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Abstract: Astrom and Hagglund developed tuning rules in 1995 for PID controllers 
that outperform the 1942 Ziegler-Nichols rules on an industrially representative set 
of plants. In this paper, we use genetic programming to automatically discover tuning 
rules for PID controllers that outperform the Astrom-Hagglund rules for the 
industrially representative set of plants specified by Astrom and Hagglund. 
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1 INTRODUCTION 

The PID controller was patented in 1939 by Albert 
Callender and Allan Stevenson of Imperial Chemical 
Limited (Callender and Stevenson 1939). 
The 1942 Ziegler-Nichols tuning rules provided a 
relatively simple and effective method for 
determining the parameter values for the 
proportional, integrative, and derivative blocks of the 
PID controller (Ziegler and Nichols 1942). The 
Ziegler-Nichols tuning rules remain in widespread 
use today for tuning PID controllers.  
In their 1995 book PID Controllers: Theory, Design, 
and Tuning, Astrom and Hagglund identified four 
families of plants  

"that are representative for the dynamics of 
typical industrial processes." 

The first of the four families of plants in Astrom and 
Hagglund 1995 consists of plants represented by 
transfer functions of the form  
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where T = 0.1, … , 10.  
 

The second family consists of the n-lag plants 
represented by transfer functions of the form  
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where n = 3, 4, and 8.  
 

The third family consists of plants represented by 
transfer functions of the form  
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where α = 0.2, 0.5, and 0.7.  

The fourth family consists of plants represented by 
transfer functions of the form  
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where α = 0.1, 0.2, 0.5, 1.0, and 2.0.  
 

Astrom and Hagglund developed a method in their 
1995 book for automatically tuning PID controllers 
for all the plants in all four of these industrially 
representative families of plants. In one version of 
their method, Astrom and Hagglund use two 
frequency-domain parameters, namely the ultimate 
gain, Ku, and the ultimate period, Tu. Astrom and 
Hagglund describe a procedure for estimating these 
parameters from the plant's response to a step input.  
 

The tuning rules developed by Astrom and Hagglund 
in their 1995 book outperform the widely used 
Ziegler-Nichols tuning rules on all 16 industrially 
representative plants used by Astrom and Hagglund. 
As Astrom- Hagglund observe,  
 

 “[Our] new methods give substantial 
improvements in control performance while 
retaining much of the simplicity of the 
Ziegler-Nichols rules.” 

The PID tuning rules devised by Astrom and 
Hagglund in 1995 are given by four equations.  
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Fig. 1. PID controller 



Referring to figure 1 (which shows a PID controller), 
equation 1 implements setpoint weighting, b, for the 
input to the proportional block 230 and is  

 b = 

0.56 -0.12
+ 2

0.25*
Ku Kue  

Equation 2 (for gain block 230) is the gain, Kp, that 
is associated with proportional block and is  

Kp = 
-1.6 1.2

+ 2
0.72* *

Ku Ku
uK e  

Equation 3 (for gain block 250) is the gain, Ki, that is 
associated with integrative block and is 

Ki = 

-1.6 1.2
+ 2

-1.3 0.38
+ 2

0.72* *

0.59* *

Ku Ku
u

Ku Ku
u

K e

T e

  

Equation 4 (for gain block 280) is the gain, Kd, that 
is associated with derivative block and is 

Kd = 
-1.6 1.2 -1.4 0.56

+ +2 2
0.108* * * *

K Ku uK Ku u
u uK T e e  

The transfer function for the Astrom-Hagglund PID 
controller is given by the equation: 
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where A is the output of the Astrom-Hagglund 
controller, R is the reference signal, P is the plant 
output, and b, Kp, Ki, and Kd are given above.  
 

The tuning rules developed by Astrom and Hagglund 
in their 1995 book outperform the widely used 
Ziegler-Nichols tuning rules (Ziegler and Nichols 
1942) on all 16 industrially representative plants 
used by Astrom and Hagglund.  
 

The question arises as to whether there are tuning 
rules that may improve on the Astrom-Hagglund 
rules.  
 

