

Evolving a Computer Program to Generate Random Numbers Using the
Genetic Programming Paradigm

John R. Koza
Computer Science Department

Stanford University
Stanford, CA 94305 USA

Koza@Sunburn.Stanford.Edu
415-941-0336

ABSTRACT
This paper demonstrates that it is possible
to genetically breed a computer program that
is considered difficult to write, namely, a
randomizer that converts a sequence of
consecutive integers into pseudo-random
bits with near maximal entropy.

1. INTRODUCTION AND OVERVIEW
"How can computers learn to solve problems without
being explicitly programmed?" This question, which is
a central question in the fields of artificial intelligence
and machine learning, can be approached using an
analogy to the evolutionary process in nature.

John Holland's pioneering 1975 Adaptation in Natural
and Artificial Systems [3] described how the
evolutionary process in nature can be applied to
artificial systems using the "genetic algorithm"
operating on fixed length character strings.

Representation is a key issue in genetic algorithm work
because genetic algorithms directly manipulate the
coded representation of the problem and because the
representation scheme can severely limit the window by
which the system observes its world [2]. For many
problems in artificial intelligence, the most natural
representation for solutions to problems are hierarchical
computer programs of indeterminate size and shape, as
opposed to structures whose size has been determined
in advance. It is unnatural and difficult to represent
hierarchies of dynamically varying size and shape with
fixed length character strings.

In this paper, we show how to genetically breed a
population of computer programs to convert a sequence
of consecutive integers into a sequence of pseudo-
random bits using the recently developed "genetic pro-

gramming" paradigm.

2. DEFINITION OF RANDOMNESS
Numbers "chosen at random" are useful in a variety of
scientific, mathematical, engineering, and industrial
applications, including Monte Carlo simulations,
decision theory, instant lottery ticket production, etc.
Random numbers are difficult to create. Marsaglia [18]
describes the difficulty of successfully randomizing
numbers, particularly where a stream of several
"independent" random integers are required to carry out
related steps of one process.

When random numbers are required in computer
programs, they are typically provided by a deterministic
algorithm (as opposed to some non-algorithmic
technique, such as neutron emissions). The algorithm
is known to the programmer. Moreover, the program is
typically written (using "seeds") so that its output is
fully reproducible (to aid debugging, verification, etc.).
Numbers which are produced by a deterministic,
known, and reproducible algorithm are, of course,
anything but random. Indeed, as John Von Neumann
said, "Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of sin."

Not only is the term "random number" an oxymoron,
but there is no generally accepted mathematical
definition of a random number sequence. Knuth [17]
describes a number of different specific tests, such as
the equidistribution (frequency) test, gap test, run test,
serial test, permutation test, coupon collector's test,
poker test, etc. D.H.Lehmer (17) said "A random
sequence is a vague notion embodying the idea of a
sequence in which each term is unpredictable to the
uninitiated and whose digits pass a certain number of
tests, traditional with statisticians and depending
somewhat on the uses to which the sequence is to be put

." (Italics added).

The notion of statistical independence can be used as
the starting point for one possible rigorous
mathematical definition of a sequence {ui} of random
numbers. Anderson [1], for example, says that "each
value of ui is as likely as any other value and the value
of ui must be statistically independent of the value of uj
for i ≠ j." The first part of this statement corresponds to
the equidistribution (frequency) test described in Knuth
[17] while the second part of this statement corresponds
to a pairwise version of the serial test described in
Knuth.

