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Abstract 
Genetic programming is a systematic method 

for getting computers to automatically solve a 
problem. Genetic programming starts from a high-
level statement of what needs to be done and 
automatically creates a computer program to solve 
the problem. The paper makes the points that (1) 
genetic programming now routinely delivers high-
return human-competitive machine intelligence; 
(2) it is an automated invention machine; (3) it can 
automatically create a general solution to a 
problem in the form of a parameterized topology; 
and (4) it has delivered a progression of 
qualitatively more substantial results in synchrony 
with five approximately order-of-magnitude 
increases in the expenditure of computer time.  
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1 Introduction 
One of the central challenges of computer science 
is to get a computer to solve a problem without 
explicitly programming it. Paraphrasing Arthur 
Samuel—founder of the field of machine 
learning—this challenge (1959) concerns 

How can computers be made to do what 
needs to be done, without being told 
exactly how to do it? 
In his 1983 talk entitled “AI: Where It Has 

Been and Where It Is Going,” Samuel said:  
“[T]he aim [is] … to get machines to 
exhibit behavior, which if done by 
humans, would be assumed to involve the 
use of intelligence.”  
Genetic programming starts from a high-level 

statement of what needs to be done and 
automatically creates a computer program to solve 
the problem. Genetic programming uses the 
Darwinian principle of natural selection and 
analogs of recombination (crossover), mutation, 
gene duplication, gene deletion, and certain 
mechanisms of developmental biology to 
progressively breed an improved population over a 
series of many generations.  

This paper makes four points: 
(1) Genetic programming now routinely 
delivers high-return human-competitive 
machine intelligence (section 3).  
(2) Genetic programming is an automated 
invention machine (section 4).  
(3) Genetic programming can automatically 
create a general solution to a problem in the 
form of a parameterized topology (section 5).  
(4) Genetic programming has delivered a 
progression of qualitatively more substantial 
results in synchrony with five approximately 
order-of-magnitude increases in the 
expenditure of computer time (section 6). 

2 Background on Genetic 
Programming  

Genetic programming (Koza 1992; Koza and Rice 
1992; Koza 1994a; Koza 1994b; Koza, Bennett, 
Andre, and Keane 1999; Koza, Bennett, Andre, 
Keane, and Brave 1999; Koza, Keane, Streeter, 
Mydlowec, Yu, and Lanza 2003; Koza, Keane, 
Streeter, Mydlowec, Yu, Lanza, and Fletcher 
2003) breeds computer programs to solve 
problems by executing the following three steps:  

(1) Generate an initial population of 
compositions (typically random) of functions 
and terminals appropriate to the problem. 
(2) Iteratively perform the following substeps 
(a generation) on the population of programs 
until the termination criterion has been 
satisfied: 

(A) Execute each program in the population 
and assign it a fitness value using the 
problem’s fitness measure. 
(B) Create a new population of programs by 
applying the following operations to 
program(s) selected from the population 
with a probability based on fitness (with 
reselection allowed). 

(i) Reproduction: Copy the selected 
program to the new population. 
(ii) Crossover: Create a new offspring 
program for the new population by 
recombining randomly chosen parts of 
two selected programs. 



(iii) Mutation: Create one new offspring 
program for the new population by 
randomly mutating a randomly chosen 
part of the selected program. 
(iv) Architecture-altering operations: 
Create one new offspring program for 
the new population by applying a 
selected architecture-altering operation 
to the selected program.  

(3) Designate the individual program that is 
identified by result designation (e.g., the 
individual with the best fitness) as the run’s 
result. This result may be a solution (or 
approximate solution) to the problem.  

3 Genetic Programming Now 
Routinely Delivers High-Return 
Human-Competitive Machine 
Intelligence 

3.1 Definition of “Human-Competitive”  
In attempting to evaluate an automated problem-
solving method, the question arises as to whether 
there is any real substance to the demonstrative 
problems that are published in connection with the 
method. Demonstrative problems in the fields of 
artificial intelligence and machine learning are 
often contrived toy problems that circulate 
exclusively inside academic groups that study a 
particular methodology. These problems typically 
have little relevance to any issues pursued by any 
scientist or engineer outside the fields of artificial 
intelligence and machine learning. To make the 
idea of human-competitiveness concrete, we say 
that a result is “human-competitive” if it satisfies 
one or more of the eight criteria in table 1.  

