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ABSTRACT 
This paper  demonstrates that it is possible 
to genetically breed a computer program that 
is considered difficult to write, namely, a 
randomizer that converts a sequence of 
consecutive integers into pseudo-random 
bits with near maximal entropy.  

1. INTRODUCTION AND OVERVIEW 
"How can computers learn to solve problems without 
being explicitly programmed?" This question, which is 
a central question in the fields of artificial intelligence 
and machine learning, can be approached using an 
analogy to the evolutionary process in nature.  

John Holland's pioneering 1975 Adaptation in Natural 
and Artificial Systems [3] described how the 
evolutionary process in nature can be applied to 
artificial systems using the "genetic algorithm" 
operating on fixed length character strings. 

Representation is a key issue in genetic algorithm work 
because genetic algorithms directly manipulate the 
coded representation of the problem and because the 
representation scheme can severely limit the window by 
which the system observes its world [2].  For many 
problems in artificial intelligence, the most natural 
representation for solutions to problems are hierarchical 
computer programs of indeterminate size and shape, as 
opposed to structures whose size has been determined 
in advance.  It is unnatural and difficult to represent 
hierarchies of dynamically varying size and shape with 
fixed length character strings.  

In this paper, we show how to genetically breed a 
population of computer programs to convert a sequence 
of consecutive integers into a sequence of pseudo-
random bits using the recently developed "genetic pro-

gramming" paradigm. 

2. DEFINITION OF RANDOMNESS 
Numbers "chosen at random" are useful in a variety of 
scientific, mathematical, engineering, and industrial 
applications, including Monte Carlo simulations, 
decision theory, instant lottery ticket production, etc.  
Random numbers are difficult to create.  Marsaglia [18] 
describes the difficulty of successfully randomizing 
numbers, particularly where a stream of several 
"independent" random integers are required to carry out 
related steps of one process.   

When random numbers are required in computer 
programs, they are typically provided by a deterministic 
algorithm (as opposed to some non-algorithmic 
technique, such as neutron emissions).  The algorithm 
is known to the programmer.  Moreover, the program is 
typically written (using "seeds") so that its output is 
fully reproducible (to aid debugging, verification, etc.). 
Numbers which are produced by a deterministic, 
known, and reproducible algorithm are, of course, 
anything but random.  Indeed, as John Von Neumann 
said, "Anyone who considers arithmetical methods of 
producing random digits is, of course, in a state of sin." 

Not only is the term "random number" an oxymoron, 
but there is no generally accepted mathematical 
definition of a random number sequence.  Knuth [17] 
describes a number of different specific tests, such as 
the equidistribution (frequency) test, gap test, run test, 
serial test, permutation test, coupon collector's test, 
poker test, etc.  D.H.Lehmer (17) said "A random 
sequence is a vague notion embodying the idea of a 
sequence in which each term is unpredictable to the 
uninitiated and whose digits pass a certain number of 
tests, traditional with statisticians and depending 
somewhat on the uses to which the sequence is to be put 



 

." (Italics added). 

The notion of statistical independence can be used as 
the starting point for one possible rigorous 
mathematical definition of a sequence {ui} of random 
numbers.  Anderson [1], for example, says that "each 
value of ui is as likely as any other value and the value 
of ui must be statistically independent of the value of uj 
for i ≠ j."  The first part of this statement corresponds to 
the equidistribution (frequency) test described in Knuth 
[17] while the second part of this statement corresponds 
to a pairwise version of the serial test described in 
Knuth. 

One can expand Anderson's conditions to a more 
general concept of statistical independence based on the 
intuitive notion of conditional probability that a 
specified sub-sequence predicts another sub-sequence.  
Let K be the number of values possible at a given 
position in the sequence.  Let c be the number of 
consequent  (i.e. predicted) positions within a sub-
sequence of length N.  Let g (where g≤ N–c) be the 
number of antecedent (i.e. given) values at the 
remaining N–c positions within the sub-sequence of 
length N.  Then, for any integer N (where N runs from 
1 to infinity), all Kc conditional probabilities of c 
particular specified values at the c consequent positions 
(given that g particular specified antecedent values have 
appeared at the g antecedent positions), are all equal to 
1

