
Routine High-Return Human-Competitive Machine Learning

John R. Koza
Stanford University

koza@stanford.edu

Matthew J. Streeter
Genetic Programming Inc.

matt@genetic-programming.com

Martin A. Keane
Econometrics Inc.

mak@sportsmrkt.com

Abstract
Genetic programming is a systematic method

for getting computers to automatically solve a
problem. Genetic programming starts from a high-
level statement of what needs to be done and
automatically creates a computer program to solve
the problem. The paper makes the points that (1)
genetic programming now routinely delivers high-
return human-competitive machine intelligence;
(2) it is an automated invention machine; (3) it can
automatically create a general solution to a
problem in the form of a parameterized topology;
and (4) it has delivered a progression of
qualitatively more substantial results in synchrony
with five approximately order-of-magnitude
increases in the expenditure of computer time.

Keywords: Genetic programming, human-

competitive, inventions, parameterized topology

1 Introduction
One of the central challenges of computer science
is to get a computer to solve a problem without
explicitly programming it. Paraphrasing Arthur
Samuel—founder of the field of machine
learning—this challenge (1959) concerns

How can computers be made to do what
needs to be done, without being told
exactly how to do it?
In his 1983 talk entitled “AI: Where It Has

Been and Where It Is Going,” Samuel said:
“[T]he aim [is] … to get machines to
exhibit behavior, which if done by
humans, would be assumed to involve the
use of intelligence.”
Genetic programming starts from a high-level

statement of what needs to be done and
automatically creates a computer program to solve
the problem. Genetic programming uses the
Darwinian principle of natural selection and
analogs of recombination (crossover), mutation,
gene duplication, gene deletion, and certain
mechanisms of developmental biology to
progressively breed an improved population over a
series of many generations.

This paper makes four points:
(1) Genetic programming now routinely
delivers high-return human-competitive
machine intelligence (section 3).
(2) Genetic programming is an automated
invention machine (section 4).
(3) Genetic programming can automatically
create a general solution to a problem in the
form of a parameterized topology (section 5).
(4) Genetic programming has delivered a
progression of qualitatively more substantial
results in synchrony with five approximately
order-of-magnitude increases in the
expenditure of computer time (section 6).

2 Background on Genetic
Programming

Genetic programming (Koza 1992; Koza and Rice
1992; Koza 1994a; Koza 1994b; Koza, Bennett,
Andre, and Keane 1999; Koza, Bennett, Andre,
Keane, and Brave 1999; Koza, Keane, Streeter,
Mydlowec, Yu, and Lanza 2003; Koza, Keane,
Streeter, Mydlowec, Yu, Lanza, and Fletcher
2003) breeds computer programs to solve
problems by executing the following three steps:

(1) Generate an initial population of
compositions (typically random) of functions
and terminals appropriate to the problem.
(2) Iteratively perform the following substeps
(a generation) on the population of programs
until the termination criterion has been
satisfied:

(A) Execute each program in the population
and assign it a fitness value using the
problem’s fitness measure.
(B) Create a new population of programs by
applying the following operations to
program(s) selected from the population
with a probability based on fitness (with
reselection allowed).

(i) Reproduction: Copy the selected
program to the new population.
(ii) Crossover: Create a new offspring
program for the new population by
recombining randomly chosen parts of
two selected programs.

(iii) Mutation: Create one new offspring
program for the new population by
randomly mutating a randomly chosen
part of the selected program.
(iv) Architecture-altering operations:
Create one new offspring program for
the new population by applying a
selected architecture-altering operation
to the selected program.

(3) Designate the individual program that is
identified by result designation (e.g., the
individual with the best fitness) as the run’s
result. This result may be a solution (or
approximate solution) to the problem.