The eight criteria in table 1 have the desirable 
attribute of being at arms-length from the fields of 
artificial intelligence, machine learning, and 
genetic programming. That is, a result cannot 
acquire the rating of “human-competitive” merely 
because it is considered interesting by researchers 
inside the specialized fields that are attempting to 
create machine intelligence. Instead, a result 
produced by an automated method must earn the 
rating of “human-competitive” independent of the 
fact that it was generated by an automated method.  

Based on this definition, there are now 36 
instances where genetic programming has 
produced a human-competitive result (table 2).  
3.2 Definition of “High-Return”  
What is delivered by the actual automated 
operation of an artificial method in comparison to 

the amount of knowledge, information, analysis, 
and intelligence that is pre-supplied by the human 
employing the method?  

We define the AI ratio (the “artificial-to-
intelligence” ratio) of a problem-solving method 
as the ratio of that which is delivered by the 
automated operation of the artificial method to the 
amount of intelligence that is supplied by the 
human applying the method to a particular 
problem.  

The AI ratio is especially pertinent to 
methods for getting computers to automatically 
solve problems because it measures the value 
added by the artificial problem-solving method. 
Manifestly, the aim of the fields of artificial 
intelligence and machine learning is to generate 
human-competitive results with a high AI ratio.  

Ascertaining the return of a problem-solving 
method requires measuring the amount of “A” that 
is delivered by the method in relation to the 
amount of “I” that is supplied by the human user.  

Because each of the 36 results in table 2 is a 
human-competitive result, it is reasonable to say 
that genetic programming delivered a high amount 
of “A” for each of them.  

The question thus arises as to how much “I” 
was supplied by the human user in order to 
produce these 36 results. Answering this question 
requires the discipline of carefully identifying the 
amount of analysis, intelligence, information, and 
knowledge that was supplied by the intelligent 
human user prior to launching a run of genetic 
programming.  

To do this, we make a clear distinction 
between the problem-specific preparatory steps 
and the problem-independent executional steps of 
a run of genetic programming.  

The preparatory steps are the problem-
specific and domain-specific steps that are 
performed by the human user prior to launching a 
run of the problem-solving method. The 
preparatory steps establish the “I” component of 
the AI ratio (i.e., the denominator). 

The executional steps are the problem-
independent and domain-independent steps that 
are automatically executed during a run of the 
problem-solving method. The executional steps of 
genetic programming are defined in section 2 of 
this paper. The results produced by the executional 
steps provide the “A” component of the AI ratio 
(i.e., the numerator).  



Table 1 Eight criteria for saying that an automatically created result is human-competitive  
 Criterion 
A The result was patented as an invention in the past, is an improvement over a patented invention, or would qualify today as a patentable new 

invention. 
B The result is equal to or better than a result that was accepted as a new scientific result at the time when it was published in a peer-reviewed 

scientific journal. 
C The result is equal to or better than a result that was placed into a database or archive of results maintained by an internationally recognized 

panel of scientific experts. 
D The result is publishable in its own right as a new scientific resultindependent of the fact that the result was mechanically created. 
E The result is equal to or better than the most recent human-created solution to a long-standing problem for which there has been a 

succession of increasingly better human-created solutions. 
F The result is equal to or better than a result that was considered an achievement in its field at the time it was first discovered. 
G The result solves a problem of indisputable difficulty in its field. 
H The result holds its own or wins a regulated competition involving human contestants (in the form of either live human players or human-

written computer programs). 

Table 2 Thirty-six human-competitive results produced by genetic programming  
 Claimed instance Basis  
1 Creation of a better-than-classical quantum algorithm for the Deutsch-Jozsa “early promise” problem B, F 
2 Creation of a better-than-classical quantum algorithm for Grover’s database search problem B, F 
3 Creation of a quantum algorithm for depth-two AND/OR query problem that is better than previously published results D 
4 Creation of a quantum algorithm for the depth-one OR query problem that is better than any previously published result D 
5 Creation of a protocol for communicating information through a quantum gate previously thought not to permit it D 
6 Creation of a novel variant of quantum dense coding D 
7 Creation of a soccer-playing program that won its first two games in the Robo Cup 1997 competition H 
8 Creation of a soccer-player ranked in middle of field of 34 human-written programs in Robo Cup 1998 competition H 
9 Creation of four different algorithms for the transmembrane segment identification problem for proteins B, E 
10 Creation of a sorting network for seven items using only 16 steps A, D 
11 Rediscovery of the Campbell ladder topology for lowpass and highpass filters A, F 
12 Rediscovery of the Zobel “M-derived half section” and “constant K” filter sections A, F 
13 Rediscovery of the Cauer (elliptic) topology for filters A, F 
14 Automatic decomposition of the problem of synthesizing a crossover filter A, F 
15 Rediscovery of a recognizable voltage gain stage and a Darlington emitter-follower section of amplifier and other 

