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Abstract—The recently developed genetic programming 

paradigm provides a way to genetically breed a population of 
computer programs to solve problems.  The technique of 
automatic function definition enables genetic programming to 
define potentially useful functions dynamically during a run – 
much as a human programmer writing a computer program 
creates subroutines to perform certain groups of steps which 
must be performed in more than one place in the main program.  
This paper finds an approximation to the impulse response 
function, in symbolic form, for a linear time-invariant system 
and demonstrates the value of automatic function definition in 
enabling genetic programming to accelerate the solution to this 
illustrative problem.  

I.  INTRODUCTION AND OVERVIEW 
A key goal in machine learning and artificial intelligence is 

to facilitate the solution of a problem by automatically and 
dynamically decomposing the problem into simpler 
subproblems.   

When a human programmer writes a computer program to 
solve a problem, he often creates a subroutine (procedure, 
function) enabling a common calculation to be performed 
without tediously rewriting the code for that calculation.  For 
example, if a programmer needed to write a program for 
Boolean parity functions of several different orders, he might 
find it convenient first to write a subroutine for some lower-
order parity function.  He would call on the code for this low-
order parity function at different places and in different ways 
in his main program and combine the results to produce the 
desired higher-order parity function.   Specifically, if the 
programmer were using the LISP programming language, he 
might first write a function definition for the odd-2-parity 
function xor (exclusive-or) as follows: 

(defun xor (arg0 arg1) 
  (values (or (and arg0 (not arg1)) 
              (and (not arg0) arg1)))). 

This function definition (called a "defun" in LISP) does 
four things.  First, it assigns a name, xor, to the function 
being defined thereby permitting subsequent reference to it.  
Second, this function definition identifies the argument list of 
the function being defined, namely the list (arg0 arg1) 
containing two dummy variables (formal parameters) called 
arg0 and arg1.  Third, this function definition contains a 
body which performs the work of the function.  Fourth, this 
function definition identifies the value to be returned by the 
function.  In this example, the single value to be returned is 

emphasized via an explicit invocation of the values 
function.  This particular function definition has two dummy 
arguments, returns only a single value, has no side effects, 
and refers only to the two local dummy variables (i.e., it does 
not refer to any of the actual variables of the overall problem 
contained in the "main" program).  However, in general, 
defined functions may have any number of arguments 
(including no arguments), may return multiple values (or no 
values), may or may not perform side effects, and may or 
may not explicitly refer to the actual (global) variables of the 
main program.   

Once the function xor is defined, it may then be 
repeatedly called with different instantiations of its 
arguments from more than one place in the main program.  
For example, if the programmer needed the even-4-parity at 
some point in his main program, he might write 

(xor (xor d0 d1) (not (xor d2 d3))). 

Function definitions exploit the underlying regularities and 
symmetries of a problem by obviating the need to tediously 
rewrite lines of essentially similar code.  A function 
definition is especially efficient when it is repeatedly called 
with different instantiations of its arguments.  However, the 
importance of function definition goes well beyond 
efficiency.  The process of defining and calling a function, in 
effect, decomposes the problem into a hierarchy of 
subproblems.   

The ability to extract a reusable subroutine is potentially 
very useful in many domains.  Consider the problem of 
discovery of a neural network to recognize a pattern 
presented as an array of pixels.  Suppose the solution of a 
pattern recognition problem requires discovery of a particular 
feature (e.g., a line end) within the 3 by 3 pixel region in the 
upper left corner of an 8 by 8 array of pixels and also 
requires discovery of that same feature within a 3 by 3 pixel 
region in the lower left corner of the overall array.  Existing 
neural net paradigms can successfully discover the useful 
feature among the nine pixels p11, p12, p13, p21, p22, p23, 
p31, p32, p33 in the upper left corner of a 8 by 8 array of 
pixels and can independently rediscover the same useful 
feature among the nine pixels p61, p62, p63, p71, p72, p73, 
p81, p82, p83 in the lower left corner of the overall array.  
But existing neural net paradigms do not provide a way to 
discover the common feature just once, to generalize the 
feature so that it is not rigidly associated with particular 