One can expand Anderson's conditions to a more
general concept of statistical independence based on the
intuitive notion of conditional probability that a
specified sub-sequence predicts another sub-sequence.
Let K be the number of values possible at a given
position in the sequence. Let c be the number of
consequent (i.e. predicted) positions within a sub-
sequence of length N. Let g (where g≤ N–c) be the
number of antecedent (i.e. given) values at the
remaining N–c positions within the sub-sequence of
length N. Then, for any integer N (where N runs from
1 to infinity), all Kc conditional probabilities of c
particular specified values at the c consequent positions
(given that g particular specified antecedent values have
appeared at the g antecedent positions), are all equal to
1

Kc (within an acceptably small error ε≥0) . Note that if

g is strictly less than N–c, then there are N–g–c
positions within the sequence which are part of neither
the antecedent nor consequent part of the prediction.
That is, they are "don't care" positions. For a given N,

there are multinomial coefficient ()N
g c N–g–c ways of

picking the g given antecedent positions and c
consequent positions out of the subsequence of length
N. And then, after g such given antecedent positions
are picked, there are then Kg particular assignments of
values at the g antecedent positions. After those
choices are made, there are then Kc particular
assignments of values at the c consequent positions.
The conditional probabilities of the Kc particular
assignments of values that should be equal.

The above definition captures the intuitive notion based
on conditional probabilities; however, it is particularly
onerous combinatorially. The following simpler
definition avoids conditional probabilities and is
sufficient to guarantee satisfaction of the above
conditional probability test. For any integer N (where
N runs from 1 to infinity), the probabilities of each of
the KN possible sub-sequences of length N are all equal

to 1
KN (within an acceptably small error ε≥0) .

No finite sequence can satisfy the above test. However,
if N is then limited to some finite fixed integer Nmax,
then "only" KNmax probabilities must be estimated
when N = Nmax. Moreover, these KNmax separate
probabilities can be conveniently summarized into a
scalar quantity by using the concept of entropy for this
set of events and probabilities. The entropy (which is
measured in bits) is maximal when the probabilities of
all the possible events are equal. Moreover, when K =
2, this maximal value of entropy happens to equal the
length N (in bits) of the sequence. The entropy Eh for
the set of Kh probabilities for the Kh possible sub-
sequences of length h, equals

Eh = – ∑ Phj log2 Phj .

Here j ranges over the Kh possible sub-sequences of
length h. By convention, log2 0 is 0.

If K = 2, then this sum attains its maximum value of h
precisely when the probabilities of all the Kh possible
sub-sequences of length h are equal to 1

2h .

As h runs from 1 to Nmax, it is convenient to further
summarize the Nmax separate scalar values of entropy
into one single scalar value, namely, Etotal as follows:

Etotal = ∑
h=1

Nmax

 – ∑

 j
 Phj log2 Phj

When Etotal attains the maximal value of

∑
h=1

Nmax
 h = Nmax(Nmax – 1),

then the sequence may be viewed as random.

To illustrate for K = 2: When h is 1, there are only two
probabilities to consider, namely, the probability P10 of
occurrence of zeroes and the probability P11 of
occurrence of ones in the entire random sequence.
These two probabilities are what are used in Knuth's
equidistribution (frequency) test. For the worst
randomizer (say one that always emits 1), P10 is 0.0 and
P11 is 1.0 and the entropy is 0.0 bits. For a better
randomizer, both P10 and P11 would equal
approximately 0.5 and the entropy would
approximately equal the maximal value of 1.0 bits.
However, a defective randomizer such as one that emits
 0101010101...

has entropy of 1.0 bits when only the two "singlet"

probabilities associated with h = 1 are considered.
However, when h = 2, the "pair" probabilities of the
four possible pairs (i.e. 00, 01, 10, and 11) are not all

equal to
1
4 . The two pairs 00 and 11 do not appear at

all in the output of this defective randomizer. The two

pairs 01 and 10 appear with probability
1
2 . Thus, the

entropy for h = 2 for this defective randomizer is only
1.0, instead of the maximal value of 2.0 bits possible.

3. TYPES OF PSEUDO-RANDOM
NUMBER GENERATORS

The common types of randomizers start with one or
more seeds [1]. Multiplicative congruential
randomizers start with a seed value x0 and then produce
subsequent elements of the sequence recursively as
follows:

xi = (a xi –1+ c) mod M,

where a is the multiplier, c is the additive constant, and
M is the modulus. Park and Miller [19] describe the
especially simple and popular randomizer

xi = 75 xi–1 mod [231 – 1].

which provides especially good randomness by many
tests for the low-order bits.