3 Genetic Programming Now
Routinely Delivers High-Return
Human-Competitive Machine
Intelligence

3.1 Definition of “Human-Competitive”
In attempting to evaluate an automated problem-
solving method, the question arises as to whether
there is any real substance to the demonstrative
problems that are published in connection with the
method. Demonstrative problems in the fields of
artificial intelligence and machine learning are
often contrived toy problems that circulate
exclusively inside academic groups that study a
particular methodology. These problems typically
have little relevance to any issues pursued by any
scientist or engineer outside the fields of artificial
intelligence and machine learning. To make the
idea of human-competitiveness concrete, we say
that a result is “human-competitive” if it satisfies
one or more of the eight criteria in table 1.

The eight criteria in table 1 have the desirable
attribute of being at arms-length from the fields of
artificial intelligence, machine learning, and
genetic programming. That is, a result cannot
acquire the rating of “human-competitive” merely
because it is considered interesting by researchers
inside the specialized fields that are attempting to
create machine intelligence. Instead, a result
produced by an automated method must earn the
rating of “human-competitive” independent of the
fact that it was generated by an automated method.

Based on this definition, there are now 36
instances where genetic programming has
produced a human-competitive result (table 2).
3.2 Definition of “High-Return”
What is delivered by the actual automated
operation of an artificial method in comparison to

the amount of knowledge, information, analysis,
and intelligence that is pre-supplied by the human
employing the method?

We define the AI ratio (the “artificial-to-
intelligence” ratio) of a problem-solving method
as the ratio of that which is delivered by the
automated operation of the artificial method to the
amount of intelligence that is supplied by the
human applying the method to a particular
problem.

The AI ratio is especially pertinent to
methods for getting computers to automatically
solve problems because it measures the value
added by the artificial problem-solving method.
Manifestly, the aim of the fields of artificial
intelligence and machine learning is to generate
human-competitive results with a high AI ratio.

Ascertaining the return of a problem-solving
method requires measuring the amount of “A” that
is delivered by the method in relation to the
amount of “I” that is supplied by the human user.

Because each of the 36 results in table 2 is a
human-competitive result, it is reasonable to say
that genetic programming delivered a high amount
of “A” for each of them.

The question thus arises as to how much “I”
was supplied by the human user in order to
produce these 36 results. Answering this question
requires the discipline of carefully identifying the
amount of analysis, intelligence, information, and
knowledge that was supplied by the intelligent
human user prior to launching a run of genetic
programming.

To do this, we make a clear distinction
between the problem-specific preparatory steps
and the problem-independent executional steps of
a run of genetic programming.

The preparatory steps are the problem-
specific and domain-specific steps that are
performed by the human user prior to launching a
run of the problem-solving method. The
preparatory steps establish the “I” component of
the AI ratio (i.e., the denominator).

The executional steps are the problem-
independent and domain-independent steps that
are automatically executed during a run of the
problem-solving method. The executional steps of
genetic programming are defined in section 2 of
this paper. The results produced by the executional
steps provide the “A” component of the AI ratio
(i.e., the numerator).

Table 1 Eight criteria for saying that an automatically created result is human-competitive
 Criterion
A The result was patented as an invention in the past, is an improvement over a patented invention, or would qualify today as a patentable new

invention.
B The result is equal to or better than a result that was accepted as a new scientific result at the time when it was published in a peer-reviewed

scientific journal.
C The result is equal to or better than a result that was placed into a database or archive of results maintained by an internationally recognized

panel of scientific experts.
D The result is publishable in its own right as a new scientific resultindependent of the fact that the result was mechanically created.
E The result is equal to or better than the most recent human-created solution to a long-standing problem for which there has been a

succession of increasingly better human-created solutions.
F The result is equal to or better than a result that was considered an achievement in its field at the time it was first discovered.
G The result solves a problem of indisputable difficulty in its field.
H The result holds its own or wins a regulated competition involving human contestants (in the form of either live human players or human-

written computer programs).