 

 

pixels but is, instead, parameterized, and to then reuse the 
generalized feature detector to recognize occurrences of the 
feature in different 3 by 3 pixel regions within the array.  
That is, existing paradigms do not provide a way to discover 
a function of nine dummy variables just once and to call that 
function twice (once with p11, ..., p33 as arguments and once 
with p61, ..., p83 as arguments).  Such an ability would 
amount to discovering a nine-input subassembly of 
connections with appropriate weights, making a copy of the 
entire subassembly, implanting the copy elsewhere in the 
overall neural net, and then connecting nine different pixels 
as inputs to the subassembly in its new location in the overall 
neural net.   

Genetic programming provides a way to search the space 
of all possible functions composed of certain terminals and 
primitive functions to find a function which solves a 
problem.  Automatic function definition enables genetic 
programming to define potentially useful functions, 
automatically and dynamically, and to then call them during a 
run – much as a human programmer creates subroutines 
(procedures, functions) to perform certain groups of steps 
which are repeatedly called from more than one place in the 
main program with different instantiations of its arguments.   

In this paper, we use genetic programming with automatic 
function definition to find the symbolic form of the impulse 
response function for a linear time-invariant system using 
only the observed response of the system to a particular 
known forcing function.  The solution so discovered is then 
cross-validated with a number of other forcing functions not 
used during the learning process. Automatic function 
definition enables genetic programming to find an impulse 
response function with less computational effort.   

II.  Background on Genetic Methods 
Since the invention of the genetic algorithm by John 

Holland [1975], the genetic algorithm has proven successful 
at finding an optimal point in a search space for a wide 
variety of problems [Goldberg 1989, Belew 1991, Davis 
1987, Davis 1991, Michalewicz 1992].   

However, for many problems the most natural 
representation for the solution to the problem is an entire 
function (i.e., a composition of primitive functions and 
terminals), not merely a single numerical point in the search 
space of the problem.  The size, shape, and contents of the 
composition needed to solve the problem is generally not 
known in advance.   

In genetic programming, the individuals in the genetic 
population are compositions of primitive functions and 
terminals appropriate to the particular problem domain.  
These compositions of primitive functions and terminals 
correspond directly to the parse tree that is internally created 
by most compilers and to the programs found in 
programming languages such as LISP (where they are called 
symbolic expressions or S-expressions).  

The book Genetic Programming: On the Programming of 
Computers by Means of Natural Selection [Koza 1992a] 
describes the recently developed genetic programming 

paradigm and demonstrates that populations of computer 
programs (i.e., compositions of primitive functions and 
terminals) can be genetically bred to solve a surprising 
variety of different problems in a wide variety of different 
fields.  A videotape visualization of 22 applications of 
genetic programming can be found in the Genetic 
Programming: The Movie [Koza and Rice 1992].  

III.  STEPS REQUIRED TO EXECUTE GENETIC 
PROGRAMMING 

Genetic programming, like the conventional genetic 
algorithm, is a domain independent method.  Genetic 
programming proceeds by genetically breeding populations 
of compositions of the primitive functions and terminals (i.e., 
computer programs) to solve problems by executing the 
following three steps: 
(1) Generate an initial population of random computer 

programs composed of the primitive functions and 
terminals of the problem. 

(2) Iteratively perform the following sub-steps until the 
termination criterion has been satisfied: 
(a) Execute each program in the population and assign 

it a fitness value according to how well it solves the 
problem. 

(b) Create a new population of programs by applying 
the following two primary operations.  The 
operations are applied to program(s) in the 
population selected with a probability based on 
fitness (i.e., the fitter the program, the more likely it 
is to be selected). 
(i) Reproduction: Copy existing programs to the 

new population. 
(ii) Crossover: Create two new offspring programs 

for the new population by genetically 
recombining randomly chosen parts of two 
existing programs.  The genetic crossover 
(sexual recombination) operation (described 
below) operates on two parental computer 
programs and produces two offspring programs 
using parts of each parent.  