The popular URN08 randomizer came from IBM in
1970 and is widely known as "RANDU". IBM's
RANDU is the multiplicative congruential randomizer

xi = 65539 xi–1 mod 231.

Shift register randomizers start with a seed value x0 and
then produce subsequent elements of the sequence
recursively in a shift register. In the popular
SR[3,28,31] shift register randomizer (called "SHIFT
REGISTER" herein), the numbers 3 and 28 specify the
amount of shifting (end off, with zero fill) to the right
or left (respectively) in a 31-bit shift register. With
XOR being the exclusive-or operation,
 temp =(XOR xi–1 (SHIFT-RIGHT xi 3))
 xi =(XOR temp (SHIFT-LEFT temp 28).

Shuffling randomizers call on one or more other
randomizers to shuffle numbers to produce random
numbers. One two-sequence shuffling randomizer
(called SHUFFLE herein) uses the Park-Miller
randomizer described above to produce an initial set of
uniformly distributed random numbers between 0.0 and
1.0 and then uses the shift register randomizer
SR[3,28,31] to call out particular numbers from this set
of numbers, while using additional calls on Park-Miller
[19] to replace the numbers called out.

Texas Instruments supplies a randomizer called

RANDOM with its Explorer™ computers.

Because of the size of tables needed for the sub-
sequence probabilities needed to compute the total
entropy, we will focus, for the remainder of this paper,
on producing sequences of random binary digits (i.e. K
= 2).

4. BACKGROUND ON GENETIC
PROGRAMMING PARADIGM

We have recently shown that entire computer programs
can be genetically bred to solve problems in a variety of
different areas of artificial intelligence, machine
learning, and symbolic processing. Specifically, this
recently developed genetic programming paradigm has
been successfully applied [4, 5, 12] to example
problems in several different areas, including

• planning (e.g. navigating an artificial ant along a trail
and developing a robotic plan for stacking blocks in
to a desired order) [4, 6],

• emergent behavior (e.g. discovering a computer
program for locating food, carrying food to the nest,
and dropping pheromones, which, when executed by
all the ants in an ant colony, produces interesting
higher level "emergent" behavior) [10],

• machine learning of functions (e.g. learning the
Boolean 11-multiplexer function) [11],

• automatic programming (e.g. solving pairs of linear
equations, solving quadratic equations for complex
roots, and discovering trigonometric identities) [4],

• discovering inverse kinematic equations (e.g. to
move a robot arm to designated target points) [12,
16],

• optimal control (e.g. centering a cart and balancing a
broom on a moving cart in minimal time by applying
a "bang bang" force to the cart) [13, 14],

• pattern recognition (e.g. translation-invariant one-
dimensional shape in a linear retina) [4],

• sequence induction (e.g. inducing a recursive
procedure for generating sequences such as the
Fibonacci and the Hofstadter sequences) [4],

• symbolic "data to function" regression, integration,
differentiation, and symbolic solution to general
functional equations (including differential equations
with initial conditions, and integral equations) [4],

• empirical discovery (e.g. rediscovering Kepler's
Third Law, rediscovering the well-known non-linear
econometric "exchange equation" MV = PQ from
actual, noisy time series data for the money supply,
the velocity of money, the price level, and the gross
national product of an economy) [8],

• concept formation and decision tree induction [9],

• finding minimax strategies for games (e.g.
differential pursuer-evader games, discrete games in
extensive form) by both evolution and co-evolution
[7], and

• simultaneous architectural design and training of
neural networks [15].

A visualization of the application of the genetic
programming paradigm to planning, emergent behavior,
machine learning, empirical discovery, inverse
kinematics, and game playing can be viewed in the
Artificial Life II Video Proceedings videotape [16].

In the genetic programming paradigm, the individuals
in the population are compositions of functions and
terminals appropriate to the particular problem domain.
The set of functions used typically includes arithmetic
operations, mathematical functions, conditional logical
operations, and domain-specific functions. The set of
terminals used typically includes inputs (sensors)
appropriate to the problem domain and various
constants. Each function in the function set must be
well defined for any combination of elements from the
range of every function that it may encounter and every
terminal that it may encounter.