circuits 
A, F 

16 Synthesis of 60 and 96 decibel amplifiers A, F 
17 Synthesis of analog computational circuits for squaring, cubing, square root, cube root, and Gaussian functions A, D, G 
18 Synthesis of a real-time analog circuit for time-optimal control of a robot G 
19 Synthesis of an electronic thermometer A, G 
20 Synthesis of a voltage reference circuit A, G 
21 Creation of a cellular automata rule for the majority classification problem that is better than the Gacs-Kurdyumov-Levin 

(GKL) rule and all other known rules written by humans 
D, E 

22 Creation of motifs that detect the D–E–A–D box family of proteins and the manganese superoxide dismutase family C 
23 Synthesis of topology for a PID-D2 (proportional, integrative, derivative, and second derivative) controller  A, F 
24 Synthesis of an analog circuit equivalent to Philbrick circuit A, F 
25 Synthesis of a NAND circuit A, F 
26 Simultaneous synthesis of topology, sizing, placement, and routing of analog electrical circuits A. F, G 
27 Synthesis of topology for a PID (proportional, integrative, and derivative) controller  A, F 
28 Rediscovery of negative feedback A, E, F, G 
29 Synthesis of a low-voltage balun circuit A 
30 Synthesis of a mixed analog-digital variable capacitor circuit A 
31 Synthesis of a high-current load circuit A 
32 Synthesis of a voltage-current conversion circuit A 
33 Synthesis of a Cubic function generator A 
34 Synthesis of a tunable integrated active filter A 
35 Creation of PID tuning rules that outperform the Ziegler-Nichols and Åström-Hägglund tuning rules A, B, D, E, F, G 
36 Creation of non-PID controllers that outperform the Ziegler-Nichols or Åström-Hägglund tuning rules A, B, D, E, F, G 

 
The five major preparatory steps for genetic 

programming require the human user to specify  
(1) the set of terminals (e.g., the independent 
variables of the problem, zero-argument 
functions, and random constants) for each 
branch of the to-be-evolved computer program, 
(2) the set of primitive functions for each 
branch of the to-be-evolved computer program,  

(3) the fitness measure (for explicitly or 
implicitly measuring the fitness of candidate 
individuals in the population), 
(4) certain parameters for controlling the run, 
and 
(5) a termination criterion and method for 
designating the result of the run.  



It is fair to say that only a de minimus amount 
of “I” is contained in the primitive ingredients of 
the to-be-created computer program (the first and 
second preparatory steps), the problem’s fitness 
measure (the third preparatory step containing the 
high-level statement of what needs to be done), 
and the run’s control parameters and termination 
procedures (the fourth and fifth preparatory steps).  

In any event, the amount of “I” required by 
genetic programming is certainly not greater than 
that required by any other method of artificial 
intelligence and machine learning of which we are 
aware. Indeed, we know of no other problem-
solving method (automated or human) that does 
not start with primitive elements of some kind, 
does not incorporate some method for specifying 
what needs to be done to guide the method’s 
operation, does not employ administrative 
parameters of some kind, and does not contain a 
termination criterion of some kind.  

In view of the high amount of “A” in the 
numerator and the small amount of “I” in the 
denominator, we can see that the AI ratio is high 
for the results in table 2 produced by genetic 
programming.. 
3.3 Definition of “Routine”  
Generality is a precondition to what we mean 
when we say that an automated problem-solving 
method is “routine.” Once the generality of a 
method is established, “routineness” means that 
relatively little human effort is required to get the 
method to successfully handle new problems 
within a particular domain and to successfully 
handle new problems from a different domain. The 
ease of making the transition to new problems lies 
at the heart of what we mean by “routine.”  

