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Abstract—Conventional approaches to problems of pattern 

recognition and machine learning usually require that the user 
hand-craft detectors for key features in the problem 
environment.  Conventional approaches often additionally 
require the user to specify in advance the size and shape of the 
eventual way of combining the detectors into a compete solution.  
This paper describes a general approach for simultaneously 
discovering detectors and a way of combining the detectors to 
solve a problem via genetic programming with automatic 
function definition.  Genetic programming provides a way to 
genetically breed a computer program to solve a wide variety of 
problems.  Automatic function definition automatically and 
dynamically enables genetic programming to define potentially 
useful functions dynamically during a run and to facilitate a 
solution of a problem by automatically and dynamically 
decomposing the problem into simpler subproblems. This 
approach is illustrated with a problem of letter recognition.  

 

I Introduction and Overview 
Conventional approaches to pattern recognition and 

machine learning usually require that the user hand-craft 
detectors for key features in the problem environment.  
Conventional approaches often additionally require the user 
to specify in advance the size and shape of the eventual way 
of combining the detectors into a compete solution.  
However, in many instances, finding the detectors and a way 
of combining the detectors in order to solve the problem 
really is the problem.  Indeed, the necessity for pre-
identification of the particular components of solutions and 
the necessity for pre-determination of a way of combining 
these components has been recognized as a bane of machine 
learning starting with Samuel's ground-breaking work in 
machine learning involving learning to play the game of 
checkers [Samuel [1959].   

In Samuel's checker player, learning consisted of 
progressively adjusting numerical coefficients in an algebraic 
expression of a predetermined functional form (specifically, a 
polynomial of specified order).  Each component term of the 
polynomial represented a hand-crafted detector reflecting 
some aspect of the current state of the board (e.g., number of 
pieces, center control, etc.).  The polynomial weighted each 
detector with a numerical coefficient and thereby assigned a 
single numerical value of a board to the player.  If a 

polynomial were good at assigning values to boards, the 
polynomial could be used to compare the boards that would 
arise if the player were to make various alternative moves – 
thus permitting the best move to be selected from among the 
alternatives on the basis of the polynomial.  In Samuel's 
learning system, the numerical coefficients of the polynomial 
were adjusted with experience, so that the predictive quality 
of the polynomial progressively improved.  Samuel 
predetermined the way the detectors would be combined to 
solve the problem by selecting the functional form of the 
polynomial.  Samuel recognized, from the beginning, the 
importance of enabling learning to occur without 
predetermining the size and shape of the solution and of 
"[getting] the program to generate its own parameters 
[detectors] for the evaluation polynomial."   

This paper describes a general approach for simultaneously 
discovering detectors and a way of combining the detectors 
to solve a problem.  The approach involves using genetic 
programming with automatic function definition to evolve a 
solution to the problem.   

Genetic programming provides a way to search the space 
of all possible programs composed of certain terminals and 
primitive functions to find a function which solves, or 
approximately solves, a problem.   

Automatic function definition enables genetic 
programming to define potentially useful functions 
automatically and dynamically during a run and also to 
combine these defined functions dynamically during a run in 
order to solve a problem.   

Since the metaphor of a detector is especially apt in the 
field of pattern recognition, our general approach will be 
illustrated by means of a problem from the field of pattern 
recognition. 

Sections I, III, and VI of the article by Koza, Keane, and 
Rice [1993] in these ICNN-93 proceedings provide necessary 
background on genetic programming and automatic function 
definition for this article.  

Section II of this article states the illustrative pattern 
recognition problem.   Section III details the preparatory 
steps for applying genetic programming with automatic 
function definition to the problem.  Section IV describes a 
solution to the problem. 



 

II Letter Recognition Problem 
Since the metaphor of a detector is especially apt in the 

field of pattern recongition, we will illustrate our approach to 
the problem of finding detectors and finding a way to 
combine them with a problem of letter recognition from the 
field of pattern recognition.   

Fig. 1 shows the letters I and L, each presented in a 6 by 4 
pixel grid of binary (ON or OFF) values. 

  
Fig. 1  The letters I and L 

The goal of pattern recognition is to discover a computer 
program that can take any of the 224 possible patterns of bits 
as its input and produce a correct identification I, L, or NIL 
(i.e., not the letter I or the letter L) for the pattern as its 
output.   

Note that the correct identification of a pattern of pixels 
requires not only establishing that all the specific pixels that 
must be ON are indeed ON, but also inspecting other pixels 
on the grid to exclude the possiblity of an imperfect letter or 
another letter.   