(3) The single best computer program in the population 
produced during the run is designated as the result of the 
run of genetic programming.  This result may be a 
solution (or approximate solution) to the problem.   

A. Crossover  Operation 
The genetic crossover (sexual recombination) operation 

operates on two parental computer programs selected with a 
probability based on fitness and produces two new offspring 
programs consisting of parts of each parent.   

For example, consider the following computer program 
(LISP symbolic expression):  

(+ (* 0.234 Z) (- X 0.789)), 

which we would ordinarily write as 
0.234 Z + X – 0.789. 



 

 

This program takes two inputs (X and Z) and produces a 
floating point output.  In the prefix notation used in Lisp, the  
multiplication function * is first applied to the terminals 
0.234 and Z to produce an intermediate result.  Then,  the 
subtraction function – is applied to the terminals X and 
0.789 to produce a second intermediate result.  Finally, the 
addition function + is applied to the two intermediate results 
to produce the overall result.  

Also, consider a second program: 
(* (* Z Y) (+ Y (* 0.314 Z))), 

which is equivalent to 
ZY (Y + 0.314 Z). 

In Fig. 1, these two programs are depicted as rooted, point-
labeled trees with ordered branches.  Internal points (i.e., 
nodes) of the tree correspond to functions (i.e., operations) 
and external points (i.e., leaves, endpoints) correspond to 
terminals (i.e., input data).  The numbers beside the function 
and terminal points of the tree appear for reference only. 

0.234Z + X – 0.789

X 0.789

–

0.234 Z

*

+

ZY(Y + 0.314Z)

Z Y

*

0.314 Z

*Y

+

*
1 1

2 25 5

8 9

3 34 46 7 76

 
Fig. 1  Two Parental computer programs.   

The crossover operation creates new offspring by 
exchanging sub-trees (i.e., sub-lists, subroutines, 
subprocedures) between the two parents.   

Assume that the points of both trees are numbered in a 
depth-first way starting at the left.  Suppose that the point 
number 2 (out of 7 points of the first parent) is randomly 
selected as the crossover point for the first parent and that the 
point number 5 (out of 9 points of the second parent) is 
randomly selected as the crossover point of the second 
parent. The crossover points in the trees above are therefore 
the * in the first parent and the + in the second parent.  The 
two crossover fragments are the two sub-trees shown in Fig. 
2. 

0.234 Z

*

0.234Z

0.314 Z

*Y

+

Y + 0.314Z  
Fig. 2  Two Crossover Fragments 

These two crossover fragments correspond to the 
underlined sub-programs (sub-lists) in the two parental 
computer programs. 

The two offspring resulting from crossover are 
(+ (+ Y (* 0.314 Z)) (- X 0.789)) 

and 
(* (* Z Y) (* 0.234 Z)). 

The two offspring are shown in Fig. 3.   

X 0.789

–

+

0.314 Z

*Y

+

Y + 0.314Z + X – 0.789

Z Y

*

*

0.234 Z

*

0.234Z  Y2  
Fig. 3  Two Offspring. 

Thus, crossover creates new computer programs using 
parts of existing parental programs.  Because entire sub-trees 
are swapped, this crossover operation always produces 
syntactically and semantically valid programs as offspring 
regardless of the choice of the two crossover points.  Because 
programs are selected to participate in the crossover 
operation with a probability based on fitness, crossover 
allocates future trials to regions of the search space whose 
programs contains parts from promising programs. 

IV. FINDING AN IMPULSE RESPONSE FUNCTION 
For many problems of control engineering, it is desirable to 

find a function, such as the impulse response function or 
transfer function (or an approximation to such functions), for 
a system for which one does not have an analytical model.  
The reader unfamiliar with control engineering should focus 
on the fact that we are searching the space of possible 
computer programs (i.e., functions) for a program which 
meets certain requirements.  An approximation to the real 
target function is acceptable to the degree that the 
approximation generalizes. 