Kc (within an acceptably small error ε≥0) .  Note that if 

g is strictly less than N–c, then there are N–g–c 
positions within the sequence which are part of neither 
the antecedent nor consequent part of the prediction. 
That is, they are "don't care" positions.  For a given N, 

there are multinomial coefficient ( )N
g c N–g–c   ways of 

picking the g given antecedent positions and c 
consequent positions out of the subsequence of length 
N.  And then, after g such given antecedent positions 
are picked, there are then Kg particular assignments of 
values at the g antecedent positions.  After those 
choices are made, there are then Kc particular 
assignments of values at the c consequent positions. 
The conditional probabilities of the Kc particular 
assignments of values that should be equal. 

The above definition captures the intuitive notion based 
on conditional probabilities; however, it is particularly 
onerous combinatorially.  The following simpler 
definition avoids conditional probabilities and is 
sufficient to guarantee satisfaction of the above 
conditional probability test.  For any integer N (where 
N runs from 1 to infinity), the probabilities of each of 
the KN possible sub-sequences of length N are all equal 

to 1 
KN (within an acceptably small error ε≥0) .  

No finite sequence can satisfy the above test.  However, 
if N is then limited to some finite fixed integer Nmax, 
then "only" KNmax probabilities must be estimated 
when N = Nmax.  Moreover, these KNmax separate 
probabilities can be conveniently summarized into a 
scalar quantity by using the concept of entropy for this 
set of events and probabilities.  The entropy (which is 
measured in bits) is maximal when the probabilities of 
all the possible events are equal.  Moreover, when K = 
2, this maximal value of entropy happens to equal the 
length N (in bits) of the sequence.  The entropy Eh for 
the set of Kh probabilities for the Kh  possible sub-
sequences of length h, equals 

Eh = – ∑  Phj log2 Phj . 

Here j ranges over the Kh possible sub-sequences of 
length h. By convention, log2 0 is 0.  

If K = 2, then this sum attains its maximum value of h 
precisely when the probabilities of all the Kh possible 
sub-sequences of length h are equal to 1

2h .  

As h runs from 1 to Nmax, it is convenient to further 
summarize the Nmax separate scalar values of entropy 
into one single scalar value, namely, Etotal as follows:  

Etotal = ∑
h=1

Nmax 
   




 – ∑

 j
   Phj log2 Phj    

When Etotal attains the maximal value of 

∑
h=1

Nmax 
    h = Nmax(Nmax – 1), 

then the sequence may be viewed as random. 

To illustrate for K = 2:  When h is 1, there are only two 
probabilities to consider, namely, the probability P10 of 
occurrence of zeroes and the probability P11 of 
occurrence of ones in the entire random sequence.  
These two probabilities are what are used in Knuth's 
equidistribution (frequency) test.  For the worst 
randomizer (say one that always emits 1), P10 is 0.0 and 
P11 is 1.0 and the entropy is 0.0 bits.  For a better 
randomizer, both P10 and P11 would equal 
approximately 0.5 and the entropy would 
approximately equal the maximal value of 1.0 bits.  
However, a defective randomizer such as one that emits 
        0101010101...  

has entropy of 1.0 bits when only the two "singlet" 



 

probabilities associated with h = 1 are considered. 
However, when h = 2, the "pair" probabilities of the 
four possible pairs (i.e. 00, 01, 10, and 11) are not all 

equal to 
1
4  .  The two pairs 00 and 11 do not appear at 

all in the output of this defective randomizer.  The two 

pairs 01 and 10 appear with probability 
1
2 .  Thus, the 

entropy for h = 2 for this defective randomizer is only 
1.0, instead of the maximal value of 2.0 bits possible.  

3. TYPES OF PSEUDO-RANDOM 
NUMBER GENERATORS 

The common types of randomizers start with one or 
more seeds [1].  Multiplicative congruential 
randomizers start with a seed value x0 and then produce 
subsequent elements of the sequence recursively as 
follows: 

xi = (a xi –1+ c)  mod  M, 

where a is the multiplier, c is the additive constant, and 
M is the modulus.  Park and Miller [19] describe the 
especially simple and popular  randomizer 

xi = 75 xi–1  mod  [231 – 1]. 

which provides especially good randomness by many 
tests for the low-order bits.  