Fig. 2 shows two patterns that are neither the letter I nor 
the letter L.  The pattern on the left has a misplaced ON pixel 
in the lower right hand corner of the grid instead of as the 
rightmost pixel of the bottom of the L.  The second pattern 
has a missing ON pixel in an otherwise correct letter L. 

  
Fig. 2   Two patterns that should not be recognized as the letter L 

There are, of course, many different ways to structure a 
computer program to perform the task of letter recognition.  
The particular approach presented in this paper was chosen to 
illustrate and emphasize the discovery of local detectors and 
hierarchical combinations of the detectors to solve a 
problem.   

If one were trying to verbally describe the letter L to 
someone who was not familiar with the Roman alphabet, one 
might give a dynamic description involving drawing a 
vertical line of five pixels downwards (south) from some 
specified starting location in the 6 by 4 grid and then drawing 
a horizontal line of two pixels to the right (east).  This 
dynamic description of the pattern contains both locally-

acting and hierarchical aspects.  This can be implemented 
using a slow-moving turtle with limited vision.  The turtle 
starts at a designated starting location on the grid and can 
move one step at a time to the north (up), south (down), east 
(right), or west (left).  The turtle's vision is limited to its 
immediate neighborhood consisting of the nine pixels 
centered at its current location.  The one pixel where the 
turtle is currently located is called "X" (center) and the eight 
neighboring pixels at distance one are called N, NE, E, SE, S, 
SW, W, and NW.   

One way to structure a computer program to recognize 
letters is for the "main" result-producing branch to be a 
decision tree that produces a return value consisting of an 
identification of the pattern (I, L, or NIL).  The use of a 
decision tree structure in the result-producing branch permits 
easy handling of arbitrary numbers of possible outcomes.  
The result-producing branch will activate various alternative 
actions and, ultimately, return an identification of the pattern.  
The desired bias toward local inspection and hierarchical 
combination can be attained by specifying that the result-
producing branch of the program will be capable of moving 
the turtle but only capable of sensing the single pixel where 
the turtle is currently located.  The result-producing branch 
will not have direct access to the any other pixel sensors; 
however, it may call on the detectors.  The result-producing 
branch will contain logical predicates consisting of 
compositions of Boolean conjunctions, disjunctions, and 
negations operating on the values returned by the detectors.   

The function-defining branches define detectors that 
examine the entire nine-pixel local neighborhood of the turtle 
and evaluate logical predicates involving what the turtle sees.  
Thus, the function definitions will be compositions of the 
Boolean conjunctions, disjunctions, and negations and the 
nine pixel sensors (X, N, NE, E, SE, S, SW, W, and NW).  For 
example, the function definition 
(defun vertical-line () 
  (values (AND N X S (NOT SW) (NOT W) (NOT NW) 
               (NOT SE) (NOT E) (NOT NE)))) 

is a detector that returns T only if the turtle is currently 
located at the midpoint of a vertical line segment consisting 
of three ON pixels surrounded on both sides by three OFF 
pixels.  Note that there are no dummy variables in this 
defun since the nine pixel sensors are global variables 
established by virtue of the turtle's current location on the 
grid. 

III Preparatory Steps for Using Genetic Programming 
In what follows, we apply genetic programming with 

automatic function definition to the problem of letter 
recognition described above.   

We decided that each individual overall S-expression in the 
population will consist of five function-defining branches 
(defining detectors called ADF0 through ADF4) and a final 
(rightmost) result-producing branch.  

Genetic programming will evolve function definitions in 
the five function-defining branches of each overall S-
expression and then, at its discretion, it will call some, all, or 



 

none of the defined functions (detectors) in the result-
producing branch.  The structures of both the function-
defining branches and the result-producing branch are 
determined by the combined effect, over many generations, 
of the selective pressure exerted by the convolution-based 
fitness measure and by the effects of the operations of 
Darwinian fitness proportionate reproduction and crossover.  

There are five major steps in preparing to use genetic 
programming, namely determining 
(1) the set of terminals, 
(2) the set of primitive functions,  
(3) the fitness measure, 
(4) the parameters for controlling the run, and 
(5) the method for designating a result and the criterion for 

terminating a run. 
The terminal sets and function sets are different for the 

function-defining branches and the result-producing branch 
of each individual S-expression in the population.   

We first consider the five function-defining branches (i.e., 
the detectors). 