Boyd and Barratt state in Linear Controller Design: 
Limits of Performance (Boyd and Barratt 1991),  

"The challenge for controller design is to 
productively use the enormous computing 
power available. Many current methods of 
computer-aided controller design simply 
automate procedures developed in the 
1930's through the 1950's, for example, 
plotting root loci or Bode plots. Even the 
'modern' state-space and frequency-domain 
methods (which require the solution of 
algebraic Riccati equations) greatly 
underutilize available computing power."  

In this paper, we use genetic programming to 
automatically discover PID tuning rules that 
outperform the automatic tuning rules developed by 
Astrom and Hagglund in 1995 for the industrially 
representative set of plants used by Astrom and 
Hagglund.  

 

Section 2 provides background on genetic 
programming. Section 3 describes the preparatory 
steps required to apply genetic programming to the 
problem of automatically discovering tuning rules 
for PID controllers. Section 4 presents the results.  
 

2 GENETIC PROGRAMMING 

Genetic programming (Koza, Bennett, Andre, and 
Keane 1999; Koza, Keane, Streeter, Mydlowec, Yu, 
and Lanza 2003) is an automated method for solving 
problems. Specifically, genetic programming 
progressively breeds a population of computer 
programs over a series of generations. Genetic 
programming starts with a primordial ooze of 
thousands of randomly created computer programs 
and uses the Darwinian principle of natural selection, 
recombination (crossover), mutation, gene 
duplication, gene deletion, and certain mechanisms 
of developmental biology to breed an improved 
population over a series of many generations.  
 

Genetic programming breeds computer programs to 
solve problems by executing the following three 
steps:  

(1) Generate an initial population of 
compositions (typically random) of the functions 
and terminals of the problem. 
(2) Iteratively perform the following substeps 
(referred to herein as a generation) on the 
population of programs until the termination 
criterion has been satisfied: 

(A) Execute each program in the population 
and assign it a fitness value using the fitness 
measure. 
(B) Create a new population of programs by 
applying the following operations. The 
operations are applied to program(s) selected 
from the population with a probability based 
on fitness (with reselection allowed). 

(i) Reproduction: Copy the selected 
program to the new population. 
(ii) Crossover: Create a new offspring 
program for the new population by 
recombining randomly chosen parts of 
two selected programs. 
(iii) Mutation: Create one new offspring 
program for the new population by 
randomly mutating a randomly chosen 
part of the selected program. 
(iv) Architecture-altering operations: 
Select an architecture-altering operation 
from the available repertoire of such 
operations and create one new offspring 
program for the new population by 
applying the selected architecture-altering 
operation to the selected program.  

(3) Designate the individual program that is 
identified by result designation (e.g., the best-so-
far individual) as the result of the run of genetic 
programming. This result may be a solution (or 
an approximate solution) to the problem.  



 

3 PREPARATORY STEPS 

Before applying genetic programming to a problem 
involving the synthesis of a controller, the human 
user of genetic programming must perform six major 
preparatory steps: (1) determine the architecture of 
the program trees, (2) identify the terminals, (3) 
identify the functions, (4) define the fitness measure, 
(5) choose control parameters for the run, and (6) 
specify the termination criterion for the run. 
 

