

Simultaneous Discovery of Detectors and a Way of Using the Detectors via Genetic
Programming

John R. Koza

Computer Science Department
Margaret Jacks Hall
Stanford University

Stanford, California 94305
 Koza@cs.stanford.edu

415-941-0336

Abstract—Conventional approaches to problems of pattern

recognition and machine learning usually require that the user
hand-craft detectors for key features in the problem
environment. Conventional approaches often additionally
require the user to specify in advance the size and shape of the
eventual way of combining the detectors into a compete solution.
This paper describes a general approach for simultaneously
discovering detectors and a way of combining the detectors to
solve a problem via genetic programming with automatic
function definition. Genetic programming provides a way to
genetically breed a computer program to solve a wide variety of
problems. Automatic function definition automatically and
dynamically enables genetic programming to define potentially
useful functions dynamically during a run and to facilitate a
solution of a problem by automatically and dynamically
decomposing the problem into simpler subproblems. This
approach is illustrated with a problem of letter recognition.

I Introduction and Overview
Conventional approaches to pattern recognition and

machine learning usually require that the user hand-craft
detectors for key features in the problem environment.
Conventional approaches often additionally require the user
to specify in advance the size and shape of the eventual way
of combining the detectors into a compete solution.
However, in many instances, finding the detectors and a way
of combining the detectors in order to solve the problem
really is the problem. Indeed, the necessity for pre-
identification of the particular components of solutions and
the necessity for pre-determination of a way of combining
these components has been recognized as a bane of machine
learning starting with Samuel's ground-breaking work in
machine learning involving learning to play the game of
checkers [Samuel [1959].

In Samuel's checker player, learning consisted of
progressively adjusting numerical coefficients in an algebraic
expression of a predetermined functional form (specifically, a
polynomial of specified order). Each component term of the
polynomial represented a hand-crafted detector reflecting
some aspect of the current state of the board (e.g., number of
pieces, center control, etc.). The polynomial weighted each
detector with a numerical coefficient and thereby assigned a
single numerical value of a board to the player. If a

polynomial were good at assigning values to boards, the
polynomial could be used to compare the boards that would
arise if the player were to make various alternative moves –
thus permitting the best move to be selected from among the
alternatives on the basis of the polynomial. In Samuel's
learning system, the numerical coefficients of the polynomial
were adjusted with experience, so that the predictive quality
of the polynomial progressively improved. Samuel
predetermined the way the detectors would be combined to
solve the problem by selecting the functional form of the
polynomial. Samuel recognized, from the beginning, the
importance of enabling learning to occur without
predetermining the size and shape of the solution and of
"[getting] the program to generate its own parameters
[detectors] for the evaluation polynomial."

This paper describes a general approach for simultaneously
discovering detectors and a way of combining the detectors
to solve a problem. The approach involves using genetic
programming with automatic function definition to evolve a
solution to the problem.

Genetic programming provides a way to search the space
of all possible programs composed of certain terminals and
primitive functions to find a function which solves, or
approximately solves, a problem.

Automatic function definition enables genetic
programming to define potentially useful functions
automatically and dynamically during a run and also to
combine these defined functions dynamically during a run in
order to solve a problem.

Since the metaphor of a detector is especially apt in the
field of pattern recognition, our general approach will be
illustrated by means of a problem from the field of pattern
recognition.

Sections I, III, and VI of the article by Koza, Keane, and
Rice [1993] in these ICNN-93 proceedings provide necessary
background on genetic programming and automatic function
definition for this article.

Section II of this article states the illustrative pattern
recognition problem. Section III details the preparatory
steps for applying genetic programming with automatic
function definition to the problem. Section IV describes a
solution to the problem.

II Letter Recognition Problem
Since the metaphor of a detector is especially apt in the

field of pattern recongition, we will illustrate our approach to
the problem of finding detectors and finding a way to
combine them with a problem of letter recognition from the
field of pattern recognition.

Fig. 1 shows the letters I and L, each presented in a 6 by 4
pixel grid of binary (ON or OFF) values.

Fig. 1 The letters I and L

The goal of pattern recognition is to discover a computer
program that can take any of the 224 possible patterns of bits
as its input and produce a correct identification I, L, or NIL
(i.e., not the letter I or the letter L) for the pattern as its
output.

Note that the correct identification of a pattern of pixels
requires not only establishing that all the specific pixels that
must be ON are indeed ON, but also inspecting other pixels
on the grid to exclude the possiblity of an imperfect letter or
another letter.