The popular URN08 randomizer came from IBM in 
1970 and is widely known as "RANDU".  IBM's 
RANDU is the multiplicative congruential randomizer 

xi = 65539 xi–1   mod  231. 

Shift register randomizers start with a seed value x0 and 
then produce subsequent elements of the sequence 
recursively in a shift register.  In the popular 
SR[3,28,31] shift register randomizer (called "SHIFT 
REGISTER" herein), the numbers 3 and 28 specify the 
amount of shifting (end off, with zero fill) to the right 
or left (respectively) in a 31-bit shift register.  With 
XOR being the exclusive-or operation, 
     temp =(XOR xi–1 (SHIFT-RIGHT xi 3)) 
     xi =(XOR temp (SHIFT-LEFT temp 28). 

Shuffling randomizers call on one or more other 
randomizers to shuffle numbers to produce random 
numbers.  One two-sequence shuffling randomizer 
(called SHUFFLE herein) uses the Park-Miller 
randomizer described above to produce an initial set of 
uniformly distributed random numbers between 0.0 and 
1.0 and then uses the shift register randomizer 
SR[3,28,31] to call out particular numbers from this set 
of numbers, while using additional calls on Park-Miller 
[19] to replace the numbers called out. 

Texas Instruments supplies a randomizer called 

RANDOM with its Explorer™ computers. 

Because of the size of tables needed for the sub-
sequence probabilities needed to compute the total 
entropy, we will focus, for the remainder of this paper, 
on producing sequences of random binary digits (i.e. K 
= 2).  

4. BACKGROUND ON GENETIC 
PROGRAMMING PARADIGM 

We have recently shown that entire computer programs 
can be genetically bred to solve problems in a variety of 
different areas of artificial intelligence, machine 
learning, and symbolic processing.  Specifically, this 
recently developed genetic programming paradigm has 
been successfully applied [4, 5, 12] to example 
problems in several different areas, including  

• planning (e.g. navigating an artificial ant along a trail 
and developing a robotic plan for stacking blocks in 
to a desired order) [4, 6],  

• emergent behavior (e.g. discovering a computer 
program for locating food, carrying food to the nest, 
and dropping pheromones, which, when executed by 
all the ants in an ant colony, produces interesting 
higher level "emergent" behavior) [10], 

• machine learning of functions (e.g. learning the 
Boolean 11-multiplexer function) [11], 

• automatic programming (e.g. solving pairs of linear 
equations, solving quadratic equations for complex 
roots, and discovering trigonometric identities) [4], 

• discovering inverse kinematic equations (e.g. to 
move  a robot arm to designated target points) [12, 
16], 

• optimal control (e.g. centering a cart and balancing a 
broom on a moving cart in minimal time by applying 
a "bang bang" force to the cart) [13, 14], 

• pattern recognition (e.g. translation-invariant one-
dimensional shape in a linear retina) [4],  

• sequence induction (e.g. inducing a recursive 
procedure for generating sequences such as the 
Fibonacci and the Hofstadter sequences) [4],  

• symbolic "data to function" regression, integration, 
differentiation, and symbolic solution to general 
functional equations (including differential equations 
with initial conditions, and integral equations) [4],  

• empirical discovery (e.g. rediscovering Kepler's 
Third Law, rediscovering the well-known non-linear 
econometric "exchange equation" MV = PQ from 
actual, noisy time series data for the money supply, 
the velocity of money, the price level, and the gross 
national product of an economy) [8], 



 

• concept formation and decision tree induction [9], 

• finding minimax strategies for games (e.g. 
differential pursuer-evader games, discrete games in 
extensive form) by both evolution and co-evolution 
[7], and 

• simultaneous architectural design and training of 
neural networks [15].  

A visualization of the application of the genetic 
programming paradigm to planning, emergent behavior, 
machine learning, empirical discovery, inverse 
kinematics, and game playing can be viewed in the 
Artificial Life II Video Proceedings videotape [16]. 