Fig. 4 shows a linear time-invariant system (plant) which 
sums the output of three major components, each consisting 
of a pure time delay element, a lag circuit containing a 
resistor and capacitor, and a gain element.  For example, for 
the first component of this system, the time delay is 6, the 
gain is +3, and the time constant, RC, is 5.  For 
computational simplicity and without loss of generality, we 
use the discrete-time version of this system in this paper. 

Gain = +6Delay = 25

Delay = 15

R
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R
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Delay = 6

Delay = 15
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Fig. 4  Linear time-invariant system  

In this problem, one is given the response of the unknown 
system to a particular specified forcing function – a unit 
square input i(t) that rises from an amplitude of 0 to 1 at time 
3 and falls back to an amplitude of 0 at time 23. 

The output of a linear time-invariant system is the discrete-
time convolution of the input i(t) and the impulse response 
function H(t).  That is, 



 

 

o(t) = ∑
τ = –∞

t
  i(t – τ) H(τ) . 

The impulse response function H(t) for the system shown 
in Fig. 1 is known to be 




 0 if t < 6

  
3(1–1

5)t–6

5

  +  




 0 if t < 15

  
–8(1– 1

12)t–15

12

  +  




 0 if t < 25

  
6(1–1

9)t–25

9

  

We now show how an approximation to this impulse 
response can be discovered via genetic programming using 
just the observed output from the square forcing function.  
The discrete-time version of the square input and the system's 
discrete-time response to it shown in Fig. 5 are the inputs for 
this problem; the goal is to find the impulse response shown 
in Fig. 6 or a good approximation to it. 
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Fig. 5   Plant square input response 
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Figure 6  Impulse response function  

V. PREPARATORY STEPS FOR USING GENETIC 
PROGRAMMING 

There are five major steps in preparing to use genetic 
programming, namely, determining 
(1) the set of terminals, 
(2) the set of primitive functions,  
(3) the fitness measure, 
(4) the parameters for controlling the run, and 
(5) the method for designating a result and the criterion for 

terminating a run. 
The first major step in preparing to use genetic 

programming is the identification of the set of terminals.  The 
individual impulse response functions in the population are 
compositions of the primitive functions and terminals.  The 
single independent variable in the impulse response function 
is the time T.  In addition, the impulse response function may 
contain various numerical constants.  The ephemeral random 
floating point constant, ←, takes on a different random 
floating point value between –10.000 and +10.000 whenever 
it appears in the initial population and is explained in detail in 
Koza [1992a].   

The second major step in preparing to use genetic 
programming is the identification of a sufficient set of 
primitive functions from which the impulse response function 
may be composed.  For this problem, it seems reasonable for 
the function set to consist of the four arithmetic operations 

(addition, subtraction, multiplication, and division), the 
exponential function EXP, and the decision function IFLTE 
("If Less Than or Equal").  Decision functions permit 
alternative calculations to be performed within a computer 
program and the exponential function seems relevant to this 
problem.  

Since genetic programming operates on an initial 
population of randomly generated compositions of the 
available functions and terminals (and later performs genetic 
operations, such as crossover, on these individuals), it is 
necessary to protect against the possibility of division by zero 
and the possibility of creating extremely large or small 
floating point values.  Accordingly, the protected division 
function % ordinarily returns the quotient; however, if 
division by zero is attempted, it returns 1.0.  The one-
argument exponential function EXP ordinarily returns the 
result of raising e to the power indicated by its one argument.  
If the result of evaluating any function would be greater than 
1010 or less than 10-10, then the nominal value 1010 or  
10-10, respectively, is returned.  

The four-argument conditional branching function IFLTE 
evaluates and returns its third argument if its first argument is 
less than or equal to its second argument and otherwise 
evaluates and returns its fourth argument.  

The third major step in preparing to use genetic 
programming is the identification of the fitness measure for 
evaluating the goodness of an individual impulse response 
function in the population.  For this problem, the fitness of an 
individual impulse response function in the population is 
measured in terms of the difference between the known 
observed response of the system to a particular forcing 
function and the response computed by convolving the 
individual impulse response function and the forcing 
function.  The smaller the difference, the better.  The exact 
impulse response of the system would have a difference of 
zero.  The use of the convolution operation applied to the 
forcing function and the impulse response is a common 
technique used in control engineering to computer the time-
doimain response. 