The search space is the hyperspace of all possible
compositions of functions that can be recursively com-
posed of the available functions and terminals.

The symbolic expressions (S-expressions) of the LISP
programming language are an especially convenient
way to create and manipulate the compositions of
functions and terminals described above. These S-
expressions in LISP correspond directly to the "parse
tree" that is internally created by most compilers.

The basic genetic operations for the genetic program-
ming paradigm are fitness proportionate reproduction
and crossover (recombination). The crossover
(recombination) operation is a sexual operation that
operates on two parental LISP S-expressions and
produces two offspring S-expressions using parts of
each parent. The crossover operation creates new off-
spring S-expressions by exchanging sub-trees (i.e. sub-
lists) between the two parents. Because entire sub-trees
are swapped, this crossover operation always produces
syntactically and semantically valid LISP S-expressions
as offspring regardless of the crossover points. For
example, consider the two parental S-expressions:
(OR (NOT D1) (AND D0 D1))

(OR (OR D1 (NOT D0))
 (AND (NOT D0) (NOT D1))

These two S-expressions are depicted as rooted, point-
labeled trees with ordered branches in Fig. 1.

OR

NOT AND

D0 D1D1

OR

ANDOR

D1 NOT

D0

NOT NOT

D0 D1

Figure 1: Two Parental LISP S-expressions shown as
trees with ordered branches.

Assume that the points of both trees are numbered in a
depth-first way starting at the left. Suppose that the
second point (out of 6 points of the first parent) is ran-
domly selected as the crossover point for the first parent
and that the sixth point (out of 10 points of the second
parent) is randomly selected as the crossover point of
the second parent. The crossover points in the trees
above are therefore the NOT in the first parent and the
AND in the second parent. The two crossover
fragments are two sub-trees shown in Figure 2 below:

NOT

D1

AND

NOT NOT

D0 D1

Figure 2: The Two Crossover Fragments

These two crossover fragments correspond to the bold,
underlined sub-expressions (sub-lists) in the two
parental LISP S-expressions shown above. The two
offspring resulting from crossover are shown in Figure
3 below. Note that the first offspring above is an S-
expression for the even-parity function, namely
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)).

OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

Figure 3: Offspring Resulting from Crossover

5. BREEDING A RANDOMIZER
Our goal is to genetically breed a computer program to
convert a sequence of consecutive integers into a
sequence of random binary digits. The input to our
randomizer will merely be an argument J running
consecutively from 1 to 16384 (214). Randomizers of
this type can quickly reconstruct a particular single
random number within a sequence without having to
reconstruct the entire sequence. This type of
randomizer typically has a complex structure because it
does not rely on a recursive seed. A randomizer using a
recursive seed as its input gains considerable
computational leverage from the cascading of its own
previous steps. For example, when the third call is
made to a recursive randomizer with initial seed x0 in
order to compute x3, the randomizer is, in effect,
computing

x3=(a[(a{(a x0+ c) mod M}+c) mod M]+ c)mod M.

The first major step in using the genetic programming
paradigm is to identify the set of terminals. The
terminals in the genetic programming paradigm
correspond to the inputs to the computer program being
genetically bred. Thus, the terminal set for this
problem is the set T = {J, ←}, where ← represents
small random integer constants between 0 and 3.

The second major step in using the genetic
programming paradigm is to identify a sufficient set of
functions for the problem. The protected modulus
function MOD% and protected integer quotient
function QUOT% uses the "protected" division
function %, which returns one when division by zero is
attempted, and, otherwise, returns the normal quotient.
Since we anticipate creation of a randomizer involving
congruential type steps, the function set for this
problem

F = {+, –, *, QUOT%, MOD%}.

The third major step in using the genetic programming
paradigm is identification of the fitness function for

evaluating how good a given computer program is at
solving the problem at hand. The raw fitness here is the
sum of the entropy measures Etotal (described earlier)
for sub-sequences of length 1 through 7. The
maximum raw fitness is therefore 28.