Table 2 Thirty-six human-competitive results produced by genetic programming
 Claimed instance Basis
1 Creation of a better-than-classical quantum algorithm for the Deutsch-Jozsa “early promise” problem B, F
2 Creation of a better-than-classical quantum algorithm for Grover’s database search problem B, F
3 Creation of a quantum algorithm for depth-two AND/OR query problem that is better than previously published results D
4 Creation of a quantum algorithm for the depth-one OR query problem that is better than any previously published result D
5 Creation of a protocol for communicating information through a quantum gate previously thought not to permit it D
6 Creation of a novel variant of quantum dense coding D
7 Creation of a soccer-playing program that won its first two games in the Robo Cup 1997 competition H
8 Creation of a soccer-player ranked in middle of field of 34 human-written programs in Robo Cup 1998 competition H
9 Creation of four different algorithms for the transmembrane segment identification problem for proteins B, E
10 Creation of a sorting network for seven items using only 16 steps A, D
11 Rediscovery of the Campbell ladder topology for lowpass and highpass filters A, F
12 Rediscovery of the Zobel “M-derived half section” and “constant K” filter sections A, F
13 Rediscovery of the Cauer (elliptic) topology for filters A, F
14 Automatic decomposition of the problem of synthesizing a crossover filter A, F
15 Rediscovery of a recognizable voltage gain stage and a Darlington emitter-follower section of amplifier and other

circuits
A, F

16 Synthesis of 60 and 96 decibel amplifiers A, F
17 Synthesis of analog computational circuits for squaring, cubing, square root, cube root, and Gaussian functions A, D, G
18 Synthesis of a real-time analog circuit for time-optimal control of a robot G
19 Synthesis of an electronic thermometer A, G
20 Synthesis of a voltage reference circuit A, G
21 Creation of a cellular automata rule for the majority classification problem that is better than the Gacs-Kurdyumov-Levin

(GKL) rule and all other known rules written by humans
D, E

22 Creation of motifs that detect the D–E–A–D box family of proteins and the manganese superoxide dismutase family C
23 Synthesis of topology for a PID-D2 (proportional, integrative, derivative, and second derivative) controller A, F
24 Synthesis of an analog circuit equivalent to Philbrick circuit A, F
25 Synthesis of a NAND circuit A, F
26 Simultaneous synthesis of topology, sizing, placement, and routing of analog electrical circuits A. F, G
27 Synthesis of topology for a PID (proportional, integrative, and derivative) controller A, F
28 Rediscovery of negative feedback A, E, F, G
29 Synthesis of a low-voltage balun circuit A
30 Synthesis of a mixed analog-digital variable capacitor circuit A
31 Synthesis of a high-current load circuit A
32 Synthesis of a voltage-current conversion circuit A
33 Synthesis of a Cubic function generator A
34 Synthesis of a tunable integrated active filter A
35 Creation of PID tuning rules that outperform the Ziegler-Nichols and Åström-Hägglund tuning rules A, B, D, E, F, G
36 Creation of non-PID controllers that outperform the Ziegler-Nichols or Åström-Hägglund tuning rules A, B, D, E, F, G

The five major preparatory steps for genetic

programming require the human user to specify
(1) the set of terminals (e.g., the independent
variables of the problem, zero-argument
functions, and random constants) for each
branch of the to-be-evolved computer program,
(2) the set of primitive functions for each
branch of the to-be-evolved computer program,

(3) the fitness measure (for explicitly or
implicitly measuring the fitness of candidate
individuals in the population),
(4) certain parameters for controlling the run,
and
(5) a termination criterion and method for
designating the result of the run.

It is fair to say that only a de minimus amount
of “I” is contained in the primitive ingredients of
the to-be-created computer program (the first and
second preparatory steps), the problem’s fitness
measure (the third preparatory step containing the
high-level statement of what needs to be done),
and the run’s control parameters and termination
procedures (the fourth and fifth preparatory steps).

In any event, the amount of “I” required by
genetic programming is certainly not greater than
that required by any other method of artificial
intelligence and machine learning of which we are
aware. Indeed, we know of no other problem-
solving method (automated or human) that does
not start with primitive elements of some kind,
does not incorporate some method for specifying
what needs to be done to guide the method’s
operation, does not employ administrative
parameters of some kind, and does not contain a
termination criterion of some kind.