 Since the function-defining branches are to define 
detectors which are capable of analyzing what the turtle sees 
at its current location on the grid, the terminal set Tfd for each 
function-defining branch consists of the nine pixel sensors, 
so that 

Tfd = {X, N, NE, E, SE, S, SW, W, NW}. 
The function set Ffd for the function-defining branch is  

Ffd = {AND, OR, NOT}, 

taking 2, 2, and 1 argument, respectively.  Note that there are 
no side-effecting functions in the function-defining branches. 

Each function-defining branch is a composition of 
primitive functions from the function set Ffd and terminals 
from the terminal set Tfd.   

We now consider the result-producing branch. 
We envision that the result-producing branch of each 

program will be a decision tree which consists of 
compositions of decision-making functions to return the 
identification I, L, or NIL.  Thus, the terminal set Trp for the 
result-producing branch is 

Trp = {I, L, NIL}. 
Since the result-producing branch is to be a decision tree, 

its function set will include the three-argument conditional 
decision-making "IF-THEN-ELSE" operator.  This operator 
is implemented as a macro as described in Koza [1992a].   

The function set of the result-producing branch will also 
contain eight operators that can move the turtle one step in 
any one of the eight possible directions from its current 
location.  For example, the side-effecting operator (GO-N) 
would move the turtle north (up) one step in the 6 by 4 grid.  
As the turtle moves, the values of the nine pixel sensors (X, 
N, NE, E, SE, S, SW, W, and NW) are dynamically redefined.  
For simplicity, the grid is toroidal.  These eight operators take 
no arguments.  Each operator returns the value (T or NIL) of 
the pixel to which the turtle moves (i.e., it returns the new X). 

The one-argument HOMING operator evaluates its 
argument and, in addition, has the side effect of rubber-
banding the turtle to its position at the start of the evaluation 
of the HOMING.  HOMING is equivalent to the brackets in a 
Lindenmayer system. 

The Boolean functions AND, OR, and NOT are included in 
the function set to enable the result-producing branch to 
define logical predicates.   

Finally, the five automatically defined functions (ADF0 
through ADF0) that constitute the detectors are included in 
the function set of the result-producing branch.  These five 
defined functions take no arguments.   

Thus, the function set Frp for the result-producing branch is  
Frp = {IF, AND, OR, NOT, HOMING, ADF0, 

ADF1, ADF2, ADF3, ADF4, GO-N, 
GO-NE, GO-E, GO-SE, GO-S, 
GO-SW, GO-W, GO-NE}, 

The first five functions above take 3, 2, 2, 1, and 1 argument, 
respectively, and the remaining functions take no arguments  
(and could, optionally, if desired, have been treated as 
terminals). 

The result-producing branch is a composition of primitive 
functions from the function set Frp and terminals from the 
terminal set Trp. 

Note that the above terminal sets and function sets satisfy 
the closure property in that each primitive function in the 
function set is well defined for any combination of arguments 
from the range of values returned by every primitive function 
that it may encounter and the value of every terminal that it 
may encounter.   

Since each individual S-expression in the population 
consists of five function-defining branches and one result-
producing branch, we must create the initial random 
generation so that every individual S-expression in the 
population has this particular constrained syntactic structure.  
Specifically, every individual S-expression must have the 
invariant structure represented by the six points of types 1 
through 6 described in Section VI of Koza, Keane and Rice 
[1993].  Each of the five function-defining branches is a 
random composition of functions from the function set Ffd 
and terminals from the terminal set Tfd.  Each function and 
terminal in each function-defining branch is of type 7.  The 
result-producing branch is a random composition of functions 
from the function set Frp and terminals from the terminal set 
Trp.  Each function and terminal in the result-producing 
branch is of type 8. 

Moreover, since a constrained syntactic structure is 
involved, we must perform crossover so as to preserve the 
syntactic validity of all offspring as the run proceeds from 
generation to generation.  Since each S-expression must have 
the invariant structure represented by the six points of types 1 
through 6, crossover is limited to points of types 7 and 8.  
Structure-preserving crossover is implemented by allowing 
any point of type 7 or 8 in any branch of the overall S-
expression to be the crossover point in the first parent.  



 

However, once the crossover point in the first parent has 
been selected, the crossover point of the second parent must 
be of the same type.  In practice, this means that crossover 
will only exchange a sub-tree from a function-defining 
branch with a sub-tree from another function-defining branch 
or that crossover will exchange a sub-tree from a result-
producing branch with a sub-tree from another result-
producing branch.  This restriction on the selection of the 
crossover point of the second parent ensures the syntactic 
validity of the offspring.   