Initial experimentation quickly confirmed to us that 
the Astrom and Hagglund tuning rules are highly 
effective. Starting from scratch, genetic 
programming was readily able to evolve four multi-
dimensional surfaces that were very similar to the 
Astrom and Hagglund surfaces and that 
outperformed the Astrom and Hagglund tuning rules 
on average. However, the genetically evolved 
surfaces did not outperform the Astrom and 
Hagglund tuning rules across the board for every 
plant. Thus, we decided to approach the problem of 
discovering improved tuning rules by building on the 
Astrom and Hagglund results. Specifically, we used 
genetic programming to evolve four mathematical 
expressions which, when added to the four 
mathematical expressions devised by Astrom and 
Hagglund, yield improved overall performance. Note 
that any surface can emerge from this additive 
approach. 
3.1 Program Architecture 
We are seeking four mathematical expressions for 
four quantities (Kp, Ki, Kd, and b). The four 
mathematical expressions contain free variables 
representing the plant’s ultimate gain, Ku, and the 
plant’s ultimate period, Tu. Thus, the architecture of 
each program tree in the population has four result-
producing branches (one each for Kp, Ki, Kd, and b). 
Note that this problem can be viewed as a problem of 
discovering four multi-dimensional surfaces. 
3.2 Terminal Set 
The terminal set, T, or each of the four result-
producing branches contains 
T = {ℜ, KU, TU}. 
where KU represents the plant’s ultimate gain, Ku, 
and TU represents the plant’s ultimate period, Tu.  
 

Here ℜ denotes a perturbable numerical value. In the 
initial random generation (generation 0) of a run, 
each perturbable numerical value is set, individually 
and separately, to a random value in a chosen range 
(between –5.0 and +5.0 for this problem).  
3.3 Function Set 
The function set, F, for each of the four result-
producing branches contains functions for 
performing arithmetic, exponential, and logarithmic 
operations.  
F = {ADD_NUMERIC, SUB_NUMERIC, 

MUL_NUMERIC, DIV_NUMERIC, REXP, 
RLOG, POW}.  

The first six functions perform addition, subtraction, 
multiplication, division, exponential, and logarithm 
operations, respectively. The two-argument POW 
function returns the value of its first argument to the 
power of the value of its second argument. All 
functions are protected in the sense that they cannot 
yield a result whose absolute value is larger than 
1015.  
 

These functions (along with the terminals from the 
previous section) are the ingredients for the four 
tuning rule equations that are to be produced by 
genetic programming.  
3.4 Fitness Measure 
Genetic programming is a probabilistic algorithm 
that searches the space of compositions of the 
available functions and terminals under the guidance 
of a fitness measure. The fitness measure is a 
mathematical implementation of the problem's high-
level requirements.  
 

In this paper, genetic programming is being used to 
automatically create four equations using a fitness 
measure built from the same elements used in 
Astrom and Hagglund 1995. That is, our fitness 
measure attempts to optimize for the integral of the 
time-weighted absolute error (ITAE) for a step input 
and also to optimize for maximum sensitivity and 
sensor noise attenuation.  
 

We use the SPICE simulator (Quarles, Pederson, 
Newton, Sangiovanni-Vincentelli 1994) to simulate 
controllers. A SPICE netlist is constructed to 
represent the signal processing functions (gain, 
differentiator, integrator, addition, subtracting) of a 
PID controller with setpoint weighting, the plant, and 
the external feedback loop. This SPICE netlist is 
wrapped inside an appropriate set of commands to 
carry out various analyses in the time domain and in 
the frequency domain. We also provide SPICE with 
subcircuit definitions to implement all the signal 
processing functions necessary to represent the plant 
and the PID controller with setpoint weighting. The 
entire control system is then simulated using our 
modified version of the original 217,000-line 
SPICE3 simulator as a submodule within our genetic 
programming system. The genetic programming 
code then uses SPICE’s output to calculate the 
fitness of an individual controller.  
 

We use a test bed consisting of 30 different plants for 
this problem. Each of the 30 plants is from one of the 
four families (A, B, C, and D) of plants considered 
by Astrom and Hagglund in their 1995 book. We use 
more than the 16 plants used by Astrom and 
Hagglund to reduce the likelihood of over-fitting 
(particularly for the families for which Astrom and 
Hagglund consider only three plants). The 30 plants 
are identified in columns 1 and 2 of table 2. We 
subsequently use an additional 18 plants (again from 
the same four families) to cross-validate the results. 
The 18 additional plants are identified in columns 1 
and 2 of table 3.  
 



The fitness of each controller in the population is 
measured by means of eight separate invocations of 
the SPICE simulator for each plant. Since there are a 
total of 30 plants, the fitness measure entails 240 
separate invocations of the SPICE simulator.  
 