In the genetic programming paradigm, the individuals 
in the population are compositions of functions and 
terminals appropriate to the particular problem domain.  
The set of functions used typically includes arithmetic 
operations, mathematical functions, conditional logical 
operations, and domain-specific functions.  The set of 
terminals used typically includes inputs (sensors) 
appropriate to the problem domain and various 
constants.  Each function in the function set must be 
well defined for any combination of elements from the 
range of every function that it may encounter and every 
terminal that it may encounter. 

The search space is the hyperspace of all possible 
compositions of functions that can be recursively com-
posed of the available functions and terminals.  

The symbolic expressions (S-expressions) of the LISP 
programming language are an especially convenient 
way to create and manipulate the compositions of 
functions and terminals described above. These S-
expressions in LISP correspond directly to the "parse 
tree" that is internally created by most compilers. 

The basic genetic operations for the genetic program-
ming paradigm are fitness proportionate reproduction 
and crossover (recombination).  The crossover 
(recombination) operation is a sexual operation that 
operates on two parental LISP S-expressions and 
produces two offspring S-expressions using parts of 
each parent.  The crossover operation creates new off-
spring S-expressions by exchanging sub-trees (i.e. sub-
lists) between the two parents.  Because entire sub-trees 
are swapped, this crossover operation always produces 
syntactically and semantically valid LISP S-expressions 
as offspring regardless of the crossover points. For 
example, consider the two parental S-expressions:  
(OR (NOT D1) (AND D0 D1)) 
 
(OR (OR D1 (NOT D0)) 
    (AND (NOT D0) (NOT D1)) 

These two S-expressions are depicted as rooted, point-
labeled trees with ordered branches in Fig. 1. 

OR

NOT AND

D0 D1D1

OR

ANDOR

D1 NOT

D0

NOT NOT

D0 D1
  

Figure 1: Two Parental LISP S-expressions shown as 
trees with ordered branches. 

Assume that the points of both trees are numbered in a 
depth-first way starting at the left. Suppose that the 
second point (out of 6 points of the first parent) is ran-
domly selected as the crossover point for the first parent 
and that the sixth point (out of 10 points of the second 
parent) is randomly selected as the crossover point of 
the second parent. The crossover points in the trees 
above are therefore the NOT in the first parent and the 
AND in the second parent.  The two crossover 
fragments are two sub-trees shown in Figure 2 below: 

NOT

D1

AND

NOT NOT

D0 D1
  

Figure 2: The Two Crossover Fragments 

These two crossover fragments correspond to the bold, 
underlined sub-expressions (sub-lists) in the two 
parental LISP S-expressions shown above.  The two 
offspring resulting from crossover are shown in Figure 
3 below.  Note that the first offspring above is an S-
expression for the even-parity function, namely 
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). 



 

OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

 
Figure 3:  Offspring Resulting from Crossover 

5. BREEDING A RANDOMIZER 
Our goal is to genetically breed a computer program to 
convert a sequence of consecutive integers into a 
sequence of random binary digits.  The input to our 
randomizer will merely be an argument J running 
consecutively from 1 to 16384 (214).  Randomizers of 
this type can quickly reconstruct a particular single 
random number within a sequence without having to 
reconstruct the entire sequence.  This type of 
randomizer typically has a complex structure because it 
does not rely on a recursive seed.  A randomizer using a 
recursive seed as its input gains considerable 
computational leverage from the cascading of its own 
previous steps.  For example, when the third call is 
made to a recursive randomizer with initial seed x0 in 
order to compute x3, the randomizer is, in effect, 
computing  

x3=(a[(a{(a x0+ c) mod M}+c) mod M]+ c)mod M. 

The first major step in using the genetic programming 
paradigm is to identify the set of terminals. The 
terminals in the genetic programming paradigm 
correspond to the inputs to the computer program being 
genetically bred.  Thus, the terminal set for this 
problem is the set T = {J, ←}, where ← represents 
small random integer constants between 0 and 3. 

The second major step in using the genetic 
programming paradigm is to identify a sufficient set of 
functions for the problem.  The protected modulus 
function MOD% and protected integer quotient 
function QUOT% uses the "protected" division 
function %, which returns one when division by zero is 
attempted, and, otherwise, returns the normal quotient.  
Since we anticipate creation of a randomizer involving 
congruential type steps, the function set for this 
problem  

F = {+, –, *, QUOT%, MOD%}. 