Fig. 2 shows two patterns that are neither the letter I nor
the letter L. The pattern on the left has a misplaced ON pixel
in the lower right hand corner of the grid instead of as the
rightmost pixel of the bottom of the L. The second pattern
has a missing ON pixel in an otherwise correct letter L.

Fig. 2 Two patterns that should not be recognized as the letter L

There are, of course, many different ways to structure a
computer program to perform the task of letter recognition.
The particular approach presented in this paper was chosen to
illustrate and emphasize the discovery of local detectors and
hierarchical combinations of the detectors to solve a
problem.

If one were trying to verbally describe the letter L to
someone who was not familiar with the Roman alphabet, one
might give a dynamic description involving drawing a
vertical line of five pixels downwards (south) from some
specified starting location in the 6 by 4 grid and then drawing
a horizontal line of two pixels to the right (east). This
dynamic description of the pattern contains both locally-

acting and hierarchical aspects. This can be implemented
using a slow-moving turtle with limited vision. The turtle
starts at a designated starting location on the grid and can
move one step at a time to the north (up), south (down), east
(right), or west (left). The turtle's vision is limited to its
immediate neighborhood consisting of the nine pixels
centered at its current location. The one pixel where the
turtle is currently located is called "X" (center) and the eight
neighboring pixels at distance one are called N, NE, E, SE, S,
SW, W, and NW.

One way to structure a computer program to recognize
letters is for the "main" result-producing branch to be a
decision tree that produces a return value consisting of an
identification of the pattern (I, L, or NIL). The use of a
decision tree structure in the result-producing branch permits
easy handling of arbitrary numbers of possible outcomes.
The result-producing branch will activate various alternative
actions and, ultimately, return an identification of the pattern.
The desired bias toward local inspection and hierarchical
combination can be attained by specifying that the result-
producing branch of the program will be capable of moving
the turtle but only capable of sensing the single pixel where
the turtle is currently located. The result-producing branch
will not have direct access to the any other pixel sensors;
however, it may call on the detectors. The result-producing
branch will contain logical predicates consisting of
compositions of Boolean conjunctions, disjunctions, and
negations operating on the values returned by the detectors.

The function-defining branches define detectors that
examine the entire nine-pixel local neighborhood of the turtle
and evaluate logical predicates involving what the turtle sees.
Thus, the function definitions will be compositions of the
Boolean conjunctions, disjunctions, and negations and the
nine pixel sensors (X, N, NE, E, SE, S, SW, W, and NW). For
example, the function definition
(defun vertical-line ()
 (values (AND N X S (NOT SW) (NOT W) (NOT NW)
 (NOT SE) (NOT E) (NOT NE))))

is a detector that returns T only if the turtle is currently
located at the midpoint of a vertical line segment consisting
of three ON pixels surrounded on both sides by three OFF
pixels. Note that there are no dummy variables in this
defun since the nine pixel sensors are global variables
established by virtue of the turtle's current location on the
grid.

III Preparatory Steps for Using Genetic Programming
In what follows, we apply genetic programming with

automatic function definition to the problem of letter
recognition described above.

We decided that each individual overall S-expression in the
population will consist of five function-defining branches
(defining detectors called ADF0 through ADF4) and a final
(rightmost) result-producing branch.

Genetic programming will evolve function definitions in
the five function-defining branches of each overall S-
expression and then, at its discretion, it will call some, all, or

none of the defined functions (detectors) in the result-
producing branch. The structures of both the function-
defining branches and the result-producing branch are
determined by the combined effect, over many generations,
of the selective pressure exerted by the convolution-based
fitness measure and by the effects of the operations of
Darwinian fitness proportionate reproduction and crossover.

There are five major steps in preparing to use genetic
programming, namely determining
(1) the set of terminals,
(2) the set of primitive functions,
(3) the fitness measure,
(4) the parameters for controlling the run, and
(5) the method for designating a result and the criterion for

terminating a run.
The terminal sets and function sets are different for the

function-defining branches and the result-producing branch
of each individual S-expression in the population.

We first consider the five function-defining branches (i.e.,
the detectors).

 Since the function-defining branches are to define
detectors which are capable of analyzing what the turtle sees
at its current location on the grid, the terminal set Tfd for each
function-defining branch consists of the nine pixel sensors,
so that

Tfd = {X, N, NE, E, SE, S, SW, W, NW}.
The function set Ffd for the function-defining branch is

Ffd = {AND, OR, NOT},

taking 2, 2, and 1 argument, respectively. Note that there are
no side-effecting functions in the function-defining branches.