In view of the high amount of “A” in the
numerator and the small amount of “I” in the
denominator, we can see that the AI ratio is high
for the results in table 2 produced by genetic
programming..
3.3 Definition of “Routine”
Generality is a precondition to what we mean
when we say that an automated problem-solving
method is “routine.” Once the generality of a
method is established, “routineness” means that
relatively little human effort is required to get the
method to successfully handle new problems
within a particular domain and to successfully
handle new problems from a different domain. The
ease of making the transition to new problems lies
at the heart of what we mean by “routine.”

Virtually all controllers are built from the
same primitive ingredients (e.g., integrators,
differentiators, gains, adders, subtractors, and
signals representing the plant output and the
reference signal). Once these primitive ingredients
are identified, new problems of controller
synthesis can be handled merely by changing the
statement of what needs to be done. Thus, after
solving one problem of automatically synthesizing
both the topology and tuning of a controller (say,
item 27 in table 2), the transition to each new
problem of controller synthesis (say, item 23)
involves providing genetic programming with a
different specification of what needs to be
donethat is, a different fitness measure.

In making the transition from problems of
automatic synthesis of controllers to problems of
automatic synthesis of circuits, the primitive
ingredients change from integrators,

differentiators, gains, and the like to transistors,
resistors, capacitors, and the like. The fitness
measure changes from one that minimizes a
controller’s integral of time-weighted absolute
error, minimizes overshoot, and maximizes
disturbance rejection to one that is based on the
circuit’s amplification, suppression or passage of a
signal, elimination of distortion, and the like.
4 Genetic Programming Is an

Automated Invention Machine
There are now 23 instances where genetic
programming has duplicated the functionality of a
previously patented invention, infringed a
previously issued patent, or created a patentable
new invention. Specifically, there are 15 instances
where genetic programming has created an entity
that either infringes or duplicates the functionality
of a previously patented 20th-century invention, six
instances where genetic programming has done the
same with respect to an invention patented after
January 1, 2000, and two instances where genetic
programming has created a patentable new
invention.
5 Genetic Programming Can

Automatically Create
Parameterized Topologies

Genetic programming can automatically create, in
a single run, a general (parameterized) solution to
a problem in the form of a graphical structure
whose nodes or edges represent components and
where the parameter values of the components are
specified by mathematical expressions containing
free variables. We call such a solution a
parameterized topology.

In a parameterized topology, the genetically
evolved graphical structure represents a complex
structure (e.g., electrical circuit, controller,
network of chemical reactions, antenna, genetic
network). In the automated process, genetic
programming determines the graph’s size (its
number of nodes) as well as the graph’s
connectivity (specifying which nodes are
connected to each other). Genetic programming
also assigns, in the automated process, component
types to the graph’s nodes or edges. In the
automated process, genetic programming also
creates mathematical expressions that establish the
parameter values of the components (e.g., the
capacitance of a capacitor in a circuit). Some of
these genetically created mathematical expressions
contain free variables. The free variables confer
generality on the genetically evolved solution by
enabling a single genetically evolved graphical
structure to represent a general (parameterized)

solution to an entire category of problems. Genetic
programming can do all the above in an automated
way in a single run.

The capability of genetic programming to
create parameterized topologies for design
problems is illustrated by the automatic creation of
a general-purpose non-PID controller (figure 1)
whose blocks are parameterized by mathematical
expressions containing the problem’s four free
variables, namely the plant’s time constant, Tr,
ultimate period, Tu, ultimate gain, Ku, and dead
time, L. This genetically evolved controller (figure
1) outperforms PID controllers tuned using the
widely used Ziegler-Nichols tuning rules (1942)
and the recently developed Åström and Hägglund
tuning rules (1995) on an industrially
representative set of plants. The authors have
applied for a patent on this new controller. For
details, see Koza, Keane, Streeter, Mydlowec, Yu,
and Lanza 2003.