Because of the complexity of the solutions evolved by 
genetic programming for this problem, we discovered, after 
initially solving this problem, that imposing an additional 
constrained syntactic structure on the result-producing branch 
would greatly enhance our ability to understand the solution.  
Specifically, we constrained the first (antecedent) argument 
of each IF operator to be a composition of the three Boolean 
functions (AND, OR, NOT), the five automatically defined 
functions (ADF0 through ADF4), the eight turtle-moving 
operators (e.g., GO-N), and the HOMING function.  In 
addition, we constrained the two consequent arguments of 
each IF operator to be compositions of the IF operator and 
the terminals (I, L, and NIL).  These additional syntactic 
contraints had the helpful effect of clearly isolating and 
highlighting the structure of the decision tree within the 
result-producing branch.  Thus, the original type 8 was 
subdivided into types 8a and 8b.  As before, the initial 
random population was randomly generated in comformity 
with these new constraints and structure-preserving crossover 
was performed to preserve the new syntactic structure (now 
involving types 7, 8a, or 8b).   

The third major step in preparing to use genetic 
programming is the identification of the fitness measure for 
evaluating the goodness of each pattern-recognizing 
individual in the population.  The fitness cases for genetic 
programming are chosen to represent a sufficient variety of 
situations so that the program is likely to generalize to handle 
all possible combinations of inputs.  In this regard, the fitness 
cases are similar to the necessarily small, finite number of 
combinations of inputs used to test and debug computer 
programs. 

Each individual in the population is tested against an 
environment consisting of Nfc = 78 fitness cases, each 
consisting of a 6 by 4 pixel pattern and the correct 
identification (I, L, or NIL) for that pattern.  The set of 
fitness cases included the two letters (i.e., the positive cases) 
and 76 different negative fitness cases.  The negative cases 
included every version of the letters I and L with one ON 
pixel deleted; every version of the letters I and L with one 
extraneous ON pixel added adjacent to the correct pixels; 
checkerboard patterns; the all-ON and all-OFF pattern; 
various patterns bearing some resemblance to I, L, or other 
letters; and various random patterns bearing no resemblance 
to I, L, or other letters.  

When an individual S-expression in the population is tested 
against a particular fitness case, the result can be a true-
positive (i.e., the individual correctly identifies an I as an I or 

an L as an L), a true-negative (i.e., a pattern that is not an I or 
L is correctly identified as NIL), a false-positive (i.e., a non-
letter is identified as a letter), a false-negative (i.e., a letter is 
identified as a non-letter), or a wrong-positive (i.e., an I is 
identified as an L or an L is identified as an I).   

For this problem, fitness is the sum, over the fitness cases, 
of the weighted errors produced by the S-expression.  The 
smaller the sum of weighted errors, the better.  A 100% 
correct pattern-recognizer would have a fitness of zero.  
True-postives and true-negatives contribute zero to this sum. 
False-positives contribute 38 (in order to give the two 
positive cases equal weight with the 76 negative cases).  
Wrong-positives contribute one.  False-negatives contribute 
23 (i.e., the number of pixels minus one) to maintain 
consistency with work not described herein involving 
translation-invariant pattern recognition and cellular 
automata.   

The fourth major step in preparing to use genetic 
programming is the selection of values for certain 
parameters.  Our choice of 8,000 as the population size and 
our choice of 101 as the maximum number of generations to 
be run reflect an estimate on our part as to the likely 
difficulty of this problem and the practical limitations on 
available computer time and memory.  Our choice of values 
for the various secondary parameters that control a run of 
genetic programming are the same default values as we have 
consistently used on numerous other problems [Koza 1992a], 
except that we continue our recently adopted practice of 
using tournament selection (with a group size of seven) as the 
selection method. 

Finally, the fifth major step in preparing to use genetic 
programming is the selection of the criterion for terminating 
a run and the selection of the method for designating a result.  
We will terminate a given run if we encounter a 100% correct 
individual or after 101 generations.  We designate the best 
individual obtained during the run (the best-so-far individual) 
as the result of the run.   

IV Results for One Run 
A review of one particular successful run will serve to 

illustrate how genetic programming simultaneously evolves 
the detectors and a way of combining the detectors for the 
problem of letter recognition.   

A Discovery of Solution for One Run 
The 8,000 randomly generated individuals found in the 

initial generation of the population (generation 0) are, as one 
would expect, not very good.  The fitness of the worst 
individual pattern-recognizer in the population for generation 
0 has 44 points (i.e., functions and terminals in the body of its 
five function-defining branches and its result-returning 
branch) and has the enormous unfavorable fitness (error) of 
3,535.  However, even in a randomly created population of 
programs, some individuals are better than others.  For 
example, an individual at the 33rd percentile of generation 0 
has fitness of 1,771.   