Each function-defining branch is a composition of
primitive functions from the function set Ffd and terminals
from the terminal set Tfd.

We now consider the result-producing branch.
We envision that the result-producing branch of each

program will be a decision tree which consists of
compositions of decision-making functions to return the
identification I, L, or NIL. Thus, the terminal set Trp for the
result-producing branch is

Trp = {I, L, NIL}.
Since the result-producing branch is to be a decision tree,

its function set will include the three-argument conditional
decision-making "IF-THEN-ELSE" operator. This operator
is implemented as a macro as described in Koza [1992a].

The function set of the result-producing branch will also
contain eight operators that can move the turtle one step in
any one of the eight possible directions from its current
location. For example, the side-effecting operator (GO-N)
would move the turtle north (up) one step in the 6 by 4 grid.
As the turtle moves, the values of the nine pixel sensors (X,
N, NE, E, SE, S, SW, W, and NW) are dynamically redefined.
For simplicity, the grid is toroidal. These eight operators take
no arguments. Each operator returns the value (T or NIL) of
the pixel to which the turtle moves (i.e., it returns the new X).

The one-argument HOMING operator evaluates its
argument and, in addition, has the side effect of rubber-
banding the turtle to its position at the start of the evaluation
of the HOMING. HOMING is equivalent to the brackets in a
Lindenmayer system.

The Boolean functions AND, OR, and NOT are included in
the function set to enable the result-producing branch to
define logical predicates.

Finally, the five automatically defined functions (ADF0
through ADF0) that constitute the detectors are included in
the function set of the result-producing branch. These five
defined functions take no arguments.

Thus, the function set Frp for the result-producing branch is
Frp = {IF, AND, OR, NOT, HOMING, ADF0,

ADF1, ADF2, ADF3, ADF4, GO-N,
GO-NE, GO-E, GO-SE, GO-S,
GO-SW, GO-W, GO-NE},

The first five functions above take 3, 2, 2, 1, and 1 argument,
respectively, and the remaining functions take no arguments
(and could, optionally, if desired, have been treated as
terminals).

The result-producing branch is a composition of primitive
functions from the function set Frp and terminals from the
terminal set Trp.

Note that the above terminal sets and function sets satisfy
the closure property in that each primitive function in the
function set is well defined for any combination of arguments
from the range of values returned by every primitive function
that it may encounter and the value of every terminal that it
may encounter.

Since each individual S-expression in the population
consists of five function-defining branches and one result-
producing branch, we must create the initial random
generation so that every individual S-expression in the
population has this particular constrained syntactic structure.
Specifically, every individual S-expression must have the
invariant structure represented by the six points of types 1
through 6 described in Section VI of Koza, Keane and Rice
[1993]. Each of the five function-defining branches is a
random composition of functions from the function set Ffd
and terminals from the terminal set Tfd. Each function and
terminal in each function-defining branch is of type 7. The
result-producing branch is a random composition of functions
from the function set Frp and terminals from the terminal set
Trp. Each function and terminal in the result-producing
branch is of type 8.

Moreover, since a constrained syntactic structure is
involved, we must perform crossover so as to preserve the
syntactic validity of all offspring as the run proceeds from
generation to generation. Since each S-expression must have
the invariant structure represented by the six points of types 1
through 6, crossover is limited to points of types 7 and 8.
Structure-preserving crossover is implemented by allowing
any point of type 7 or 8 in any branch of the overall S-
expression to be the crossover point in the first parent.

However, once the crossover point in the first parent has
been selected, the crossover point of the second parent must
be of the same type. In practice, this means that crossover
will only exchange a sub-tree from a function-defining
branch with a sub-tree from another function-defining branch
or that crossover will exchange a sub-tree from a result-
producing branch with a sub-tree from another result-
producing branch. This restriction on the selection of the
crossover point of the second parent ensures the syntactic
validity of the offspring.

Because of the complexity of the solutions evolved by
genetic programming for this problem, we discovered, after
initially solving this problem, that imposing an additional
constrained syntactic structure on the result-producing branch
would greatly enhance our ability to understand the solution.
Specifically, we constrained the first (antecedent) argument
of each IF operator to be a composition of the three Boolean
functions (AND, OR, NOT), the five automatically defined
functions (ADF0 through ADF4), the eight turtle-moving
operators (e.g., GO-N), and the HOMING function. In
addition, we constrained the two consequent arguments of
each IF operator to be compositions of the IF operator and
the terminals (I, L, and NIL). These additional syntactic
contraints had the helpful effect of clearly isolating and
highlighting the structure of the decision tree within the
result-producing branch. Thus, the original type 8 was
subdivided into types 8a and 8b. As before, the initial
random population was randomly generated in comformity
with these new constraints and structure-preserving crossover
was performed to preserve the new syntactic structure (now
involving types 7, 8a, or 8b).