The fourth major step in using the genetic programming
paradigm is selecting the values of certain parameters.
The most important parameter is population. The
population size is 500 here. Each new generation was
created from the preceding generation by applying the
fitness proportionate reproduction operation to 10% of
the population and by applying the crossover operation
to 90% of the population (with one parent selected
proportionate to fitness). In selecting crossover points,
90% were internal (function) points of the tree and 10%
were external (terminal) points of the tree. Mutation
was not used. For the practical reason of conserving
computer time, the depth of initial random S-
expressions was limited to 4 and the depth of S-
expressions created by crossover was limited to 15.

Finally, the fifth major step in using the genetic
programming paradigm is the criterion for terminating a
run and accepting a result. We will terminate a given
run when either (1) the genetic programming paradigm
produces computer program whose entropy of 27.990
or greater, or (2) 51 generations have been run. Double
precision arithmetic was used in computing entropy.

Note that the first two of these five major steps in
applying the genetic programming paradigm
corresponds to the step (performed by the user) of
determining the representation scheme in the
conventional genetic algorithm operating on character
strings (that is, determining the chromosome length,
alphabet size, and the mapping between the problem
and chromosomes).

In addition, note that the step (performed by the user)
of determining the set of primitive functions in the
genetic programming paradigm is equivalent to a
similar step in other machine learning paradigms. For
example, this same determination of primitive functions
occurs in the induction of decision trees using ID3 [9]
when the user selects the functions that can appear at
the internal points of the decision tree. Similarly, this
same determination occurs in neural net work when the
user selects the external functions that are to be
activated by the output of a neural network. The same
user determination occurs in other machine learning
paradigms (although the name given to this
omnipresent determination varies and is often
considered by the researcher to be implicit in the
statement of his or her problem).

5.1. DESCRIPTION OF ONE RUN

The initial random generation of randomizers was,
predictably, highly unfit. In one particular run, 56% of
the 500 individuals had entropy 0.000 (usually because
the S-expression merely emitted a constant). Another
14% of the population had entropy between 0.001 and
0.080 (out of a possible 28.000 bits). These individuals
emitted a constant almost all of the time. Another 24%
of the population had entropy between 7.000 and 7.056
bits. These S-expressions scored 7.000 because they
mapped the consecutive sequence of integers J into
another consecutive sequence.

The best 24 individuals from generation 0 scored
between 10.428 and 20.920 bits of entropy. The best
single S-expression scored 20.920 bits. It had 63
points, but can be simplified to 13 points, namely,
(+ J (* (* (MOD% J 3) 3) (QUOT% (+ J 1)
4))).

This individual attains its 20.920 bits (out of a possible
28.000) by getting a perfect 1.000 bits out of a possible
1.000 bits for sequences of length 1; getting 1.918 out
of 2.000 bits for length 2; getting 2.792 out of 3.000
bits for length 3; and getting 3.268 out of 4.000 bits for
length 4. Although this individual does a credible job of
randomizing bits when the window is narrow, it does
not do as well for the longer sequences. It gets only
3.689 bits out of 5.000 for length 5 (i.e. only 74% of
the possible 5.000 bits); 4.002 bits out of 6.000 for
length 6 (i.e. only 67% of the possible 6.000 bits); and
4.252 bits out of 7.000 for length 7 (i.e. only 61% of
the possible 7.000 bits).

After 2 generations of one typical run, the entropy of
the best-of-generation individual improved to 22.126
bits. After 4 generations, the entropy of the best-of-
generation individual improved to 26.474 bits.
Thereafter, entropy reached and slowly improved
within the 27.800 to 27.900 area.

