+) end of 
R1 (which is at original node 2) and first new node, 3.  
Fourth, PSS creates a second new wire Z8 between the 
negative (-) end of R1 (which is at original node 1) to 
second new node, 4.  Figure 5 shows the results of applying 
the PSS function to resistor R1 from figure 2. The negative 
end of the new component is connected to the smaller 
numbered component of the two components that were 
originally connected to the negative end of the highlighted 
component.  Since C4 bears a smaller number than C5, new 
node 3 and new wire Z6 are located between original node 2 
and C4.  Since C2 bears a smaller number than C3, new 
node 4 and new wire Z8 are located between original node 1 
and C2.  

Eight two-argument functions (called VIA0, ..., VIA7) 
and the two-argument GND ("ground") function enable distant 
parts of a circuit to be connected together.  After execution, 
writing heads point to two modifiable wires.   

The VIA functions create a series composition consisting 
of two wires that each possesses a successor writing head and 
a numbered port (called a via) that possesses no writing head.  
The port is connected to a designated one of eight imaginary 
layers (numbered from 0 to 7) of an imaginary silicon wafer.  
If one or more parts of the circuit connect to a particular 
layer, all such parts become electrically connected as if wires 
were running between them.   

The two-argument GND function is a special "via" 
function that establishes a connection directly to ground.   

The one-argument NOP function has no effect on the 
highlighted component; however, it delays activity on the 
developmental path on which it appears in relation to other 
developmental paths in the overall program tree.  After 
execution of NOP, one writing head points to the original 
highlighted component.  

The zero-argument END function causes the highlighted 
component to lose its writing head.   

 
Figure 6   Result of applying the Y1 function.  

We describe two other functions (not used herein) to 
illustrate that numerous other connection-modifying 
functions can be employed in this process.  The  functions in 
the group of three-argument Y division functions operate on 
one highlighted component (and one adjacent node) and 
create a Y-shaped composition consisting of the highlighted 
component, two copies of the highlighted component, and 
two new nodes.  The Y functions insert the two copies at the 
"active" node of the highlighted component.  For the Y1 
function, the active node is the node to which the negative 
end of the highlighted component is connected.  Figure 6  
shows the result of applying Y1 to resistor R1 of figure 2.   

 
Figure 7   Result of applying DELTA1 function. 

The functions in the group of six-argument DELTA 
functions operate on one highlighted component by 
eliminating it (and one adjacent node) and creating a 
triangular ∆−shaped composition consisting of three copies 
of the original highlighted component (and all of its 
component values), three new modifiable wires, and five new 
nodes.   Figure 7  illustrates the result of applying the 
DELTA1 division function to resistor R1 of figure 2 when 
the active node (node 1) is of degree 3.   

V.5. Preparatory Steps for an Example 
A crossover (woofer and tweeter) filter is a one-input, two-
output filter that passes all frequencies below a certain 
specified frequency to its first output port and that passes all 
higher frequencies to a second output port.  The goal here is 
to design a crossover filter at a frequency of 2,512 Hertz.  

Before applying genetic programming to a circuit 
synthesis problem, the user must perform seven major 
preparatory steps, namely (1) identifying the terminals of the 
to-be-evolved programs, (2) identifying the primitive 
functions contained in the to-be-evolved programs, (3) 
creating the fitness measure for evaluating how well a given 
program does at solving the problem at hand, (4) choosing 
certain control parameters (notably population size and the 
maximum number of generations to be run), (5) determining 
the termination criterion and method of result designation, (6) 
determining the architecture of the overall program, and (7) 
identifying the embryonic circuit that is suitable for the 
problem.  We first discuss items (7) and (6).  
V.5.1 The Embryonic Circuit 
The embryonic circuit (figure 1) is suitable for this problem.   
V.5.2 Program Architecture 
No automatically defined functions are to be used in this 
problem.  Thus, the architecture of the overall program tree 
consists of three result-producing branches joined by the 
connective LIST function.  Thus, the embryonic circuit 
initially has three writing heads – one associated with each 
result-producing branch.   
V.5.3 Function and Terminal Sets 
The function set, Faps, for the arithmetic-performing subtree 
associated with a component-creating function contains the 
arithmetic functions of addition and subtraction.  That is, 
Faps = {+, -}, 

The terminal set, Taps, for the arithmetic-performing 
subtree consists of 
Taps = {←}, 
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where ← represents floating-point random constants between 
–1.000 and +1.000.   