The third major step in preparing to use genetic
programming is the identification of the fitness measure for
evaluating the goodness of each pattern-recognizing
individual in the population. The fitness cases for genetic
programming are chosen to represent a sufficient variety of
situations so that the program is likely to generalize to handle
all possible combinations of inputs. In this regard, the fitness
cases are similar to the necessarily small, finite number of
combinations of inputs used to test and debug computer
programs.

Each individual in the population is tested against an
environment consisting of Nfc = 78 fitness cases, each
consisting of a 6 by 4 pixel pattern and the correct
identification (I, L, or NIL) for that pattern. The set of
fitness cases included the two letters (i.e., the positive cases)
and 76 different negative fitness cases. The negative cases
included every version of the letters I and L with one ON
pixel deleted; every version of the letters I and L with one
extraneous ON pixel added adjacent to the correct pixels;
checkerboard patterns; the all-ON and all-OFF pattern;
various patterns bearing some resemblance to I, L, or other
letters; and various random patterns bearing no resemblance
to I, L, or other letters.

When an individual S-expression in the population is tested
against a particular fitness case, the result can be a true-
positive (i.e., the individual correctly identifies an I as an I or

an L as an L), a true-negative (i.e., a pattern that is not an I or
L is correctly identified as NIL), a false-positive (i.e., a non-
letter is identified as a letter), a false-negative (i.e., a letter is
identified as a non-letter), or a wrong-positive (i.e., an I is
identified as an L or an L is identified as an I).

For this problem, fitness is the sum, over the fitness cases,
of the weighted errors produced by the S-expression. The
smaller the sum of weighted errors, the better. A 100%
correct pattern-recognizer would have a fitness of zero.
True-postives and true-negatives contribute zero to this sum.
False-positives contribute 38 (in order to give the two
positive cases equal weight with the 76 negative cases).
Wrong-positives contribute one. False-negatives contribute
23 (i.e., the number of pixels minus one) to maintain
consistency with work not described herein involving
translation-invariant pattern recognition and cellular
automata.

The fourth major step in preparing to use genetic
programming is the selection of values for certain
parameters. Our choice of 8,000 as the population size and
our choice of 101 as the maximum number of generations to
be run reflect an estimate on our part as to the likely
difficulty of this problem and the practical limitations on
available computer time and memory. Our choice of values
for the various secondary parameters that control a run of
genetic programming are the same default values as we have
consistently used on numerous other problems [Koza 1992a],
except that we continue our recently adopted practice of
using tournament selection (with a group size of seven) as the
selection method.

Finally, the fifth major step in preparing to use genetic
programming is the selection of the criterion for terminating
a run and the selection of the method for designating a result.
We will terminate a given run if we encounter a 100% correct
individual or after 101 generations. We designate the best
individual obtained during the run (the best-so-far individual)
as the result of the run.

IV Results for One Run
A review of one particular successful run will serve to

illustrate how genetic programming simultaneously evolves
the detectors and a way of combining the detectors for the
problem of letter recognition.

A Discovery of Solution for One Run
The 8,000 randomly generated individuals found in the

initial generation of the population (generation 0) are, as one
would expect, not very good. The fitness of the worst
individual pattern-recognizer in the population for generation
0 has 44 points (i.e., functions and terminals in the body of its
five function-defining branches and its result-returning
branch) and has the enormous unfavorable fitness (error) of
3,535. However, even in a randomly created population of
programs, some individuals are better than others. For
example, an individual at the 33rd percentile of generation 0
has fitness of 1,771.

The best individual from generation 0 has 186 points, has a
fitness of 53, and is shown below:
(PROGN (DEFUN ADF0 ()

(VALUES (OR (OR (AND (OR S X) (OR N
SW)) (OR (OR N E) (AND S NW))) (AND
(OR (NOT S) (AND S SE)) (OR (AND W
SE) (NOT N)))))))

 (DEFUN ADF1 ()
(VALUES (AND (AND (NOT (NOT X)) (NOT
(OR S X))) (OR (AND (AND SW NW) (NOT
SW)) (NOT (AND N SW))))))

 (DEFUN ADF2 ()
(VALUES (OR (AND (NOT (AND W E)) (OR
(AND NW W) (NOT NW))) (OR (OR (AND N
E) (AND S SE)) (OR (AND W SE) (OR SE
NE))))))