Specifically, each individual in the population is tested 
against a simulated environment consisting of Nfc = 60 
fitness cases, each representing the output o(t) of the given 
system for various discrete times between 0 and 59 when the 
square input i(t) described above is used as the forcing 
function for the system.  The fitness of any given genetically 
produced individual impulse response function G(t) in the 
population is the sum, over the Nfc = 60 fitness cases, of the 
squares of the differences between the observed response o(t) 
of the system to the forcing function i(t) (i.e., the square 
input) and the response computed by convolving the forcing 
function and the given genetically produced impulse response 
G(t).   

That is, the fitness is 



 

 

f(G) = ∑
i = 1

Nfc

  




 o(ti) – ∑

τ = –∞

t
  i(ti – τ) G(τ)   

2
.  

The fourth major step in preparing to use genetic 
programming is the selection of values for certain 
parameters.  Our choice of 4,000 as the population size and 
our choice of 50 as the maximum number of generations to 
be run reflect an estimate on our part as to the likely 
difficulty of this problem and the limitations of available 
computer time and memory.  Our choice of values for the 
various secondary parameters that control the run of genetic 
programming (including the frequency of applying the 
genetic operations and our non-use of mutation) are the same 
default values as we have used on numerous other problems 
and are detailed in Koza [1992a].   

Finally, the fifth major step in preparing to use genetic 
programming is the selection of the criterion for terminating 
a run and the method for designating a result.  We designate 
the best-so-far individual as the result of a run.  We terminate 
a run after 51 generations.  

VI. AUTOMATIC FUNCTION DEFINITION 
Automatic function definition can be implemented within 

the context of genetic programming [Koza 1992a, 1992d, 
Koza and Rice 1992].  This is accomplished by establishing a 
constrained syntactic structure for the individual S-
expressions in the population.  Each S-expression contains 
one or more function-defining branches and one or more 
"main" value-returning branches.   The value-returning 
branches may call the defined functions.  The defined 
functions are defined in terms of dummy variables (formal 
parameters).   

For this problem, each individual S-expression in the 
population will have two branches.  The first (leftmost) 
branch permits a one-argument function definition (defining 
a function called ADF0) and the second (rightmost) branch is 
the value-returning branch.   

Fig. 7 shows the overall structure of an S-expression with 
one function-defining branch and one value-returning branch.  
The first six types are invariant and appear above the 
horizontal dotted line in the figure.  The function-defining 
branch appears in the left part of the figure and the value-
returning branch appears on the right.   

There are eight different "types" of points in this S-
expression.  The first six types are invariant and appear above 
the horizontal dotted line in this figure.  The eight types are 
as follows:  
(1) the root of the tree (which consists of the place-holding 

PROGN connective function),  
(2) the top point, DEFUN, of the function-defining branch,  
(3) the name, ADF0, of the automatically defined function,  
(4) the argument list of the automatically defined function,  

(5) the VALUES function of the function-defining branch 
identifying, for emphasis, the value(s) to be returned by 
the automatically defined function,  

(6) the VALUES function of the result-producing branch 
identifying, for emphasis, the value(s) to be returned by 
the result-producing branch,  

(7) the body (i.e., work) of the automatically defined 
function ADF0, and  

(8) the body of the result-producing branch.   

DEFUN

PROGN

VALUES

Argument 
ListADF0

Body of ADF0 
Function Definition

Body of Value 
Returning Branch

VALUES

 
Fig. 7  S-expression with one function-defining branch and one value-

returning branch 
When the overall S-expression is evaluated, the PROGN 

sequentially evaluates the two branches.  The first branch 
defines the automatically defined function ADF0 and does 
not return any value.  The value returned by the overall S-
expression consists only of the value returned by the 
VALUES function associated with the value-returning 
branch.   

In preparing to use genetic programming with automatic 
function definition, we begin by deciding that there will be 
one defined function taking one dummy variable as its 
argument and that the independent variable of the problem, 
T, will be available to both the function definition and the 
value-returning branch (i.e., it is a global variable).   