 

The best individual from generation 0 has 186 points, has a 
fitness of 53, and is shown below: 
(PROGN (DEFUN ADF0 () 

(VALUES (OR (OR (AND (OR S X) (OR N 
SW)) (OR (OR N E) (AND S NW))) (AND 
(OR (NOT S) (AND S SE)) (OR (AND W 
SE) (NOT N))))))) 

 (DEFUN ADF1 () 
(VALUES (AND (AND (NOT (NOT X)) (NOT 
(OR S X))) (OR (AND (AND SW NW) (NOT 
SW)) (NOT (AND N SW)))))) 

 (DEFUN ADF2 () 
(VALUES (OR (AND (NOT (AND W E)) (OR 
(AND NW W) (NOT NW))) (OR (OR (AND N 
E) (AND S SE)) (OR (AND W SE) (OR SE 
NE)))))) 

 (DEFUN ADF3 () 
(VALUES (AND (NOT (AND (NOT SE) (OR W 
SW))) (OR (NOT (OR NW NE)) (AND (NOT 
S) (NOT NW)))))) 

 (DEFUN ADF4 () 
(VALUES (AND (NOT (OR (OR W SW) (OR 
NW NW))) (AND (AND (AND X N) (NOT 
NE)) (OR (OR N SE) (OR X E)))))) 

 (VALUES  
(IF (OR (NOT (AND (GO-S) (GO-S))) 
(AND (NOT (ADF0)) (HOMING (GO-N)))) 
(IF (HOMING (AND (GO-S) (ADF0))) (IF 
(OR (GO-N) (ADF2)) (IF (ADF1) L I) 
(IF (ADF1) I NIL)) (IF (HOMING (GO-
S)) (IF (ADF1) L I) (IF (GO-W) L 
NIL))) (IF (OR (OR (GO-E) (ADF3)) 
(AND (ADF3) (ADF3))) (IF (HOMING (GO-
N)) (IF (ADF3) L NIL) (IF (GO-S) NIL 
L)) (IF (NOT (ADF1)) (IF (GO-E) NIL 
I) (IF (ADF1) L L)))))). 

The result-producing branch of this best-of-generation 
individual makes multiple references to four of its five 
detectors, contains numerous movements in various 
directions of the turtle, contains numerous Boolean functions, 
contains numerous IF operators, and is capable of arriving at 
all three possible conclusions for a given pattern.  The 
detectors (defined functions) each look at numerous pixels 
and performs various logical functions on what is seen. 

Fig. 3 shows, by generation, the fitness of the best-of-
generation individual.   As can be seen, the average fitness of 
the population as a whole tends to improve (i.e., drop) from 
generation to generation.  Specifically, the fitness of the best-
of-generation individual drops to 42, 31, 22, 14, 10, 7, 6, 5, 
and 3 for generations 5, 10, 15, 20, 25, 30, 35, 40, and 45, 
respectively.  The fitness of the best-of-generation individual 
drops to 2 for generations 47, 48, and 49. 
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Fig. 3  Fitness curves 

The hits histogram is a useful monitoring tool for 
visualizing the progressive learning of the population as a 
whole during a run.  The horizontal axis of the hits histogram 
represents the number of hits (0 to 78) while the vertical axis 
represents the number of individuals in the population (0 to 
8,000) scoring that number of hits.   

Fig. 4 shows the hits histograms for generations 0, 15, 30, 
and 50 of this run.  Notice the left-to-right undulating 
movement of both the high point and the center of mass of 
these three histograms.  This “slinky” movement reflects the 
improvement of the population as a whole.  Four solutions to 
the problem emerge at generation 50.  
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Fig. 4  Hits histograms for generations 0, 15, 30, and 50  

By generation 50, the best-of-generation individual has 312 
points (of which 149 are in the result-producing branch) and 
has the perfect fitness value of zero.  This best-of-run 
individual is shown below: 
(PROGN (DEFUN ADF0 () 

(VALUES (OR (OR (AND W SE) (OR (AND 
(NOT (OR SW SW)) (NOT (AND X SW))) 
(NOT (OR (NOT S) (AND X NW))))) (AND 
(OR (NOT S) (AND W SE)) (OR (OR S X) 
(NOT N)))))) 