 (DEFUN ADF3 ()
(VALUES (AND (NOT (AND (NOT SE) (OR W
SW))) (OR (NOT (OR NW NE)) (AND (NOT
S) (NOT NW))))))

 (DEFUN ADF4 ()
(VALUES (AND (NOT (OR (OR W SW) (OR
NW NW))) (AND (AND (AND X N) (NOT
NE)) (OR (OR N SE) (OR X E))))))

 (VALUES
(IF (OR (NOT (AND (GO-S) (GO-S)))
(AND (NOT (ADF0)) (HOMING (GO-N))))
(IF (HOMING (AND (GO-S) (ADF0))) (IF
(OR (GO-N) (ADF2)) (IF (ADF1) L I)
(IF (ADF1) I NIL)) (IF (HOMING (GO-
S)) (IF (ADF1) L I) (IF (GO-W) L
NIL))) (IF (OR (OR (GO-E) (ADF3))
(AND (ADF3) (ADF3))) (IF (HOMING (GO-
N)) (IF (ADF3) L NIL) (IF (GO-S) NIL
L)) (IF (NOT (ADF1)) (IF (GO-E) NIL
I) (IF (ADF1) L L)))))).

The result-producing branch of this best-of-generation
individual makes multiple references to four of its five
detectors, contains numerous movements in various
directions of the turtle, contains numerous Boolean functions,
contains numerous IF operators, and is capable of arriving at
all three possible conclusions for a given pattern. The
detectors (defined functions) each look at numerous pixels
and performs various logical functions on what is seen.

Fig. 3 shows, by generation, the fitness of the best-of-
generation individual. As can be seen, the average fitness of
the population as a whole tends to improve (i.e., drop) from
generation to generation. Specifically, the fitness of the best-
of-generation individual drops to 42, 31, 22, 14, 10, 7, 6, 5,
and 3 for generations 5, 10, 15, 20, 25, 30, 35, 40, and 45,
respectively. The fitness of the best-of-generation individual
drops to 2 for generations 47, 48, and 49.

0 25 50
0

30

60

Generation

St
an

da
rd

iz
ed

 F
itn

es
s

Fig. 3 Fitness curves

The hits histogram is a useful monitoring tool for
visualizing the progressive learning of the population as a
whole during a run. The horizontal axis of the hits histogram
represents the number of hits (0 to 78) while the vertical axis
represents the number of individuals in the population (0 to
8,000) scoring that number of hits.

Fig. 4 shows the hits histograms for generations 0, 15, 30,
and 50 of this run. Notice the left-to-right undulating
movement of both the high point and the center of mass of
these three histograms. This “slinky” movement reflects the
improvement of the population as a whole. Four solutions to
the problem emerge at generation 50.

0

1000

2000

3000

4000

5000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0

1000

2000

3000

4000

5000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0

1000

2000

3000

4000

5000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0

1000

2000

3000

4000

5000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

4

Fig. 4 Hits histograms for generations 0, 15, 30, and 50

By generation 50, the best-of-generation individual has 312
points (of which 149 are in the result-producing branch) and
has the perfect fitness value of zero. This best-of-run
individual is shown below:
(PROGN (DEFUN ADF0 ()

(VALUES (OR (OR (AND W SE) (OR (AND
(NOT (OR SW SW)) (NOT (AND X SW)))
(NOT (OR (NOT S) (AND X NW))))) (AND
(OR (NOT S) (AND W SE)) (OR (OR S X)
(NOT N))))))

 (DEFUN ADF1 ()
(VALUES (AND (AND (NOT (NOT X)) (NOT
(OR S X))) (NOT (OR S X)))))

 (DEFUN ADF2 ()
(VALUES (OR (AND (NOT (AND W E)) (OR
(AND NW W) (NOT NW))) (OR (OR (AND N
E) (AND S SE)) (OR (AND W (NOT NW))
(OR SE NE))))))

 (DEFUN ADF3 ()
(VALUES (AND (NOT (AND (NOT SE) (OR W
SW))) (OR (NOT (OR NW (NOT NW))) (AND
(NOT S) (AND (NOT (AND (NOT SE) (OR W
SW))) (OR (NOT (OR NW (NOT (AND (NOT

SE) (OR W SW))))) (AND (NOT S) (OR
(NOT (NOT NW)) (NOT SE))))))))))