The terminal sets and function sets are different for the two 
branches of the structure.  Specifically, the terminal set T1 for 
the body of the function definition defining ADF0 (i.e., points 
of type 7) contains the dummy variable ARG0, so that  

T1 = {T, ←, ARG0}, 

The function set F1 for the function-defining branch is 
F1 = {+, -, *, %, EXP, IFLTE} 

taking 2, 2, 2, 2, 1, and 4 arguments, respectively.    
The terminal set T2 for the body of the value-returning 

branch (i.e., points of type 8) does not contain the dummy 
variable ARG0 and is  

T2 = {T, ←}. 

However, the function set F2 for the value-returning branch 
contains the automatically defined function ADF0, so that 

F2 = {+, -, *, %, EXP, IFLTE, ADF0}. 

Since a constrained syntactic structure is involved, we must 
create the initial random generation so that every individual 
S-expression in the population has the syntactic structure  
presented above.  Specifically, every individual S-expression 



 

 

must have the invariant structure represented by the six 
points of types 1 through 6 described above.  The function-
defining branch is a random composition of functions from 
the function set  F1 and terminals from the terminal set T1.   
The value-returning branch is a random composition of 
functions from the function set F2 and terminals from the 
terminal set T2.  

Moreover, since a constrained syntactic structure is 
involved, we must perform crossover so as to preserve the 
syntactic validity of all offspring as the run proceeds from 
generation to generation.  Since each S-expression must have 
the invariant structure represented by the six points of types 1 
through 6, crossover is limited to points from the body of the 
function definition of ADF0 (type 7) and points of the body 
of the value-returning branch (type 8).  Structure-preserving 
crossover is implemented by allowing the selection of the 
crossover point in the first parent to be any point of types 7 
or 8.  However, once the crossover point in the first parent 
has been selected, the crossover point of the second parent 
must be of the same type.  This restriction on the selection of 
the crossover point of the second parent ensures the syntactic 
validity of the offspring.   

In what follows, genetic programming will be allowed to 
evolve a function definition in the function-defining branch 
of each S-expression and then, at its discretion, to call the 
defined function in the value-returning branch.  We do not 
specify what function will be defined in the function-defining 
branch.  We do not specify what composition of terminals 
and functions will appear in the value-returning branch.  We 
do not require that the defined function actually be invoked at 
all (it being possible to solve this problem via genetic 
programming without a function definition).  We do not 
require that the function-defining branch actually use its 
available dummy variable.  The structures of both the 
function-defining branch and the value-returning branch are 
determined by the combined effect, over many generations, 
of the selective pressure exerted by the fitness measure and 
by the effects of the operations of Darwinian fitness 
proportionate reproduction and crossover.  

VII. RESULTS FOR ONE RUN 
A review of one particular run will serve to illustrate how 

genetic programming progressively approximates the desired 
impulse response function. 
One would not expect any individual from the randomly 
generated initial population to be very good.   In generation 
0, the worst individual impulse response function among the 
4,000 individuals in the population was equivalent to te3t.  
This sharply monotonically increasing function of T bears no 
resemblance to the correct impulse response of the system.  
Its fitness is the enormous value of 1.6 x 1077 (a low value 
being better).  The median individual in the population was 
equivalent to t + 8.354, a linear function of T, whose fitness 
is 2,249,945.   

The fitness of the best individual impulse response 
function was 101.03 (i.e., an average squared error of about 
1.68 per fitness case).  This best-of-generation individual 
program had 35 points (i.e., functions and terminals in the 
body of the function definition and body of the value-
returning branch), has only one call to ADF0, and was 
(progn (defun adf0 (arg0) 

(values (* (+ (IFLTE T T ARG0 ARG0) (*  
 T ARG0)) (* (EXP 4.152) (EXP 9.587))))) 

 (values (% (IFLTE (% T 1.364) (EXP -2.113) 
(ADF0 T) (% -2.421 T)) 
         (% (- T 6.653) (% T T))))). 