On generation 14, we obtained an individual S-
expression that attained a nearly maximal entropy of
27.996. It had 153 points, but simplifies to
(- J (QUOT% (+ (+ (+ J J) J) (* (+ J 2)
J)) (+ (MOD% (* (- 2 1) (QUOT% (QUOT% (+
(* J J) (QUOT% (- (QUOT% (* J (MOD%
(QUOT% J 3) (MOD% J J))) (QUOT% (* 3 2)
(QUOT% 2 1))) (- 3 (QUOT% (+ (* J J) (- 2
1)) 3))) (* 3 (+ (MOD% 1 0) J)))) 3) 3))
(+ (- 2 J) 1)) (+ (QUOT% (MOD% J 3) (-
(MOD% 2 0) (MOD% (MOD% 0 J) J))) (- 3
3)))))

The simplified version of this individual (with only 41
points) is graphically depicted in Figure 4 below as a
rooted, point-labeled tree with ordered branches:

-

--

2 J

+

1QUOT%

3

QUOT%

3

MOD%

*

J3

*

J J

+

1

QUOT%

3

3

--

--

0

QUOT%*

J J

+

+

J 2

*

J3 J

*

+

QUOT%J

-

Figure 4: A Graphical Representation of the Genetically

Bred Randomizer after Simplification

In scoring 27.996, this randomizer achieved a maximal
value of entropy of 1.000, 2.000, 3.000, 4.000, 5.000,
and 6.000 bits for sequences of lengths 1, 2, 3, 4, 5, and
6, respectively, and a near-maximal value of 6.996 for
the 128 (27) possible sequences of length 7.

Note that the progressive change in size and shape of
the individuals in the population is a characteristic of
the genetic programming paradigm. The size (153
points) and shape of the best scoring individual from
generation 14 differs from the size (63 points) and
shape of the best scoring individual from generation 0.
The size and particular hierarchical structure of the best
scoring individual from generation 14 was not specified
in advance. Instead, the entire structure evolved as a
result of reproduction, crossover, and the relentless
pressure of the fitness (i.e. entropy).

5.2. RESULTS OF SEVERAL RUNS

In the previous section we described one particular run
of the genetic programming paradigm in which we
obtained a randomizer with entropy of 27.996.

The genetic programming paradigm (as with genetic
algorithms in general) contains probabilistic steps at
several different points. As a result, we rarely obtain a
solution to a problem in the precise way we anticipate
and we rarely obtain the precise same solution twice.

0 10 20 30 40 50
0

20

40

60

80

100
Random Number Generator

Generation

%
 S

ol
vi

ng
 b

y
G

en
er

at
io

n

Figure 5: The Cumulative Percentage of

Runs that Reached an entropy of 27.990 After the
Execution of a Certain Number of Generations

We can measure the number of individuals that need to
be processed by a genetic algorithm to produce a
desired result (i.e. entropy of 27.990 or better) with a
certain probability, say 99%. Suppose, for example, a
particular run of a genetic algorithm produces the
desired result with only a probability of success ps after
a specified choice (perhaps arbitrary and non-optimal)
of number of generations Ngen and population of size
N. Suppose also that we are seeking to achieve the
desired result with a probability of, say, z = 1 – ε=
99%. Then, the number K of independent runs required
is

K =
log (1–z)
log (1–ps) =

log ε
log (1–ps) , where ε= 1–z.

For example, we ran 10 runs of this problem with a
population size of 500 and 51 generations. The graph in
Figure 5, shows that the probability of success ps of a
run is 90% with 15 generations. With this probability of
success ps =0.90 on a particular single run, we need K
= 2 independent runs with a population of 500 for 15
generations to assure a 99% probability of solving this
problem on at least one run. That is, processing 15,000
individuals is sufficient.

5.3. DISCUSSION

Is the genetically bred computer program a good
randomizer? The answer is a decisive "Yes and No."

Table 1, below, compares the shortfall in entropy from
the maximal 28.000 bits for the genetically bred

randomizer and the five commercial randomizers
described earlier.

Table 1: Shortfall in Entropy for the Different
Randomizers

Randomizer Entropy Shortfall

Park-Miller .009

IBM RANDU .010

SHIFT REGISTER .010

SHUFFLE .015

TI RANDOM .009

Genetic .004

As can be seen, the genetically bred randomizer has
precisely the characteristic for which it was bred (i.e.
high entropy). With respect to that particular measure,
it exceeded the performance of the other randomizers.