The function set, Fccs, for the construction-continuing 
subtree of each component-creating function is 
Fccs = {C, L, SERIES, PSS, FLIP, NOP,  GND, VIA0,  

VIA1,  VIA2,  VIA3,  VIA4,  VIA5,  VIA6,  
VIA7}. 

The terminal set, Tccs, for the construction-continuing 
subtree consists of 
Tccs = {END}.   
V.5.4 Fitness Measure 
The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with its 
execution.  This execution applies the functions in the 
program tree to the very simple embryonic circuit thereby 
developing the embryonic circuit into a fully developed 
circuit.  A netlist describing the circuit is then created.  The 
netlist identifies each component of the circuit, the nodes to 
which that component is connected, and the value of that 
component.  Each circuit is then simulated to determine its 
behavior.  The 217,000-line SPICE simulator was modified 
to run as a submodule within the genetic programming 
system.  SPICE (an acronym for Simulation Program with 
Integrated Circuit Emphasis) is a massive program written 
over several decades at the University of California at 
Berkeley for the simulation of analog, digital, and mixed 
analog/digital electrical circuits.  The input to a SPICE 
simulation consists of a netlist describing the circuit to be 
analyzed and certain commands that instruct SPICE as to the 
type of analysis to be performed and the nature of the output 
to be produced (Quarles et al. 1994).  

The fitness measure may incorporate any calculable 
characteristic or combination of characteristics of the circuit, 
including the circuit's behavior in the time domain, its 
behavior in the frequency domain, its power consumption, 
the number of components, cost of components, surface area 
occupied by its components, or sensitivity to temperature or 
other variables.  Since we are designing a filter, the focus is 
on the behavior of the circuit in the frequency domain.   

The starting point for the design of a filter is the 
specification by the user of the frequency ranges for its 
passband and stopband, its maximum passband ripple (i.e., 
the small variation that is tolerated within the passband) and 
its minimum stopband attenuation (i.e., the large degree of 
blockage of the signal that is demanded in the stopband).   

The SPICE simulator is requested to perform an AC small 
signal analysis and to report the circuit's behavior at two 
probe points, VOUT1 and VOUT2, for each of 101 
frequency values chosen from the range between 10 Hz to 
100,000 Hz.  Each of these four decades of frequency are 
divided into 25 parts (using a logarithmic scale) giving 101 
fitness cases for each probe point.   

Fitness is measured in terms of the sum, over these 101 
frequency values, of the absolute weighted deviation between 
the actual value of voltage in the frequency domain that is 
produced by the circuit at the first probe point VOUT1 and 

the target value for voltage for that first probe point plus the 
sum, over these 101 frequency values, of the absolute 
weighted deviation between the actual value of voltage that is 
produced by the circuit at the second probe point VOUT2 
and the target value for voltage for that second probe point.  
The smaller the value of fitness, the better.  A fitness of zero 
represents an ideal filter.   

Specifically, the standardized fitness, F(t), is 

F(t) =
i=0

100
∑ [W1 (d1 ( f i ), f i )d1 ( f i ) + 

W2 (d2 ( f i ), f i )d2 ( f i ) ] 
where f(i) is the frequency (in Hertz) of fitness case i; d1(x) is 
the difference between the target and observed values at 
frequency x for probe point VOUT1; d2(x) is the difference 
between the target and observed values at frequency x for 
probe point VOUT2;W1(y,x) is the weighting for difference y 
at frequency x for probe point VOUT1; andW2(y,x) is the 
weighting for difference y at frequency x for probe point 
VOUT2.  