When the defined function ADF0 is called with the argument 
T, it simplifies to 

926370(t + t2), 
thereby making the value-returning branch equivalent to 



   1.0 if t = 0

    
-2.421

t2 – 6.653t
 otherwise.

  

By generation 15, the fitness of the best-of-generation 
individual had improved to 43.47.  This individual has 36 
points, has two calls to ADF0, and is shown below: 
(progn (defun adf0 (arg0) 

(values (% (- 7.732 ARG0) (* (IFLTE 
  -5.295 -3.354 T 1.567) (EXP (* T  
  -5.788)))))) 

 (values (% (IFLTE (% T 1.364) (% (- T 6.653) 
(% T T)) (ADF0 T) (% -2.421 (ADF0 T))) 
        (% T 1.364)))). 

By generation 50, the best-of-generation individual shown 
below had 81 points, has two calls to ADF0, and a fitness 
value of 11.38 (i.e., an average squared error of only about 
0.19 per fitness case) : 
(progn (defun adf0 (arg0) 

(values (% (- 6.511 T) (* (% (% (% (+ T  
  ARG0) (- 5.141 -3.671)) (- 6.511 
  0.421)) (* (IFLTE -5.295 -3.354 T  
  1.567) (EXP (* T -5.788)))) (EXP (* T  
  -5.788)))))) 

 (values (% (IFLTE (% (- T 6.653) (% T (- T 
6.653))) (% T 1.364) (IFLTE (% T 1.364) 
(% (- T 6.653) (% T T)) 1.364 (% -2.421 
(ADF0 T))) (% -2.421 (ADF0 T))) (% (- T 
6.653) (% T (% (% T 1.364) (% T (% T 
1.364)))))))). 

Since both calls to the defined function ADF0 are with the 
argument T, ADF0 simplifies to 



  1.0 if t ≥ 15

  6.511 if t = 0

  174.707 – 26.8328t otherwise

  
thereby making the value-returning branch equivalent to 



   2.5377

t – 6.653 if 25 < t < 47

   
–4.5042

adf(t)[t – 6.653] otherwise
  

Note the subexpression (- 5.141 -3.671) which 
evaluates to 8.812.  The needed value 8.812 was evolved, via 
subtraction, from the ephemeral random constants 5.141 and 
–3.671 over the generations.   



 

 

Fig. 8 compares (a) the genetically produced best-of-
generation individual impulse response function from 
generation 50 and (b) the correct impulse response.  As can 
be seen, the two curves are substantially similar. 
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Fig. 8  Generation 50 comparison 

Since the fitness measure (which is the driving force of 
genetic programming) is based on the response of the system 
to the square input, the performance of the genetically 
produced best-of-generation impulse response functions from 
generations 0, 10, and 50 can be appreciated by examining 
the time-domain response of the system to the square input.  

Fig. 9 compares (a) the plant response (which is the same 
in all three panels of this figure) to the square input and (b) 
the response to the square input using the best-of-generation 
individual impulse response functions from generations 0, 15, 
and 50.  As can be seen in the first and second panels of this 
figure, the performance of the best-of-generation individuals 
from generations 0 and 15 was not very good, although 
generation 15 was considerably better than generation 0.  
However, as can be seen in the third panel of this figure, the 
performance of the best-of-generation individual from 
generation 50 is close to the plant response (the total squared 
error being only 11.38 over the 60 fitness cases).   

The ability of the genetically discovered impulse response 
function to generalize can be demonstrated by considering 
four additional forcing functions to the system – a ramp 
input, a unit step input, a shorter unit square input, and a 
noise signal.  The best-of-generation individual from 
generation 50 produces a total squared error of only 6.38, 
19.86, 12.59, and 6.40 over the 60 fitness cases to the plant 
response for these four different cross-validating forcing 
functions respectively.  This evolved program therefore 
generalizes well.  Note that since we are operating in discrete 
time, there is no generalization of the system in the time 
domain. 