Table 2: Results of Equidistribution Test

Randomizer # of 0's # of 1's χ2

Park-Miller 8146 8238 0.52

IBM RANDU 8149 8235 0.45

Shift-Register 8234 8150 0.43

SHUFFLE 8234 8150 0.43

TI RANDOM 8235 8149 0.45

Genetic 8207 8177 0.05

If we apply the equidistribution (frequency) test from
Knuth to the genetically bred randomizer and the five
commercial randomizers, we get the results shown in
Table 2. The genetic randomizer comes much closer to
the uniform distribution of 8192 zeroes and 8192 ones
in a random sequence of 16,384 binary digits than any
of the five commercial randomizers. That is, the
frequencies of zeroes and ones for the genetic
randomizer are almost perfectly uniform. This is
understandable, since the genetic randomizer was bred
with the entropy fitness measure explicitly so as make
single bit frequencies (and indeed sub-sequence
frequencies up to length 7) uniform. The greater the
deviation from uniformity, the worse the fitness
(entropy).

But, in another sense, the frequency of zeroes and ones
in the genetic randomizer leans in the direction of being
too uniform. When we compute χ2 (chi-square), we
find that the five commercial randomizers have a χ2

which, for one degree of freedom, is very close to the
50th percentile. In contrast, the χ2 of the genetically
bred randomizer is in about the 15th percentile.
Whether the intentionally created uniform distribution
or a less uniform distribution constitutes randomness
depends on ones point of view. For example, some
state lotteries explicitly enforce maximal uniformity
(entropy) in the distribution of winners in preprinted
instant lottery game tickets as opposed to "unstructured
randomness."

If we apply the gap test from Knuth [17] to the genetic
randomizer and the five other randomizers, we get the
results shown in Table 3 below. The gap test counts the
number of gaps of particular sizes in the sequence of
16,384 binary digits. For example, in the sequence
0010110 of length 7, we have one gap in the zeroes of
length zero (i.e. one instance of consecutive zeroes),
one gap of length one, and one gap of length two.

Table 3: Results of the Gap Test

Randomizer χ2 for 0's χ2 for 1's

Park-Miller 5.52 12.80

IBM RANDU 9.07 13.19

Shift-Register 11.21 4.05

SHUFFLE 9.22 10.72

TI RANDOM 4.50 9.44

Genetic 9.03 2.64

The 50th percentile of the χ2 distribution for 10 degrees
of freedom is at 9.342. The χ2 for the zeroes for the
genetic randomizer is 9.03. This is similar to most of
the values for the five other randomizers. However, the
χ2 for the ones for the genetic randomizer is the rather
low value of 2.64. That is, the gaps in the ones for the
genetic randomizer almost perfectly match the expected
number of gaps expected from a random source. That
is, the genetic randomizer adheres too closely to the
theoretical distribution of gaps. This match is especially
strong for gap sizes of seven and below. This is
understandable in view of how the genetic randomizer
was bred. In contrast, the five other randomizers are
"more random" because their performance deviates
more sharply from the theoretical distribution of gaps
expected from a random source. As Knuth said, "...the
observed values are so close to the expected values, we
cannot consider the result to be random!"

6. CONCLUSIONS
We demonstrated that it is possible to use the genetic

programming paradigm to breed a computer program to
perform the task of converting a sequence of
consecutive integers into a sequence of pseudo-random
bits with near maximal entropy. The size and shape of
the initial, intermediate, and final programs were not
specified in advance. Instead, the size, shape, and
specific internal steps of the various computer programs
emerged from a evolutionary process driven by the
selective pressure applied by the fitness (entropy)
measure. The better programs produced in the later
generations of this evolutionary process were
structurally more complex than the earlier programs.

7. REFERENCES
[1] S. L. Anderson. Random number generators on

vector supercomputers and other advanced
architectures. SIAM Review. 32(2). Pages 221-
251. June 1990.