The fitness measure does not penalize ideal values; it 
slightly penalizes every acceptable deviation; and it heavily 
penalizes every unacceptable deviation.   

Consider the woofer (lowpass) portion and VOUT1 first.  
The procedure for each of the 58 points in the desired 
passband from 10 Hz to 1,905 Hz is as follows: If the voltage 
is between 970 millivolts and 1,000 millivolts, the absolute 
value of the deviation from 1,000 millivolts is weighted by a 
factor of 1.0.  If the voltage is less than 970 millivolts, the 
absolute value of the deviation from 1,000 millivolts is 
weighted by a factor of 10.0.  This arrangement reflects the 
fact that the ideal voltage in the passband is 1.0 volt, the fact 
that a 30 millivolt shortfall satisfies the design goals, and the 
fact that a voltage below 970 millivolts in the passband is not 
acceptable.  For the 38 fitness cases representing frequencies 
of 3,311 and higher in the intended stopband, the procedure 
is as follows: If the voltage is between 0 millivolts and 1 
millivolts, the absolute value of the deviation from 0 
millivolts is weighted by a factor of 1.0.  If the voltage is 
more than 1 millivolts, the absolute value of the deviation 
from 0 millivolts is weighted by a factor of 10.0.  This 
arrangement reflects the fact that the ideal voltage in the 
stopband is 0.0 volt, the fact that a 1 millivolt ripple above 0 
millivolts is acceptable, and the fact that a voltage above 1 
millivolt in the stopband is not acceptable.   

For the two fitness cases at 2,089 Hz and 2,291 Hz, the 
absolute value of the deviation from 1,000 millivolts is 
weighted by a factor of 1.0.  For the fitness case at 2,512 Hz, 
the absolute value of the deviation from 500 millivolts is 
weighted by a factor of 1.0. For the two fitness cases at 2,754 
Hz and 3,020 Hz, the absolute value of the deviation from 0 
millivolts is weighted by a factor of 1.0.   

The fitness measure for the tweeter (highpass) portion 
involving VOUT2 is a mirror image of the arrangement for 
the woofer portion.   
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Hits are defined as the number (10 to 202) of fitness cases 
for which the voltage is acceptable.   

Some circuits that are randomly created for the initial 
random population and that are created by the crossover and 
mutation operations in later generations are so bizarre that 
they cannot be simulated by SPICE.  Circuits that cannot be 
simulated by SPICE are assigned a high penalty value of 
fitness (108).   
V.5.5 Control Parameters 
The population size, M, is 640,000.  The crossover 
percentage was 89% (producing 569,600 offspring); the 
reproduction percentage was 10%; and the mutation 
percentage was 1%.  A maximum size of 200 points was 
established for each of the three result-producing branches in 
each overall program.  The other minor parameters were the 
default values in Koza 1994a (appendix D).   
V.5.6 Parallel Computer System 
This problem was run on a medium-grained parallel Parystec 
computer system consisting of 64 Power PC 601 80 MHz 
processors arranged in a toroidal mesh with a host PC 
Pentium type computer.  The so-called distributed genetic 
algorithm  was used with a population size of Q =  10,000 at 
each of the D = 64 demes.  On each generation, four 
boatloads of emigrants, each consisting of B = 2% (the 
migration rate) of the node's subpopulation (selected on the 
basis of fitness) were dispatched to the four toroidally 
adjacent processing nodes.  See Andre and Koza 1996.  

V.6. Results 
The worst individual program trees from generation 0 create 
circuits that are so pathological that SPICE is incapable of 
simulating them.  The best circuit (figure 8) from generation 
0 has a fitness of 159.0 and scores 85 hits (out of 202).  Its 
frequency domain behavior is shown in figure 11. 