Virtually all controllers are built from the 
same primitive ingredients (e.g., integrators, 
differentiators, gains, adders, subtractors, and 
signals representing the plant output and the 
reference signal). Once these primitive ingredients 
are identified, new problems of controller 
synthesis can be handled merely by changing the 
statement of what needs to be done. Thus, after 
solving one problem of automatically synthesizing 
both the topology and tuning of a controller (say, 
item 27 in table 2), the transition to each new 
problem of controller synthesis (say, item 23) 
involves providing genetic programming with a 
different specification of what needs to be 
donethat is, a different fitness measure.  

In making the transition from problems of 
automatic synthesis of controllers to problems of 
automatic synthesis of circuits, the primitive 
ingredients change from integrators, 

differentiators, gains, and the like to transistors, 
resistors, capacitors, and the like. The fitness 
measure changes from one that minimizes a 
controller’s integral of time-weighted absolute 
error, minimizes overshoot, and maximizes 
disturbance rejection to one that is based on the 
circuit’s amplification, suppression or passage of a 
signal, elimination of distortion, and the like.  
4 Genetic Programming Is an 

Automated Invention Machine  
There are now 23 instances where genetic 
programming has duplicated the functionality of a 
previously patented invention, infringed a 
previously issued patent, or created a patentable 
new invention. Specifically, there are 15 instances 
where genetic programming has created an entity 
that either infringes or duplicates the functionality 
of a previously patented 20th-century invention, six 
instances where genetic programming has done the 
same with respect to an invention patented after 
January 1, 2000, and two instances where genetic 
programming has created a patentable new 
invention. 
5 Genetic Programming Can 

Automatically Create 
Parameterized Topologies  

Genetic programming can automatically create, in 
a single run, a general (parameterized) solution to 
a problem in the form of a graphical structure 
whose nodes or edges represent components and 
where the parameter values of the components are 
specified by mathematical expressions containing 
free variables. We call such a solution a 
parameterized topology.  

In a parameterized topology, the genetically 
evolved graphical structure represents a complex 
structure (e.g., electrical circuit, controller, 
network of chemical reactions, antenna, genetic 
network). In the automated process, genetic 
programming determines the graph’s size (its 
number of nodes) as well as the graph’s 
connectivity (specifying which nodes are 
connected to each other). Genetic programming 
also assigns, in the automated process, component 
types to the graph’s nodes or edges. In the 
automated process, genetic programming also 
creates mathematical expressions that establish the 
parameter values of the components (e.g., the 
capacitance of a capacitor in a circuit). Some of 
these genetically created mathematical expressions 
contain free variables. The free variables confer 
generality on the genetically evolved solution by 
enabling a single genetically evolved graphical 
structure to represent a general (parameterized) 



solution to an entire category of problems. Genetic 
programming can do all the above in an automated 
way in a single run.  

The capability of genetic programming to 
create parameterized topologies for design 
problems is illustrated by the automatic creation of 
a general-purpose non-PID controller (figure 1) 
whose blocks are parameterized by mathematical 
expressions containing the problem’s four free 
variables, namely the plant’s time constant, Tr, 
ultimate period, Tu, ultimate gain, Ku, and dead 
time, L. This genetically evolved controller (figure 
1) outperforms PID controllers tuned using the 
widely used Ziegler-Nichols tuning rules (1942) 
and the recently developed Åström and Hägglund 
tuning rules (1995) on an industrially 
representative set of plants. The authors have 
applied for a patent on this new controller. For 
details, see Koza, Keane, Streeter, Mydlowec, Yu, 
and Lanza 2003.  

This controller’s overall topology consists of 
three adders, three subtractors, four gain blocks 
parameterized by a constant, two gain blocks 
parameterized by non-constant mathematical 
expressions containing free variables, and two lead 
blocks parameterized by non-constant 
mathematical expressions containing free 
variables. For purposes of illustration, we mention 
that gain block 730 of figure 1 has a gain of  

( )log
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          [31] 

and that gain block 760 of figure 1 has a gain of  

log +1rT           [34]. 
If the genetically evolved program contains 

conditional developmental operators as well as 
free variables, a different graphical structure will, 
in general, be produced for different instantiations 
of the free variables. That is, the genetically 
evolved program operates as a genetic switch. 
Each program has inputs, namely the problem’s 
free variables. Depending on the values of the free 
variables, different graphical structures will result 
from the execution of the program. 
6 Progression of Qualitatively More 

Substantial Results Produced in 
Synchrony with Increasing 
Computer Power 

Table 3 lists the five computer systems used to 
produce our group’s reported work on genetic 
programming in the 15-year period between 1987 
and 2002. Column 7 shows the number of human-
competitive results (as itemized in table 2) 
generated by each computer system.  