 (DEFUN ADF1 () 
(VALUES (AND (AND (NOT (NOT X)) (NOT 
(OR S X))) (NOT (OR S X))))) 

 (DEFUN ADF2 () 
(VALUES (OR (AND (NOT (AND W E)) (OR 
(AND NW W) (NOT NW))) (OR (OR (AND N 
E) (AND S SE)) (OR (AND W (NOT NW)) 
(OR SE NE)))))) 

 (DEFUN ADF3 () 
(VALUES (AND (NOT (AND (NOT SE) (OR W 
SW))) (OR (NOT (OR NW (NOT NW))) (AND 
(NOT S) (AND (NOT (AND (NOT SE) (OR W 
SW))) (OR (NOT (OR NW (NOT (AND (NOT 



 

SE) (OR W SW))))) (AND (NOT S) (OR 
(NOT (NOT NW)) (NOT SE)))))))))) 

 (DEFUN ADF4 () 
(VALUES (AND (NOT (OR (OR W SW) (OR 
NW NW))) (AND (AND (AND X N) (NOT 
NE)) (AND (NOT (OR (OR E SW) (OR NW 
NW))) (AND (AND (AND (AND X N) (NOT 
NE)) (NOT NE)) (OR (OR N SE) (OR X 
E)))))))) 

 (VALUES  
(IF (OR (NOT (ADF4)) (AND (OR (NOT 
(AND (GO-S) (GO-S))) (AND (OR (NOT 
(AND (GO-S) (GO-S))) (AND (NOT (AND 
(ADF3) (ADF3))) (HOMING (GO-S)))) (OR 
(NOT (AND (GO-S) (GO-S))) (AND 
(HOMING (GO-N)) (HOMING (GO-N)))))) 
(OR (NOT (ADF4)) (AND (OR (NOT (AND 
(GO-S) (GO-S))) (AND (OR (NOT (AND 
(GO-S) (GO-S))) (AND (NOT (AND (ADF3) 
(ADF3))) (HOMING (GO-N)))) (OR (NOT 
(AND (GO-S) (GO-S))) (AND (HOMING 
(GO-N)) (HOMING (GO-N)))))) (OR (NOT 
(AND (GO-S) (GO-S))) (AND (NOT (AND 
(GO-S) (ADF3))) (HOMING (GO-
N)))))))); antecedent of outermost IF 
    (IF (HOMING (AND (GO-S) (ADF0))) 
(IF (GO-S) NIL L) (IF (HOMING (GO-S)) 
(IF (ADF1) L I) (IF (ADF1) L NIL))); 
then-part of outermost IF 
    (IF (OR (OR (GO-E) (ADF3)) (AND 
(OR (NOT (ADF4)) (AND (NOT (ADF3)) 
(OR (NOT (AND (GO-S) (GO-S))) (AND 
(NOT (GO-S)) (AND (ADF3) (ADF3)))))) 
(HOMING (GO-N)))) (IF (ADF2) (IF (GO-
S) L NIL) (IF (GO-S) (IF (ADF3) L 
NIL) (IF (GO-S) NIL L))) (IF (NOT 
(ADF1)) (IF (GO-E) NIL I) (IF (ADF1) 
L L))); else-part of outwemost IF 
))). 

B. Analysis of the Solution for One Run 
The performance of the 100% correct best-of-run 

individual from generation 50 from the run described above 
can be understood by first considering how this program 
successfully recognizes the pixel pattern for the letter L.  To 
aid in this process, Fig. 5 identifies the seven pixels that must 
be ON for the pattern to be the letter L with the Roman 
numerals I through VII and identifies the 14 adjacent pixels 
that must be OFF for the letter L with the lower-case letters a 
through n.  
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Fig. 5  The seven ON and 14 OFF pixels constituting the letter L  

When the best-of-run individual from generation 50 
encounters an L, it moves the turtle 25 times.  The turtle 
always starts at pixel III for any pattern.  Fig. 6 shows the 25 

steps in this trajectory, with the turtle starting at pixel III and 
ending at pixel n.  The figure omits certain numbers where 
the turtle repetitively moves back and forth over the same 
two adjacent pixels.   
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Fig. 6  Trajectory of the turtle for identifying an L for best-of-run 

individual from generation 50 
Since the result-producing branch begins with (IF (OR 

(NOT (ADF4)) ..., the defined function ADF4 is evaluated 
with the turtle being at its starting location (pixel III) at turtle 
step 0.  Detector ADF4 examines seven of the nine pixels 
within view.   