 (DEFUN ADF4 ()
(VALUES (AND (NOT (OR (OR W SW) (OR
NW NW))) (AND (AND (AND X N) (NOT
NE)) (AND (NOT (OR (OR E SW) (OR NW
NW))) (AND (AND (AND (AND X N) (NOT
NE)) (NOT NE)) (OR (OR N SE) (OR X
E))))))))

 (VALUES
(IF (OR (NOT (ADF4)) (AND (OR (NOT
(AND (GO-S) (GO-S))) (AND (OR (NOT
(AND (GO-S) (GO-S))) (AND (NOT (AND
(ADF3) (ADF3))) (HOMING (GO-S)))) (OR
(NOT (AND (GO-S) (GO-S))) (AND
(HOMING (GO-N)) (HOMING (GO-N))))))
(OR (NOT (ADF4)) (AND (OR (NOT (AND
(GO-S) (GO-S))) (AND (OR (NOT (AND
(GO-S) (GO-S))) (AND (NOT (AND (ADF3)
(ADF3))) (HOMING (GO-N)))) (OR (NOT
(AND (GO-S) (GO-S))) (AND (HOMING
(GO-N)) (HOMING (GO-N)))))) (OR (NOT
(AND (GO-S) (GO-S))) (AND (NOT (AND
(GO-S) (ADF3))) (HOMING (GO-
N)))))))); antecedent of outermost IF
 (IF (HOMING (AND (GO-S) (ADF0)))
(IF (GO-S) NIL L) (IF (HOMING (GO-S))
(IF (ADF1) L I) (IF (ADF1) L NIL)));
then-part of outermost IF
 (IF (OR (OR (GO-E) (ADF3)) (AND
(OR (NOT (ADF4)) (AND (NOT (ADF3))
(OR (NOT (AND (GO-S) (GO-S))) (AND
(NOT (GO-S)) (AND (ADF3) (ADF3))))))
(HOMING (GO-N)))) (IF (ADF2) (IF (GO-
S) L NIL) (IF (GO-S) (IF (ADF3) L
NIL) (IF (GO-S) NIL L))) (IF (NOT
(ADF1)) (IF (GO-E) NIL I) (IF (ADF1)
L L))); else-part of outwemost IF
))).

B. Analysis of the Solution for One Run
The performance of the 100% correct best-of-run

individual from generation 50 from the run described above
can be understood by first considering how this program
successfully recognizes the pixel pattern for the letter L. To
aid in this process, Fig. 5 identifies the seven pixels that must
be ON for the pattern to be the letter L with the Roman
numerals I through VII and identifies the 14 adjacent pixels
that must be OFF for the letter L with the lower-case letters a
through n.

i

a

b

c

d

e

f g h

n

m

l

k

I

II

III

IV

V VI VII

j

Fig. 5 The seven ON and 14 OFF pixels constituting the letter L

When the best-of-run individual from generation 50
encounters an L, it moves the turtle 25 times. The turtle
always starts at pixel III for any pattern. Fig. 6 shows the 25

steps in this trajectory, with the turtle starting at pixel III and
ending at pixel n. The figure omits certain numbers where
the turtle repetitively moves back and forth over the same
two adjacent pixels.

0

1

2

3

10

11

12

13

95

6 14

17

18

20

21

22 23

24

25

4

Fig. 6 Trajectory of the turtle for identifying an L for best-of-run

individual from generation 50
Since the result-producing branch begins with (IF (OR

(NOT (ADF4)) ..., the defined function ADF4 is evaluated
with the turtle being at its starting location (pixel III) at turtle
step 0. Detector ADF4 examines seven of the nine pixels
within view.

Fig. 7 shows the seven pixels values required to cause the
function definition for ADF4 to return a value of T. ADF4
depends on seven pixels, lacks any reference to pixel S, and
effectively ignores pixel SE.

Off

Off

Off

Off

Off

On

On

Fig. 7 Arrangement of pixels required to cause ADF4 to return T

When the turtle is located at pixel III, pixels II and III are
ON, and pixels b, c, d, m, and l are OFF, so ADF4 returns T.
(see Fig. 8) These latter five pixels all lie adjacent to the
vertical segment of the L. Thus, when the turtle is at pixel
III, ADF4 acts as a detector for two of the three vertically
stacked pixels of a potential L being ON and as a detector for
five of the six pixels adjacent to the potential L being OFF.
ADF4 is an incomplete detector for a vertical line segment.