This multi-part fitness measure attempts to optimize 
step response and disturbance rejection while 
simultaneously imposing constraints on maximum 
sensitivity and sensor noise attenuation. The fitness 
of an individual controller is the sum, over the eight 
fitness cases for each of the 30 plants under 
consideration, of the detrimental contributions to 
fitness. The smaller the sum, the better.  
 

Step response and disturbance rejection is measured 
by means of the first six of the eight SPICE 
simulations for each plant under consideration. For 
each plant under consideration, six combinations of 
values (shown in table TTTTWOFAMILIES1) for 
the height of the reference signal and disturbance 
signal are considered. The reference signal is a step 
function that rises from 0 at time t = 0 to a specified 
height at t = 1 millisecond. The reference signal is 
one of the inputs to the controller. The disturbance 
signal is a step function that rises from 0 at time t = 
10Tu to a specified height at t = 10Tu + 1 millisecond. 
The disturbance signal is added to the controller's 
output.  
Table 1. Six combinations of height of reference and 

disturbance signals. 
Reference signal Disturbance signal 
1.0 1.0 
10-3 10-3 
-10-6 10-6 
1.0 -0.6 
-1.0 0.0 
0.0 1.0 

 
For each of the 30 plants under consideration, a 
transient analysis is performed in the time domain 
using the SPICE simulator for each of the six 
combinations of height of reference and disturbance 
signals in table 1. The function e(t) is the difference 
(error) at time t between the plant output and the 
reference signal. The contribution to fitness for each 
of these 180 elements is based on the sum of two 
integrals of time-weighted absolute error. The first 
term of the integral accounts for the controller's step 
response while the second term accounts for 
disturbance rejection.  
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The factor B in the first term of the integral 
multiplies each value of e(t) by the reciprocal of the 
amplitude of the reference signal (so that all 
reference signals are equally influential). The factor 
C in the second term of the integral multiplies the 
value of e(t) by the reciprocal of the amplitude of the 
disturbance signals. When the amplitude of either the 
reference signal or the disturbance signal is zero, the 
appropriate factor (B or C) is set to zero. The ITAE 

component of fitness is such that, all other things 
being equal, changing the time scale by a factor of F 
changes the ITAE by F2. The division of the integral 
by Tu

2 is an attempt to eliminate this artifact of the 
time scale and equalize the influence of each of the 
plants in the overall fitness measure. For these six 
elements of the fitness measure for each plant, the 
contribution to fitness is multiplied by 20 if the 
element is greater than that for the Astrom and 
Hagglund controller (1995).  
 

Stability margin is measured by means of the seventh 
SPICE simulation for each plant under consideration. 
Figure 2 presents a model for the entire system 
containing the given plant and the to-be-evolved 
controller. In this figure, R(s) is the reference signal; 
Y(s) is the plant output; and U(s) is the controller's 
output. Disturbance D(s) may be added to the 
controller's output U(s). Sensor noise N(s) may be 
added to the plant's output Y(s) yielding Q(s). Here 
N(s) is an AC signal. For each plant under 
consideration, an AC sweep is performed using the 
SPICE simulator from 1/(1000Tu) to 1000/Tu while 
holding the reference signal R(s) and the disturbance 
signal D(s) at zero. The maximum sensitivity, Ms, is 
a measure of the stability margin. It is desirable to 
minimize the maximum sensitivity (and therefore 
maximize the stability margin). The quantity 1/Ms is 
the minimum distance between the Nyquist plot and 
the point (-1,0) and is the stability margin 
incorporating both gain and phase margin. The 
maximum sensitivity is the maximum amplitude of 
Q(s). The contribution to fitness is 0 if Ms < 1.5; 
2(Ms - 1.5) for 1.5 ≤ Ms ≤ 2.0; and 20(Ms - 2.0) + 1 
for Ms > 2.0. For each plant under consideration, the 
contribution to fitness is multiplied by 10 if the 
element is greater than that for the Astrom and 
Hagglund controller (1995).  
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Fig. 2. Overall model 
 