 
Figure 8 Best circuit of generation 0. 

 
Figure 9 Best circuit of generation 20.   

 
Figure 10  Best-of-run circuit from generation 137.   

SPICE cannot simulate many of the bizarre circuits 
created by genetic programming.   About 98.5% of the 
programs of generation 0 for this problem produce circuits 
that cannot be simulated by SPICE.  However, the percentage 
of unsimulatable programs drops to 84.9% by generation 1, 
75.0% by generation 2, and an average of 9.6% thereafter.   

This observation supports the general principle that the 
individuals in the population in intermediate generations of a 
run of genetic programming (and random subtrees picked 
from them) differ markedly from the individuals (and their 
randomly picked subtrees) in the randomly created 
population of generation 0 of the same run.  That is, 
crossover fragments from intermediate generations of a run 
of genetic programming are very different from the randomly 
grown subtrees provided by the mutation operation.  It is 
experimental evidence, for this non-trivial problem, that the 
population serves a vital role in the genetic algorithm – 
namely that of providing a reservoir of useful fragments to 
rapidly advance the search.   

In embarking on this project of trying to evolve electronic 
circuits using genetic programming, one of our major 
threshold concerns was whether any significant percentage of 
the randomly created circuits of generation 0 in this highly 
epistatic search space would be simulatable at all by SPICE.  
A second concern was whether the crossover operation 
would create any significant percentage of simulatable 
circuits.  Neither of these issues materialized on this problem.  
Darwinian selection apparently is very effective in quickly 
steering the population on successive generations into the 
portion of the search space where parents can successful sire 
simulatable offspring by means of crossover.   
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The best-of-generation individual from generation 20 
(figure 9) has a fitness of 38.8 and scores 125 hits (out of 
202).  Its frequency domain behavior is shown in figure 12.  

The best-of-run circuit (figure 10) from generation 137 
has a fitness of 0.7807 and 192 hits (out of 202).  Its 
frequency domain behavior is shown in figure 13.   

V.7. Comparison with Butterworth Filters 
The Butterworth filters are a graded series of benchmark 
"ladder" filters parameterized by n, where n is the number of 
inductors and capacitors in the circuit.   

Figure 14 shows the frequency domain response of this 
combination of two Butterworth filters of order 3.  When we 
apply our fitness and hits measures to a combination of 
lowpass and highpass Butterworth 3 filters, the combined 

circuit scores 162 hits (out of 202).  Figure 15 shows the 
frequency domain response of two Butterworth 5 filters 
(which corresponds to a score of 184 hits) and figure 16 
shows two Butterworth 7 filters (with 190 hits).   

The best-of-run circuit from generation 137 described 
above scores 192 hits and thus can be said to deliver a 
response that is slightly better than the combination of 
lowpass and highpass Butterworth filters of order 7.   

The lowpass part of the best-of-run circuit has the same 
topology as Butterworth (but not the Butterworth component 
values).  The highpass part has an extra capacitor and a 
sharper boundary around  the crossover frequency of 2,512 
Hz.   

 
Figure 11 Frequency domain behavior of the best circuit 
of generation 0.   

 
Figure 12  Frequency domain behavior of the best of 
generation 20.  

  
Figure 13 Frequency domain behavior of the best-of-run 
circuit from generation 137.   

 
Figure 14  Frequency domain behavior  of two 
Butterworth 3 filters.  

 
Figure 15  Frequency domain behavior of two 
Butterworth 5 filters.  

 
Figure 16  Frequency domain behavior of two 
Butterworth 7 filters.  

 

VI. OTHER GENETICALLY EVOLVED 
CIRCUITS 

The above techniques have recently been successfully 
applied to a variety of other problems of circuit synthesis.  