Fig. 7 shows the seven pixels values required to cause the 
function definition for ADF4 to return a value of T.  ADF4 
depends on seven pixels, lacks any reference to pixel S, and 
effectively ignores pixel SE.    
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Fig. 7  Arrangement of pixels required to cause ADF4 to return T  

When the turtle is located at pixel III, pixels II and III are 
ON, and pixels b, c, d, m, and l are OFF, so ADF4 returns T. 
(see Fig. 8)  These latter five pixels all lie adjacent to the 
vertical segment of the L.  Thus, when the turtle is at pixel 
III, ADF4 acts as a detector for two of the three vertically 
stacked pixels of a potential L being ON and as a detector for 
five of the six pixels adjacent to the potential L being OFF.  
ADF4 is an incomplete detector for a vertical line segment. 

Since ADF4 returns T when the turtle is located at pixel III, 
(NOT (ADF4)) is NIL, so the second clause of the first 
OR must be evaluated.  This second clause begins with (AND 
(OR (NOT (AND (GO-S) (GO-S)))... .  When the 
first argument of the inner AND, namely (GO-S), is 
evaluated, the turtle moves south (down the vertical segment 
of the L) from pixel III to pixel IV.  Since pixel IV is ON 
after this turtle step 1, the (GO-S) operator returns T, thus 



 

necessitating evaluation of the second argument of this inner 
AND.  This second argument, which consists of another (GO-
S) operator, moves the turtle south again from pixel IV to 
pixel V.  Since pixel V is also ON after turtle step 2, the inner 
AND returns T.  However, the NOT necessitates evaluation of 
the second argument of the OR, namely   
(AND (OR (NOT (AND (GO-S) ... )) ... )) 
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Fig. 8  Detector ADF4 applied at pixel III at turtle step 0  

The (GO-S) operator (the first argument to the inner AND 
above) now moves the turtle south to pixel g.  Pixel g is OFF 
at turtle step 3, since it is below the vertical segment of the L.  
Note that when LISP evaluates the two-argument Boolean 
AND function, it skips evaluation of the second argument if 
the first argument evaluates to NIL.  (Similarly, evaluation of 
the second argument of the OR function is skipped if the first 
argument evaluates to T).  The second (GO-S) argument to 
the AND is replaced with an ellipsis, since it will not be 
evaluated. This illustrates that when side-effecting operators 
are contained in arguments to Booolean functions, the 
operators are conditionally executed in LISP depending on 
the context.  Since the NOT negates the NIL returned by the 
AND, the second argument to the OR containing seven points 
is also skipped and replaced with a second ellipsis.   

Now two (GO-S) operators move the turtle to pixels I and 
II (since the grid is toroidal) at turtle steps 4 and 5.  The 
(GO-N) moves the turtle back to pixel I at turtle step 6, but 
the HOMING rubber bands the turtle back to pixel II at turtle 
step 7.  This sequence is repeated at turtle steps 8 and 9, 
leaving the turtle at pixel II.   

Detector ADF4 is now applied at pixel II.  Fig. 9 shows 
that when the turtle is located at pixel II, ADF4 returns T 
when pixels I and II are ON and when pixels a, b, c, n, and m 
are OFF.   

Detector ADF4 returns T and thereby provides the new 
information that pixels a and n are OFF.  Thus, by turtle step 
9, seven pixels (a, b, c, d, n, m, and l) have been verified as 
being OFF via two applications of detector ADF4 and one 
additional pixel (g) has been verified as being OFF via the 
(GO-S) operator.  In addition, five pixels (I, II, III, IV, and 
V) have been verified (often repetitively) as being ON.  
Several pixels have been verfied by more than one action by 
turtle step 9. 

Between turtle steps 10 and 21, the turtle repetitively 
moves up and down (via several HOMINGs) along the vertical 
segment of the L, but provides no information that is not 
already known.   
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Fig. 9   Detector ADF4 applied at pixel II at turtle step 9  

The turtle arrives at pixel IV at turtle step 21 and begins 
evaluation of the last six points of the antecedent clause of 
the outermost IF of the value-returning branch, namely 
(AND (NOT (AND (GO-S) (ADF3))) 
     (HOMING (GO-N)))))))). 

The (GO-S) operator moves the turtle to pixel V (the 
junction of the L, which is ON) and executes detector ADF3.    