Since ADF4 returns T when the turtle is located at pixel III,
(NOT (ADF4)) is NIL, so the second clause of the first
OR must be evaluated. This second clause begins with (AND
(OR (NOT (AND (GO-S) (GO-S)))... . When the
first argument of the inner AND, namely (GO-S), is
evaluated, the turtle moves south (down the vertical segment
of the L) from pixel III to pixel IV. Since pixel IV is ON
after this turtle step 1, the (GO-S) operator returns T, thus

necessitating evaluation of the second argument of this inner
AND. This second argument, which consists of another (GO-
S) operator, moves the turtle south again from pixel IV to
pixel V. Since pixel V is also ON after turtle step 2, the inner
AND returns T. However, the NOT necessitates evaluation of
the second argument of the OR, namely
(AND (OR (NOT (AND (GO-S) ...)) ...))

NNW

W

SW S SE

E

NE

0

Fig. 8 Detector ADF4 applied at pixel III at turtle step 0

The (GO-S) operator (the first argument to the inner AND
above) now moves the turtle south to pixel g. Pixel g is OFF
at turtle step 3, since it is below the vertical segment of the L.
Note that when LISP evaluates the two-argument Boolean
AND function, it skips evaluation of the second argument if
the first argument evaluates to NIL. (Similarly, evaluation of
the second argument of the OR function is skipped if the first
argument evaluates to T). The second (GO-S) argument to
the AND is replaced with an ellipsis, since it will not be
evaluated. This illustrates that when side-effecting operators
are contained in arguments to Booolean functions, the
operators are conditionally executed in LISP depending on
the context. Since the NOT negates the NIL returned by the
AND, the second argument to the OR containing seven points
is also skipped and replaced with a second ellipsis.

Now two (GO-S) operators move the turtle to pixels I and
II (since the grid is toroidal) at turtle steps 4 and 5. The
(GO-N) moves the turtle back to pixel I at turtle step 6, but
the HOMING rubber bands the turtle back to pixel II at turtle
step 7. This sequence is repeated at turtle steps 8 and 9,
leaving the turtle at pixel II.

Detector ADF4 is now applied at pixel II. Fig. 9 shows
that when the turtle is located at pixel II, ADF4 returns T
when pixels I and II are ON and when pixels a, b, c, n, and m
are OFF.

Detector ADF4 returns T and thereby provides the new
information that pixels a and n are OFF. Thus, by turtle step
9, seven pixels (a, b, c, d, n, m, and l) have been verified as
being OFF via two applications of detector ADF4 and one
additional pixel (g) has been verified as being OFF via the
(GO-S) operator. In addition, five pixels (I, II, III, IV, and
V) have been verified (often repetitively) as being ON.
Several pixels have been verfied by more than one action by
turtle step 9.

Between turtle steps 10 and 21, the turtle repetitively
moves up and down (via several HOMINGs) along the vertical
segment of the L, but provides no information that is not
already known.

NNW

W

SW S SE

E

NE

9

Fig. 9 Detector ADF4 applied at pixel II at turtle step 9

The turtle arrives at pixel IV at turtle step 21 and begins
evaluation of the last six points of the antecedent clause of
the outermost IF of the value-returning branch, namely
(AND (NOT (AND (GO-S) (ADF3)))
 (HOMING (GO-N)))))))).

The (GO-S) operator moves the turtle to pixel V (the
junction of the L, which is ON) and executes detector ADF3.

Fig. 10 shows the pixels values required to cause ADF3 to
return a value of T. As can be seen, ADF3 examines five
pixels (NW, W, SW, S, and SE) to see if they are all OFF.

Off

Off

Off Off Off

Fig. 10 Arrangement of pixels required to cause ADF3 to return a
value of T

Fig. 11 shows that when the turtle is located at pixel V (the
junction of the L), ADF3 returns T when pixels d, e, f, g, and
h are OFF. These five pixels all lie adjacent to the junction
of the L, so ADF3 acts as a detector for emptiness adjacent to
the junction of an L.

NNW

W

SW S SE

E

NE

22

Fig. 11 Detector ADF3 applied at pixel V at turtle step 22

Since the NOT negates the return value of the AND, the
(HOMING (GO-N)) is not executed.

For the letter L, the antecedent part of the outermost IF of
the value-returning branch of the best-of-run individual of
generation 50 evaluates to NIL, so that the second (then)
argument of the IF is skipped and the third (else) argument is
executed. The (GO-E) operator moves the turtle east to
pixel VI (which is ON) and causes detector ADF2 to be
evaluated for turtle step 23.

Fig. 12 shows that ADF2 examines six pixels. ADF2
returns a value of NIL when NW, W, and E are ON and when
N, NE, and SE are OFF.