VI.1. Lowpass "Brick Wall" Filter 
Consider the problem of designing a lowpass filter with 
passband below 1,000 Hz and a stopband above 2,000 Hz (as 
described more fully in Koza, Bennett, Andre, and Keane   
1996).  The voltages in the passband are to be between 970 
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millivolts and 1 volt (i.e., the passband ripple is 30 
millivolts) and the voltages in the stopband between 0 volts 
and 1 millivolt.  Figure 17 shows the 100% compliant circuit 
that was evolved in one run.  This genetically evolved 
lowpass filter has a recognizable "ladder" topology of a 
Butterworth or Chebychev filter and consists of a series 
composition inductors with capacitors as shunts.  

In another run, a 100% compliant recognizable "bridged 
T" arrangement was evolved (involving capacitors C3 and 
C15 and inductor L11 in conjunction with L14), as shown in 
figure 18.   

Figure 19 shows a 100% compliant circuit from 
generation 212 of another run with a novel topology that no 
electrical engineer would be likely to create.    

VI.2. An Asymmetric Bandpass Filter 
In the Analog Integrated Circuits and Signal Processing 
journal, Nielsen (1995) presented specifications for a 
difficult-to-design asymmetric bandpass filter.  Using a 
standard bandpass filter on his problem would require a 
tenth-order elliptic function.   

Nielsen's bandpass filter (1995) is targeted for a modem 
application where one band of frequencies (31.2 to 45.6 
kilohertz) must be isolated from another (69.6 to 84.0 KHz).   
Nielsen specifies that it would be ideal if the relative voltage 
within the passband were in the narrow region between –0.6 
dB and 0.6 dB (i.e., the passband ripple around 0 dB is less 
than 0.6 decibels) and all the relative voltages outside the 
passband were below –120 dB (i.e., the stopband attenuation 
were at least 120 dB).  These ideal characteristics are 
depicted by the dark region in figure 21 (which exaggerates 
the height of the ripple band).  Nielsen also defined a set of 
acceptable characteristics (depicted by the light shading in 
figure 21).  Because of the importance of isolating the band 
of frequencies between 69.6 and 84.0 KHz, the attenuation 
there should be at least 73 dB (i.e., the relative voltage is 
below –73 dB).   

Less stringency is demanded elsewhere.  The attenuation 
for frequencies below 20 KHz should be at least 38 dB (i.e., 
the relative voltage is below –38 dB).  The relative voltages 
in the frequency band between 20 KHz and 31.2 KHz and in 
the band  between 45.6 KHz and 69.6 KHz should be below 
0 dB.  The relative voltages in the band  above 84.0 KHz 
should be below –55 dB.  

In one run (as described more fully in Koza, Bennett, 
Andre, and Keane 1996), several fully compliant circuits 
were evolved between generations 132 and 199.  Figure 20 
shows the best-of-run circuit from generation 199 and figure 
21 shows its behavior in the frequency domain.   

 

Figure 17  Seven-rung ladder circuit from generation 32.  

 
Figure 18  "Bridged T" from generation 64.   

 
Figure 19  Best circuit from generation 212.   

 
 

VI.3. An Amplifier using Transistors 
Now consider the problem of designing an amplifier with an 
amplification factor of 3.5 over the frequency range of 20 Hz 
to 20,000 Hz.  Amplifiers are active circuits and require 
active components  (e.g., transistors) in the function set.   
Figure 22 shows a genetically evolved 5 dB amplifier.  The 
boxes highlight a recognizable voltage gain stage and a 
recognizable Darlington emitter follower section (inverted). 

VII. CONCLUSION 
We have surveyed four fields in which genetic programming 
has evolved computer programs that are competitive in 
performance with human-written programs.    
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Figure 20  Best-of-run circuit of generation 199. 
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Figure 21  Frequency domain behavior of best-of-run 
circuit of generation 199.  
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Figure 22  Genetically evolved 5 dB amplifier from 
generation 45.   
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