This controller’s overall topology consists of
three adders, three subtractors, four gain blocks
parameterized by a constant, two gain blocks
parameterized by non-constant mathematical
expressions containing free variables, and two lead
blocks parameterized by non-constant
mathematical expressions containing free
variables. For purposes of illustration, we mention
that gain block 730 of figure 1 has a gain of

()log
log - + log

+1

L

r u
u

L
T T

T
 [31]

and that gain block 760 of figure 1 has a gain of

log +1rT [34].
If the genetically evolved program contains

conditional developmental operators as well as
free variables, a different graphical structure will,
in general, be produced for different instantiations
of the free variables. That is, the genetically
evolved program operates as a genetic switch.
Each program has inputs, namely the problem’s
free variables. Depending on the values of the free
variables, different graphical structures will result
from the execution of the program.
6 Progression of Qualitatively More

Substantial Results Produced in
Synchrony with Increasing
Computer Power

Table 3 lists the five computer systems used to
produce our group’s reported work on genetic
programming in the 15-year period between 1987
and 2002. Column 7 shows the number of human-
competitive results (as itemized in table 2)
generated by each computer system.

The first entry in the table is a serial
computer. The four subsequent entries are parallel
computer systems. The presence of four
increasingly powerful parallel computer systems
in the table reflects the fact that genetic
programming has successfully taken advantage of
the increased computational power available by
means of parallel processing (thereby avoiding a
pitfall that often constrains other proposed
approaches to machine intelligence).

Astrom-
Hagglund
Controller

Control
variable

790
Eq. 34Eq. 31

Plant
Output

Reference
Signal

706

736

1+[Eq.32]* s
788738 748

10

778

2

2
720

770

780

3

1+[Eq.33]* s

710

+
-

+
-

734

730

+

- +

+
+

+

+
+

+

+
+

740 750 760

700

704

Figure 1 Parameterized topology for a general-purpose controller.

Table 3 shows the following:
• There is an order-of-magnitude increase
speed-up (column 4) between each successive
computer system in the table. Note that,
according to Moore’s law, exponential
increases in computer power correspond
approximately to constant periods of time.
• There is a 13,900-to-1 speed-up (column 5)
between the fastest and most recent machine
(the 1,000-node parallel computer system) and
the slowest and earliest computer system in the
table (the serial LISP machine).
• The slower early machines generated few or
no human-competitive results, whereas the
faster more recent machines have generated
numerous human-competitive results.

Four successive order-of-magnitude increases
in computer power are explicitly shown in table 3.
An additional order-of-magnitude increase was
achieved by the expedient of making
extraordinarily long runs on the largest machine in
the table (the 1,000-node Pentium® II parallel
machine). The length of the run that produced the
genetically evolved controller described in section
5 of this paper was 28.8 days—almost an order-of-
magnitude increase (9.3 times) over the 3.4-day
average for runs that our group has made in recent
years. A patent application was filed for the
controller produced by this four-week run.

If the final 9.3-to-1 increase in table 4 is
counted as an additional speed-up, the overall
speed-up between the first and last entries in the
table is 130,660-to-1.

Table 4 is organized around the five just-
explained order-of-magnitude increases in the
expenditure of computing power. Column 4 of
table 4 characterizes the qualitative nature of the
results produced by genetic programming. The
table shows the progression of qualitatively more
substantial results produced by genetic
programming in terms of five order-of-magnitude
increases in the expenditure of computational
resources.

The order-of-magnitude increases in
computer power shown in table 4 correspond
closely (albeit not perfectly) with the following
progression of qualitatively more substantial
results produced by genetic programming:

• toy problems,
• human-competitive results not related to
patented inventions,
• 20th-century patented inventions,
• 21st-century patented inventions, and
• patentable new inventions.

This progression demonstrates that genetic
programming is able to take advantage of the
exponentially increasing computational power
made available by iterations of Moore’s law.
7 Conclusions
As far as we know, genetic programming is, at the
present time, unique among methods of artificial
intelligence and machine learning in terms of its
duplication of numerous previously patented
results, unique in its generation of patentable new
results, unique in the breadth and depth of
problems solved, unique in its demonstrated
ability to produce parameterized topologies, and
unique in its delivery of routine high-return,
human-competitive machine intelligence.
8 The Future
Looking forward, we believe that genetic
programming will be increasingly used to
automatically generate ever-more complex human-
competitive results.