The first entry in the table is a serial 
computer. The four subsequent entries are parallel 
computer systems. The presence of four 
increasingly powerful parallel computer systems 
in the table reflects the fact that genetic 
programming has successfully taken advantage of 
the increased computational power available by 
means of parallel processing (thereby avoiding a 
pitfall that often constrains other proposed 
approaches to machine intelligence).  
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Figure 1 Parameterized topology for a general-purpose controller.  



Table 3 shows the following:  
• There is an order-of-magnitude increase 
speed-up (column 4) between each successive 
computer system in the table. Note that, 
according to Moore’s law, exponential 
increases in computer power correspond 
approximately to constant periods of time.  
• There is a 13,900-to-1 speed-up (column 5) 
between the fastest and most recent machine 
(the 1,000-node parallel computer system) and 
the slowest and earliest computer system in the 
table (the serial LISP machine).  
• The slower early machines generated few or 
no human-competitive results, whereas the 
faster more recent machines have generated 
numerous human-competitive results.  

Four successive order-of-magnitude increases 
in computer power are explicitly shown in table 3. 
An additional order-of-magnitude increase was 
achieved by the expedient of making 
extraordinarily long runs on the largest machine in 
the table (the 1,000-node Pentium® II parallel 
machine). The length of the run that produced the 
genetically evolved controller described in section 
5 of this paper was 28.8 days—almost an order-of-
magnitude increase (9.3 times) over the 3.4-day 
average for runs that our group has made in recent 
years. A patent application was filed for the 
controller produced by this four-week run.  

If the final 9.3-to-1 increase in table 4 is 
counted as an additional speed-up, the overall 
speed-up between the first and last entries in the 
table is 130,660-to-1. 

Table 4 is organized around the five just-
explained order-of-magnitude increases in the 
expenditure of computing power. Column 4 of 
table 4 characterizes the qualitative nature of the 
results produced by genetic programming. The 
table shows the progression of qualitatively more 
substantial results produced by genetic 
programming in terms of five order-of-magnitude 
increases in the expenditure of computational 
resources.  

The order-of-magnitude increases in 
computer power shown in table 4 correspond 
closely (albeit not perfectly) with the following 
progression of qualitatively more substantial 
results produced by genetic programming:  

• toy problems,  
• human-competitive results not related to 
patented inventions,  
• 20th-century patented inventions, 
• 21st-century patented inventions, and 
• patentable new inventions.  

This progression demonstrates that genetic 
programming is able to take advantage of the 
exponentially increasing computational power 
made available by iterations of Moore’s law.  
7 Conclusions 
As far as we know, genetic programming is, at the 
present time, unique among methods of artificial 
intelligence and machine learning in terms of its 
duplication of numerous previously patented 
results, unique in its generation of patentable new 
results, unique in the breadth and depth of 
problems solved, unique in its demonstrated 
ability to produce parameterized topologies, and 
unique in its delivery of routine high-return, 
human-competitive machine intelligence.  
8 The Future 
Looking forward, we believe that genetic 
programming will be increasingly used to 
automatically generate ever-more complex human-
competitive results.  

With 50-gigaflops desktop parallel computers 
costing about $20,000 expected to be available in 
late 2003, genetic programming will be 
increasingly used as an invention machine to 
generate patentable new inventions.  

 
References 
Åström, Karl J. and Hägglund, Tore. 1995. PID 

Controllers: Theory, Design, and Tuning. 
Second Edition. Research Triangle Park, NC: 
Instrument Society of America.  

Koza, John R. 1992. Genetic Programming: On 
the Programming of Computers by Means of 
Natural Selection. Cambridge, MA: MIT Press. 

Koza, John R., and Rice, James P. 1992. Genetic 
Programming: The Movie. Cambridge, MA: 
MIT Press.  

Koza, John R. 1994a. Genetic Programming II: 
Automatic Discovery of Reusable Programs. 
Cambridge, MA: MIT Press. 