VIII. FACILITATING VALUE OF AUTOMATIC 
FUNCTION DEFINITION 

Automatic function definition facilitates the finding of an 
impulse response function by reducing the amount of 
computational effort required to solve the problem.  To 
demonstrate this, we first run this problem without automatic 
function definition over a series of runs to determine the 
computational effort necessary to yield a solution.  We then 
make a series of runs of this problem with automatic function 
definition.   

Fig. 10 presents two curves, called the "performance 
curves," relating to the problem of finding the impulse 
response function over a series of runs without automatic 
function definition.  The curves are based on 18 runs with a 
population size M of 4,000 and a maximum number of 
generations to be run G of 51.   
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Fig. 9  Response of generations 0, 15, and 50 to square input 

The rising curve in Fig. 10 shows, by generation, the 
experimentally observed cumulative probability of success, 
P(M,i), of solving the problem by generation i (i.e., finding at 
least one S-expression in the population which has a value of 
fitness of 20.00 or less over the 60 fitness cases).  As can be 
seen, the experimentally observed value of the cumulative 
probability of success, P(M,i), is 11% by generation 25 and 
61% by generation 46 over the 18 runs. 

The second curve (which first falls and then rises) in Fig. 
10 shows, by generation, the number of individuals that must 
be processed, I(M,i,z), to yield, with probability z, a solution 
to the problem by generation i.  I(M,i,z) is derived from the 
experimentally observed values of P(M,i).  Specifically, 
I(M,i,z) is the product of the population size M, the 
generation number i, and the number of independent runs 
R(z) necessary to yield a solution to the problem with 
probability z by generation i.  In turn, the number of runs R(z) 
is given by 

R(z) = 



 log(1–z)

log(1–P(M,i))   ,  

where the square brackets indicates the ceiling function for 
rounding up to the next highest integer.  Throughout this 
paper, the probability z will be 99%.   

As can be seen, the I(M,i,z) curve reaches a minimum 
value at generation 46 (highlighted by the light dotted 
vertical line).   For a value of P(M,i) of 61%, the number of 
independent runs, R(z), necessary to yield a solution to the 
problem with a 99% probability by generation i is 5.  The two 
summary numbers (i.e., 46 and 940,000) in the oval indicate 
that if this problem is run through to generation 46 (the initial 
random generation being counted as generation 0), 
processing a total of 940,000 individuals (i.e., 4,000 ∞ 47 
generations ∞ 5 runs) is sufficient to yield a solution to this 
problem with 99% probability.  This number, 940,000, is a 
measure of the computational effort necessary to yield a 
solution to this problem with 99% probability without 
automatic function definition.   

Fig. 11 shows performance curves for the same problem 
using automatic function definition based on 11 runs.  The 
experimentally observed cumulative probability of success, 
P(M,i), is 18% by generation 25 and 82% by generation 47.  
The I(M,i,z) curve reaches a minimum value at generation 47.  
For a value of P(M,i) of 82%, the number of runs R(z) is 3.  



 

 

The two numbers in the oval indicate that if this problem is 
run through to generation 47, processing a total of 576,000 
individuals (i.e., 4,000 ∞ 48 generations ∞ 3 runs) is 
sufficient to yield a solution to this problem with 99% 
probability using automatic function definition. 

The 576,000 individuals that must be processed to yield a 
solution using automatic function definition is considerably 
smaller than the 940,000 individuals required when 
automatic function definition is not used.  That is, automatic 
function definition requires only about 61% as much 
computational effort.   
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Fig. 10  Performance curves showing that it is sufficient to process 

940,000 individuals to yield a solution with 99% probability without 
automatic function definition 
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Fig. 10  Performance curves showing that it is sufficient to process 
576,000 individuals to yield a solution with 99% probability using 

automatic function definition 
The average structural complexity of the 9 successful runs 

(out of the 11) with automatic function definition is 201 
points as compared to an average of 224 points for the 11 
successful runs (out of 18) without automatic function 
definition.  

IX. CONCLUSIONS 
We have demonstrated the use of genetic programming to 

genetically breed a good approximation to an impulse 
response function for a time-invariant linear system and also 
demonstrated that automatic function definition facilitated the 
solution of this problem.  
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