The third major step in using the genetic programming 
paradigm is identification of the fitness function for 

evaluating how good a given computer program is at 
solving the problem at hand. The raw fitness here is the 
sum of the entropy measures Etotal (described earlier) 
for sub-sequences of length 1 through 7.  The 
maximum raw fitness is therefore 28. 

The fourth major step in using the genetic programming 
paradigm is selecting the values of certain parameters.  
The most important parameter is population.  The 
population size is 500 here.  Each new generation was 
created from the preceding generation by applying the 
fitness proportionate reproduction operation to 10% of 
the population and by applying the crossover operation 
to 90% of the population (with one parent selected 
proportionate to fitness).  In selecting crossover points, 
90% were internal (function) points of the tree and 10% 
were external (terminal) points of the tree.  Mutation 
was not used.  For the practical reason of conserving 
computer time, the depth of initial random S-
expressions was limited to 4 and the depth of S-
expressions created by crossover was limited to 15.   

Finally, the fifth major step in using the genetic 
programming paradigm is the criterion for terminating a 
run and accepting a result.  We will terminate a given 
run when either (1) the genetic programming paradigm 
produces computer program whose entropy of 27.990 
or greater, or (2) 51 generations have been run.  Double 
precision arithmetic was used in computing entropy. 

Note that the first two of these five major steps in 
applying the genetic programming paradigm 
corresponds to the step (performed by the user) of 
determining the representation scheme in the 
conventional genetic algorithm operating on character 
strings (that is, determining the chromosome length, 
alphabet size, and the mapping between the problem 
and chromosomes).  

In addition, note that the step (performed by the user) 
of determining the set of primitive functions in the 
genetic programming paradigm is equivalent to a 
similar step in other machine learning paradigms.  For 
example, this same determination of primitive functions 
occurs in the induction of decision trees using ID3 [9] 
when the user selects the functions that can appear at 
the internal points of the decision tree.  Similarly, this 
same determination occurs in neural net work when the 
user selects the external functions that are to be 
activated by the output of a neural network.   The same 
user determination occurs in other machine learning 
paradigms (although the name given to this 
omnipresent determination varies and is often 
considered by the researcher to be implicit in the 
statement of his or her problem). 

5.1. DESCRIPTION OF ONE RUN 



 

The initial random generation of randomizers was, 
predictably, highly unfit.  In one particular run, 56% of 
the 500 individuals had entropy  0.000 (usually because 
the S-expression merely emitted a constant).  Another 
14% of the population had entropy between 0.001 and 
0.080 (out of a possible 28.000 bits).  These individuals 
emitted a constant almost all of the time.  Another 24% 
of the population had entropy between 7.000 and 7.056 
bits.  These S-expressions scored 7.000 because they 
mapped the consecutive sequence of integers J into 
another consecutive sequence.  

The best 24 individuals from generation 0 scored 
between 10.428 and 20.920 bits of entropy.  The best 
single S-expression scored 20.920 bits.  It had 63 
points, but can be simplified to 13 points, namely, 
(+ J (* (* (MOD% J 3) 3) (QUOT% (+ J 1) 
4))). 

This individual attains its 20.920 bits (out of a possible 
28.000) by getting a perfect 1.000 bits out of a possible 
1.000 bits for sequences of length 1; getting 1.918 out 
of 2.000 bits for length 2; getting 2.792 out of 3.000 
bits for length 3; and getting 3.268 out of 4.000 bits for 
length 4. Although this individual does a credible job of 
randomizing bits when the window is narrow, it  does 
not do as well for the longer sequences.  It gets only 
3.689 bits out of 5.000 for length 5 (i.e. only 74% of 
the possible 5.000 bits); 4.002 bits out of 6.000 for 
length 6 (i.e. only 67% of the possible 6.000 bits); and 
4.252 bits out of 7.000 for length 7 (i.e. only 61% of 
the possible 7.000 bits).  

After 2 generations of one typical run, the entropy of 
the best-of-generation individual improved to 22.126 
bits.  After 4 generations, the entropy  of the best-of-
generation individual improved to 26.474 bits. 
Thereafter, entropy reached and slowly improved 
within the 27.800 to 27.900 area. 