Koza, John R. 1994b. Genetic Programming II 
Videotape: The Next Generation. Cambridge, 
MA: MIT Press.  

Koza, John R., Bennett III, Forrest H, Andre, 
David, and Keane, Martin A. 1999. Genetic 
Programming III: Darwinian Invention and 
Problem Solving. San Francisco, CA: Morgan 
Kaufmann.  

Koza, John R., Bennett III, Forrest H, Andre, 
David, Keane, Martin A., and Brave Scott. 
1999. Genetic Programming III Videotape: 
Human-Competitive Machine Intelligence. San 
Francisco, CA: Morgan Kaufmann.  



Koza, John R., Keane, Martin A., Streeter, 
Matthew J., Mydlowec, William, Yu, Jessen, 
and Lanza, Guido. 2003. Genetic Programming 
IV. Routine Human-Competitive Machine 
Intelligence. Kluwer Academic Publishers.  

Koza, John R., Keane, Martin A., Streeter, 
Matthew J., Mydlowec, William, Yu, Jessen, 
Lanza, Guido, and Fletcher, David. 2003. 
Genetic Programming IV Video: Routine 
Human-Competitive Machine Intelligence. 
Kluwer Academic Publishers. 

 
 

Samuel, Arthur L. 1959. Some studies in machine 
learning using the game of checkers. IBM 
Journal of Research and Development. 3(3): 
210–229.  

Samuel, Arthur L. 1983. AI: Where it has been 
and where it is going. Proceedings of the Eighth 
International Joint Conference on Artificial 
Intelligence. Los Altos, CA: Morgan Kaufmann. 
Pages 1152 – 1157.  

Ziegler, J. G. and Nichols, N. B. 1942. Optimum 
settings for automatic controllers. Transactions 
of ASME. (64)759–768.  

Table 3 Human-competitive results produced by genetic programming with five computer systems  
System Period Petacycles 

(1015cycles) 
per day for 

system 

Speed-up 
over 

previous 
row 

Speed-up over 
first system in 

this table 

Used for work in book Human-
competitive results 

Serial Texas Instruments 
LISP machine 

1987–1994 0.00216 1 (base) 1 (base) Genetic Programming I 
and Genetic 

Programming II 

0 

64-node Transtech 
transputer parallel machine 

1994–1997  0.02 9 9 A few problems in 
Genetic Programming 

III 

2 

64-node Parsytec parallel 
machine 

1995–2000  0.44 22 204 Most problems in 
Genetic Programming 

III 

12 

70-node Alpha parallel 
machine 

1999–2001  3.2 7.3 1,481 A minority (8) of 
problems in Genetic 

Programming IV 

2 

1,000-node Pentium II 
parallel machine 

2000–2002  30.0 9.4 13,900 A majority (28) of the 
problems in Genetic 

Programming IV 

12 

 

Table 4 Progression of qualitatively more substantial results produced by genetic programming in 
relation to five order-of-magnitude increases in computational power  
System Period Speed-up over 

previous row 
Qualitative nature of the results produced by genetic programming 

Serial Texas Instruments 
LISP machine 

1987–1994 1 (base) • Toy problems of the 1980s and early 1990s from the fields of artificial 
intelligence and machine learning  

64-node Transtech 
transputer parallel machine 

1994–1997  9 •Two human-competitive results involving one-dimensional discrete data (not 
patent-related) 

64-node Parsytec parallel 
machine 

1995–2000  22 • One human-competitive result involving two-dimensional discrete data  
• Numerous human-competitive results involving continuous signals analyzed in 
the frequency domain 
• Numerous human-competitive results involving 20th-century patented 
inventions 

70-node Alpha parallel 
machine 

1999–2001  7.3 • One human-competitive result involving continuous signals analyzed in the 
time domain 
• Circuit synthesis extended from topology and sizing to include routing and 
placement (layout) 

1,000-node Pentium II 
parallel machine 

2000–2002 9.4 • Numerous human-competitive results involving continuous signals analyzed in 
the time domain 
• Numerous general solutions to problems in the form of parameterized 
topologies 
• Six human-competitive results duplicating the functionality of 21st-century 
patented inventions 

Long (4-week) runs of 
1,000-node Pentium II 
parallel machine 

2002 9.3 • Generation of two patentable new inventions 

 