Fig. 10 shows the pixels values required to cause ADF3 to 
return a value of T.  As can be seen, ADF3 examines five 
pixels (NW, W, SW, S, and SE) to see if they are all OFF. 
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Fig. 10   Arrangement of pixels required to cause ADF3  to return a 
value of T 

Fig. 11 shows that when the turtle is located at pixel V (the 
junction of the L), ADF3 returns T when pixels d, e, f, g, and 
h are OFF.  These five pixels all lie adjacent to the junction 
of the L, so ADF3 acts as a detector for emptiness adjacent to 
the junction of an L. 
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Fig. 11   Detector ADF3 applied at pixel V at turtle step 22  

Since the NOT negates the return value of the AND, the 
(HOMING (GO-N)) is not executed.   

For the letter L, the antecedent part of the outermost IF of 
the value-returning branch of the best-of-run individual of 
generation 50 evaluates to NIL, so that the second (then) 
argument  of the IF is skipped and the third (else) argument is 
executed.  The (GO-E) operator moves the turtle east to 
pixel VI (which is ON) and causes detector ADF2 to be 
evaluated for turtle step 23.   

Fig. 12 shows that ADF2 examines six pixels.  ADF2 
returns a value of NIL when NW, W, and E are ON and when 
N, NE, and SE are OFF.    
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Fig. 12  Arrangement of pixels required to cause ADF2 to return a value 

of NIL 
Fig. 13 shows that when the turtle is located at pixel VI at 

turtle step 23, ADF2 returns a value of NIL when pixels IV, 
V, and VII are ON and when pixels i, j, and k are OFF.  
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Fig. 13   Detector ADF2 applied at pixel VI at turtle step 23  

The result now depends on the expression below involving 
detector ADF2: 
1   (IF (ADF2) 
2       (IF (GO-S) L NIL) 
3       (IF (GO-S) 
4           (IF (ADF3) L NIL) 
5           (IF (GO-S) NIL L)) ... ). 

For the letter L, ADF2 evaluates to NIL on line 1.  As a 
result, line 2 is skipped and the (GO-S) operator on line 3 
moves the turtle south to pixel h at turtle step 24.  Since pixel 
h is OFF, line 4 is skipped and the (GO-S) operator on line 
5 moves the turtle toroidally to pixel n for turtle step 25.  
Since pixel n is OFF for the L, the result-producing branch 
and the S-expression as a whole therefore returns L, which is 
indeed the correct identification of the pattern. 

Notice that if detector ADF2 returns T on line 1 above, this 
would mean that either pixel i, j or k was ON or that pixel 
VII was OFF (since pixels IV and V have been previously 
established as being ON).  Any of these four possibilities 
would mean that the pattern is a flawed pattern for which 
NIL (rather than L or I) should be returned.  For example, if 
pixel VII were OFF and pixel i were ON (as shown in the left 
half of Fig. 2) or if pixel VII were ON and pixel i were ON, 
the pattern would be a flawed L.  In these situations, the 
(GO-S) operator on line 2 would be executed, thereby 
moving the turtle to pixel h.  Since pixel h is already known 
to be OFF, the result-producing branch and the S-expression 
as a whole would return NIL, which, under the 
circumstances, would be correct identification of the pattern.  
Similarly, the result-producing branch and the S-expression 
as a whole returns the value NIL for the 14 fitness cases for 
which there is an extraneous ON pixel adjacent to an L (in 
locations a through n) and the seven fitness cases for which 
there is a missing pixel within an L (in locations I through 
VII).   

In summary, the best-of-run individual from generation 50 
applies detectors at turtle steps 0, 9, 22, and 23 and considers 
direct input from the turtle over 25 steps in order to 

determine that all seven pixels (I through IV) that should be 
ON for an L are indeed ON and that all 14 pixels that should 
be OFF for an L are indeed OFF, as shown in Fig. 14. 
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Fig. 14  Turtle steps 0, 9, 22, and 23 where detectors ADF2, ADF3, and 

ADF3 are applied 
In identifying the letter I, the turtle moves up and down the 

vertical column consisting of pixels I through V and pixel g 
for the first 22 turtle steps much as in the identification of the 
L.  However, when the turtle moves east on turtle step 23, 
pixel VI is OFF for the I.   

Notice that detector ADF0 is used for determining that 
certain patterns should be classified as NIL, although it not 
used in classifying the positive cases.  Also, notice that 
although ADF1 is merely the constant function NIL, it does 
appear, and is used, in the result-producing branch.  

V Conclusions 
We have demonstrated the use of genetic programming 

with automatic function definition to simultaneously discover 
the detectors and a way of ssing the detectors to perform a 
letter recognition task. 
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