Off Off

On

Off

On

On

Fig. 12 Arrangement of pixels required to cause ADF2 to return a value

of NIL
Fig. 13 shows that when the turtle is located at pixel VI at

turtle step 23, ADF2 returns a value of NIL when pixels IV,
V, and VII are ON and when pixels i, j, and k are OFF.

NNW

W

SW S SE

E

NE

23

Fig. 13 Detector ADF2 applied at pixel VI at turtle step 23

The result now depends on the expression below involving
detector ADF2:
1 (IF (ADF2)
2 (IF (GO-S) L NIL)
3 (IF (GO-S)
4 (IF (ADF3) L NIL)
5 (IF (GO-S) NIL L)) ...).

For the letter L, ADF2 evaluates to NIL on line 1. As a
result, line 2 is skipped and the (GO-S) operator on line 3
moves the turtle south to pixel h at turtle step 24. Since pixel
h is OFF, line 4 is skipped and the (GO-S) operator on line
5 moves the turtle toroidally to pixel n for turtle step 25.
Since pixel n is OFF for the L, the result-producing branch
and the S-expression as a whole therefore returns L, which is
indeed the correct identification of the pattern.

Notice that if detector ADF2 returns T on line 1 above, this
would mean that either pixel i, j or k was ON or that pixel
VII was OFF (since pixels IV and V have been previously
established as being ON). Any of these four possibilities
would mean that the pattern is a flawed pattern for which
NIL (rather than L or I) should be returned. For example, if
pixel VII were OFF and pixel i were ON (as shown in the left
half of Fig. 2) or if pixel VII were ON and pixel i were ON,
the pattern would be a flawed L. In these situations, the
(GO-S) operator on line 2 would be executed, thereby
moving the turtle to pixel h. Since pixel h is already known
to be OFF, the result-producing branch and the S-expression
as a whole would return NIL, which, under the
circumstances, would be correct identification of the pattern.
Similarly, the result-producing branch and the S-expression
as a whole returns the value NIL for the 14 fitness cases for
which there is an extraneous ON pixel adjacent to an L (in
locations a through n) and the seven fitness cases for which
there is a missing pixel within an L (in locations I through
VII).

In summary, the best-of-run individual from generation 50
applies detectors at turtle steps 0, 9, 22, and 23 and considers
direct input from the turtle over 25 steps in order to

determine that all seven pixels (I through IV) that should be
ON for an L are indeed ON and that all 14 pixels that should
be OFF for an L are indeed OFF, as shown in Fig. 14.

2322

9

0

Fig. 14 Turtle steps 0, 9, 22, and 23 where detectors ADF2, ADF3, and

ADF3 are applied
In identifying the letter I, the turtle moves up and down the

vertical column consisting of pixels I through V and pixel g
for the first 22 turtle steps much as in the identification of the
L. However, when the turtle moves east on turtle step 23,
pixel VI is OFF for the I.

Notice that detector ADF0 is used for determining that
certain patterns should be classified as NIL, although it not
used in classifying the positive cases. Also, notice that
although ADF1 is merely the constant function NIL, it does
appear, and is used, in the result-producing branch.

V Conclusions
We have demonstrated the use of genetic programming

with automatic function definition to simultaneously discover
the detectors and a way of ssing the detectors to perform a
letter recognition task.

ACKNOWLEDGEMENTS

James P. Rice of the Knowledge Systems Laboratory at
Stanford University programmed the above on a Texas
Instrument Explorer II+ computer. Martin Keane and Simon
Handley made helpful comments on this paper.

REFERENCES
Koza, John R. Genetic Programming: On the Programming

of Computers by Means of Natural Selection. Cambridge,
MA: The MIT Press 1992. 1992a.

Koza, John R. Hierarchical automatic function definition in
genetic programming. In Whitley, Darrell (editor).
Proceedings of Workshop on the Foundations of Genetic
Algorithms and Classifier Systems, Vail, Colorado 1992.
San Mateo, CA: Morgan Kaufmann Publishers Inc. 1992.
1992b.

Koza, John R. and Rice, James P. Genetic Programming:
The Movie. Cambridge, MA: The MIT Press 1992.

Koza, John R., Martin A. Keane, and Rice, James P.
Performance improvement of machine learning via
automatic discovery of facilitating functions as applied to
a problem of symbolic system identification. In these
ICNN-93 Conference Proceedings. 1993.

Samuel, Arthur L. Some studies in machine learning using
the game of checkers. IBM Journal of Research and
Development, 3(3): 210–229. July 1959.