On generation 14, we obtained an individual S-
expression that attained a nearly maximal entropy of 
27.996.  It had 153 points, but simplifies to 
(- J (QUOT% (+ (+ (+ J J) J) (* (+ J 2) 
J)) (+ (MOD% (* (- 2 1) (QUOT% (QUOT% (+ 
(* J J) (QUOT% (- (QUOT% (* J (MOD% 
(QUOT% J 3) (MOD% J J))) (QUOT% (* 3 2) 
(QUOT% 2 1))) (- 3 (QUOT% (+ (* J J) (- 2 
1)) 3))) (* 3 (+ (MOD% 1 0) J)))) 3) 3)) 
(+ (- 2 J) 1)) (+ (QUOT% (MOD% J 3) (- 
(MOD% 2 0) (MOD% (MOD% 0 J) J))) (- 3 
3))))) 

The simplified version of this individual (with only 41 
points) is graphically depicted in Figure 4 below as a 
rooted, point-labeled tree with ordered branches: 
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Figure 4: A Graphical Representation of the Genetically 

Bred Randomizer after Simplification 

In scoring 27.996, this randomizer achieved a maximal 
value of entropy of 1.000, 2.000, 3.000, 4.000, 5.000, 
and 6.000 bits for sequences of lengths 1, 2, 3, 4, 5, and 
6, respectively, and a near-maximal value of 6.996 for 
the 128 (27) possible sequences of length 7.  

Note that the progressive change in size and shape of 
the individuals in the population is a characteristic of 
the genetic programming paradigm.  The size (153 
points) and shape of the best scoring individual from 
generation 14 differs from the size (63 points) and 
shape of the best scoring individual from generation 0.  
The size and particular hierarchical structure of the best 
scoring individual from generation 14 was not specified 
in advance.  Instead, the entire structure evolved as a 
result of reproduction, crossover, and the relentless 
pressure of the fitness (i.e. entropy). 

5.2. RESULTS OF SEVERAL RUNS 

In the previous section we described one particular run 
of the genetic programming paradigm in which we 
obtained a randomizer with entropy of 27.996.  



 

The genetic programming paradigm (as with genetic 
algorithms in general) contains probabilistic steps at 
several different points.  As a result, we rarely obtain a 
solution to a problem in the precise way we anticipate 
and we rarely obtain the precise same solution twice.  
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Figure 5: The Cumulative Percentage of 

Runs that Reached an entropy of 27.990 After the 
Execution of a Certain Number of Generations 

We can measure the number of individuals that need to 
be processed by a genetic algorithm to produce a 
desired result (i.e. entropy of 27.990 or better) with a 
certain probability, say 99%.  Suppose, for example, a 
particular run of a genetic algorithm produces the 
desired result with only a probability of success ps after 
a specified choice (perhaps arbitrary and non-optimal) 
of number of generations Ngen and population of size 
N. Suppose also that we are seeking to achieve the 
desired result with a probability of, say,  z = 1 – ε= 
99%.  Then, the number K of independent runs required 
is  

K = 
log (1–z)
log (1–ps)  = 

log ε
log (1–ps) , where  ε= 1–z.  

For example, we ran 10 runs of this problem with a 
population size of 500 and 51 generations. The graph in 
Figure 5, shows that the probability of success ps of a 
run is 90% with 15 generations. With this probability of 
success ps =0.90 on a particular single run, we need K 
= 2 independent runs with a population of 500 for 15 
generations to assure a 99% probability of solving this 
problem on at least one run. That is, processing 15,000 
individuals is sufficient.  

5.3. DISCUSSION 

Is the genetically bred computer program a good 
randomizer? The answer is a decisive "Yes and No."   

Table 1, below, compares the shortfall in entropy from 
the maximal 28.000 bits for the genetically bred 

randomizer and the five commercial randomizers 
described earlier. 

Table 1: Shortfall in Entropy for the Different 
Randomizers 

Randomizer Entropy Shortfall 

Park-Miller .009 

IBM RANDU .010 

SHIFT REGISTER .010 

SHUFFLE .015 

TI RANDOM .009 

Genetic .004 

As can be seen, the genetically bred randomizer has 
precisely the characteristic for which it was bred (i.e. 
high entropy).  With respect to that particular measure, 
it exceeded the performance of the other randomizers.  