With 50-gigaflops desktop parallel computers
costing about $20,000 expected to be available in
late 2003, genetic programming will be
increasingly used as an invention machine to
generate patentable new inventions.

References
Åström, Karl J. and Hägglund, Tore. 1995. PID

Controllers: Theory, Design, and Tuning.
Second Edition. Research Triangle Park, NC:
Instrument Society of America.

Koza, John R. 1992. Genetic Programming: On
the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA:
MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge,
MA: MIT Press.

Koza, John R., Bennett III, Forrest H, Andre,
David, and Keane, Martin A. 1999. Genetic
Programming III: Darwinian Invention and
Problem Solving. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre,
David, Keane, Martin A., and Brave Scott.
1999. Genetic Programming III Videotape:
Human-Competitive Machine Intelligence. San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Keane, Martin A., Streeter,
Matthew J., Mydlowec, William, Yu, Jessen,
and Lanza, Guido. 2003. Genetic Programming
IV. Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.

Koza, John R., Keane, Martin A., Streeter,
Matthew J., Mydlowec, William, Yu, Jessen,
Lanza, Guido, and Fletcher, David. 2003.
Genetic Programming IV Video: Routine
Human-Competitive Machine Intelligence.
Kluwer Academic Publishers.

Samuel, Arthur L. 1959. Some studies in machine
learning using the game of checkers. IBM
Journal of Research and Development. 3(3):
210–229.

Samuel, Arthur L. 1983. AI: Where it has been
and where it is going. Proceedings of the Eighth
International Joint Conference on Artificial
Intelligence. Los Altos, CA: Morgan Kaufmann.
Pages 1152 – 1157.

Ziegler, J. G. and Nichols, N. B. 1942. Optimum
settings for automatic controllers. Transactions
of ASME. (64)759–768.

Table 3 Human-competitive results produced by genetic programming with five computer systems
System Period Petacycles

(1015cycles)
per day for

system

Speed-up
over

previous
row

Speed-up over
first system in

this table

Used for work in book Human-
competitive results

Serial Texas Instruments
LISP machine

1987–1994 0.00216 1 (base) 1 (base) Genetic Programming I
and Genetic

Programming II

0

64-node Transtech
transputer parallel machine

1994–1997 0.02 9 9 A few problems in
Genetic Programming

III

2

64-node Parsytec parallel
machine

1995–2000 0.44 22 204 Most problems in
Genetic Programming

III

12

70-node Alpha parallel
machine

1999–2001 3.2 7.3 1,481 A minority (8) of
problems in Genetic

Programming IV

2

1,000-node Pentium II
parallel machine

2000–2002 30.0 9.4 13,900 A majority (28) of the
problems in Genetic

Programming IV

12

Table 4 Progression of qualitatively more substantial results produced by genetic programming in
relation to five order-of-magnitude increases in computational power
System Period Speed-up over

previous row
Qualitative nature of the results produced by genetic programming

Serial Texas Instruments
LISP machine

1987–1994 1 (base) • Toy problems of the 1980s and early 1990s from the fields of artificial
intelligence and machine learning

64-node Transtech
transputer parallel machine

1994–1997 9 •Two human-competitive results involving one-dimensional discrete data (not
patent-related)

64-node Parsytec parallel
machine

1995–2000 22 • One human-competitive result involving two-dimensional discrete data
• Numerous human-competitive results involving continuous signals analyzed in
the frequency domain
• Numerous human-competitive results involving 20th-century patented
inventions

70-node Alpha parallel
machine

1999–2001 7.3 • One human-competitive result involving continuous signals analyzed in the
time domain
• Circuit synthesis extended from topology and sizing to include routing and
placement (layout)

1,000-node Pentium II
parallel machine

2000–2002 9.4 • Numerous human-competitive results involving continuous signals analyzed in
the time domain
• Numerous general solutions to problems in the form of parameterized
topologies
• Six human-competitive results duplicating the functionality of 21st-century
patented inventions

Long (4-week) runs of
1,000-node Pentium II
parallel machine

2002 9.3 • Generation of two patentable new inventions