[2] K. A. De Jong. On using genetic algorithms to
search program spaces. Genetic Algorithms and
Their Applications: Proceedings of the Second
International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates, Hillsdale, NJ l987.

[3] J. H. Holland. Adaptation in Natural and
Artificial Systems. University of Michigan Press,
Ann Arbor, MI 1975.

[4] J. R. Koza. Hierarchical genetic algorithms
operating on populations of computer programs.
In Proceedings of the 11th International Joint
Conference on Artificial Intelligence. San Mateo,
CA: Morgan Kaufmann 1989.

[5] J. R. Koza. Genetic Programming: A Paradigm
for Genetically Breeding Populations of
Computer Programs to Solve Problems. Stanford
University Computer Science Dept. Technical
Report STAN-CS-90-1314. June 1990.

[6] J. R. Koza. Genetically breeding populations of
computer programs to solve problems in artificial
intelligence. In Proceedings of the Second
International Conference on Tools for AI.
Washington. November, 1990. IEEE Computer
Society Press, Los Alamitos, CA 1990.

[7] J. R. Koza. Evolution and co-evolution of
computer programs to control independent-acting
agents. In Meyer, Jean-Arcady and Wilson,
Stewart W. From Animals to Animats:
Proceedings of the First International Conference
on Simulation of Adaptive Behavior. Paris.
September , 1990. MIT Press, Cambridge 1991.

[8] J. R. Koza. A genetic approach to econometric
modeling. In Bourgine, Paul and Walliser,
Bernard. Proceedings of the 2nd International

Conference on Economics and Artificial
Intelligence. Pergamon Press 1991.

[9] J. R. Koza. Concept formation and decision tree
induction using the genetic programming
paradigm. In Schwefel, Hans-Paul and Maenner,
Reinhard (editors) Parallel Problem Solving from
Nature. Springer-Verlag, Berlin, 1991.

[10] J. R. Koza. Genetic evolution and co-evolution of
computer programs. In Farmer, Doyne, Langton,
Christopher, Rasmussen, S., and Taylor, C.
(editors) Artificial Life II, SFI Studies in the
Sciences of Complexity. Volume XI. Addison-
Wesley, Redwood City CA 1991.

[11] J. R. Koza. A hierarchical approach to learning
the Boolean multiplexer function. In Rawlins,
Gregory (editor). Proceedings of Workshop on the
Foundations of Genetic Algorithms and Classifier
Systems. Bloomington, Indiana. July, 1990. San
Mateo, CA Morgan Kaufmann 1991.

[12] J. R. Koza. Genetic Programming. MIT Press,
Cambridge, MA, 1991 (forthcoming).

[13] J. R. Koza and M. A. Keane. Genetic breeding of
non-linear optimal control strategies for broom
balancing. In Proceedings of the Ninth
International Conference on Analysis and
Optimization of Systems. Antibes, June, 1990.
Pages 47-56. Springer-Verlag, Berlin, 1990.

[14] J. R. Koza and M. A. Keane. Cart centering and
broom balancing by genetically breeding
populations of control strategy programs. In
Proceedings of International Joint Conference on
Neural Networks, Washington, January, 1990.
Volume I. Hillsdale, NJ: Lawrence Erlbaum 1990.

[15] J. R. Koza and J. P. Rice. Genetic generation of
both the weights and architecture for a neural
network. In Proceedings of International Joint
Conference on Neural Networks, Seattle, 1991.

[16] J. R. Koza and J. P. Rice. A genetic approach to
artificial intelligence. In C. G. Langton Artificial
Life II Video Proceedings. Addison-Wesley 1991.

[17] D. E. Knuth. The Art of Computer Programming.
Volume 2. Addison-Wesley, Reading, MA, 1981.

[18] G. Marsaglia. Random numbers fall mainly in the
planes. Proc. Nat. Acad. Sci. U.S.A., 61, pages 25-
28. 1968.

[19] S. K. Park and K. W. Miller. Random number
generators: Good ones are hard to find. Comm.
ACM. 31, pages 1192-1201, 1988.