Table 2: Results of Equidistribution Test 

Randomizer # of 0's # of 1's χ2 

Park-Miller 8146 8238 0.52 

IBM RANDU 8149 8235 0.45 

Shift-Register 8234 8150 0.43 

SHUFFLE 8234 8150 0.43 

TI RANDOM 8235 8149 0.45 

Genetic 8207 8177 0.05 

If we apply the equidistribution (frequency) test from 
Knuth to the genetically bred randomizer and the five 
commercial randomizers, we get the results shown in 
Table 2.  The genetic randomizer comes much closer to 
the uniform distribution of 8192 zeroes and 8192 ones 
in a random sequence of 16,384 binary digits than any 
of the five commercial randomizers. That is, the 
frequencies of zeroes and ones for the genetic 
randomizer are almost perfectly uniform. This is 
understandable, since the genetic randomizer was bred 
with the entropy fitness measure explicitly so as make 
single bit frequencies (and indeed sub-sequence 
frequencies up to length 7) uniform. The greater the 
deviation from uniformity, the worse the fitness 
(entropy). 

But, in another sense, the frequency of zeroes and ones 
in the genetic randomizer leans in the direction of being 
too uniform. When we compute χ2 (chi-square), we 
find that the five commercial randomizers have a  χ2 



 

which, for one degree of freedom, is very close to the 
50th percentile.  In contrast, the χ2 of the genetically 
bred randomizer is in about the 15th percentile.  
Whether the intentionally created uniform distribution 
or a less uniform distribution constitutes randomness 
depends on ones point of view.  For example, some 
state lotteries explicitly enforce maximal uniformity 
(entropy) in the distribution of winners in preprinted 
instant lottery game tickets as opposed to "unstructured 
randomness." 

If we apply the gap test from Knuth [17] to the genetic 
randomizer and the five other randomizers, we get the 
results shown in Table 3 below.  The gap test counts the 
number of gaps of particular sizes in the sequence of 
16,384 binary digits.  For example, in the sequence 
0010110 of length 7, we have one gap in the zeroes of 
length zero (i.e. one instance of consecutive zeroes), 
one gap of length one, and one gap of length two. 

Table 3: Results of the Gap Test 

Randomizer χ2 for 0's χ2 for 1's 

Park-Miller 5.52 12.80 

IBM RANDU 9.07 13.19 

Shift-Register 11.21 4.05 

SHUFFLE 9.22 10.72 

TI RANDOM 4.50 9.44 

Genetic 9.03 2.64 

The 50th percentile of the χ2 distribution for 10 degrees 
of freedom is at 9.342. The χ2 for the zeroes for the 
genetic randomizer is 9.03. This is similar to most of 
the values for the five other randomizers. However, the 
χ2 for the ones for the genetic randomizer is the rather 
low value of 2.64. That is, the gaps in the ones for the 
genetic randomizer almost perfectly match the expected 
number of gaps expected from a random source.  That 
is, the genetic randomizer adheres too closely to the 
theoretical distribution of gaps. This match is especially 
strong for gap sizes of seven and below.  This is 
understandable in view of how the genetic randomizer 
was bred. In contrast, the five other randomizers are 
"more random" because their performance deviates 
more sharply from the theoretical distribution of gaps 
expected from a random source. As Knuth said, "...the 
observed values are so close to the expected values, we 
cannot consider the result to be random!" 

6. CONCLUSIONS 
We demonstrated that it is possible to use the genetic 

programming paradigm to breed a computer program to 
perform the task of converting a sequence of 
consecutive integers into a sequence of pseudo-random 
bits with near maximal entropy.  The size and shape of 
the initial, intermediate, and final programs were not 
specified in advance.  Instead, the size, shape, and 
specific internal steps of the various computer programs 
emerged from a evolutionary process driven by the 
selective pressure applied by the fitness (entropy) 
measure.  The better programs produced in the later 
generations of this evolutionary process were 
structurally more complex than the earlier programs. 
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