Sensor noise attenuation is measured by means of the 
eighth SPICE simulation for each plant under 
consideration. Achieving favorable sensor noise 
attenuation is often in direct conflict with the goal of 
achieving a rapid response to setpoint changes and 
rejection of plant disturbances. For each plant under 
consideration, an AC sweep is performed using the 
SPICE simulator from 10/Tu to 1000/Tu while 
holding the reference signal R(s) and the disturbance 
signal; D(s) at zero. The attenuation of sensor noise 
is measured at plant output at Y(s). Amin is the 
minimum attenuation in decibels within this 
frequency range. It is desirable to maximize the 
minimum attenuation. The contribution to fitness for 



sensor noise attenuation is 0 if Amin > 40 dB; (40 - 
Amin)/10 if 20 dB ≤ Amin ≤ 40 dB; and 2 + (20 - Amin) 
if Amin < 20 dB. For each plant under consideration, 
the contribution to fitness is multiplied by 10 if the 
element is greater than that for the Astrom and 
Hagglund controller (1995).  
 

A controller that cannot be simulated by SPICE is 
assigned a high penalty value of fitness (10

8
).  

3.5 Control Parameters 
The population size, M, is 100,000. The remaining 
control parameters are in Koza, Keane, Streeter, 
Mydlowec, Yu, and Lanza 2003.  
3.6 Termination Criterion 
We manually monitored and terminated the run when 
fitness appeared to reach a plateau.  
 

4 RESULTS 

In the one run we made on this problem, PID tuning 
rules emerged on generation 76 that outperform the 
PID tuning rules in Astrom and Hagglund 1995.   
 

The improved tuning rules are obtained by adding 
the genetically evolved quantities below to the values 
of Kp, Ki, and Kd, and b in Astrom and Hagglund 
1995.  
 

The quantity, Kp-adj, that is to be added to Kp for the 
proportional part of the controller is  

-6-.0012340* - 6.1173*10uT  
The quantity, Ki-adj, that is to be added to Ki for the 
integrative part of the controller is  

-.068525* u

u

K
T

 

The quantity, Kd-adj, that is to be added to Kd for the 
derivative part of the controller is  

( ) ( )loglog 1.6342
-0.0026640

KuTue  
The quantity, badj, that is to be added to b for setpoint 
weighting of the proportional block is 

u
Ku

K
e

 

The authors refer to these evolved tuning rules as the 
Keane-Koza-Streeter (KKS) PID tuning rules.  
 

Table 2 compares the performance of the best-of-run 
genetically evolved PID tuning rules from generation 
76 as a percentage of the value for the Astrom and 
Hagglund controller for the 30 plants used by the 
evolutionary process. An “OK” appears in the table 
for the case where both controllers have a value of 0. 
As can be seen in the table, all percentages are either 
below 100% (indicating improvement) or “OK.”  
 

Table 3 compares the performance of the best-of-run 
genetically evolved PID tuning rules from generation 
76 as a percentage of the value for the Astrom and 
Hagglund controller for the additional 18 plants used 
to cross-validate the results produced by the 
evolutionary process. As can be seen in the table, all 

percentages are either below 100% (indicating 
improvement) or “OK.” 
 

Averaged over the 30 plants used by the evolutionary 
process, the best-of-run tuning rules from generation 
76 have 

• 91.6% of the setpoint ITAE of the Astrom-
Hagglund tuning rules,  
• 96.2% of the disturbance rejection ITAE of the 
Astrom-Hagglund tuning rules,  
• 99.5% of the reciprocal of minimum attenuation 
of the Astrom-Hagglund tuning rules, and 
• 98.6% of the maximum sensitivity, Ms, of the 
Astrom-Hagglund tuning rules.  

Averaged over the 18 additional plants, the best-of-
run tuning rules from generation 76 have  

• 89.7% of the setpoint ITAE of the Astrom-
Hagglund tuning rules,  
• 95.6% of the disturbance rejection ITAE of the 
Astrom-Hagglund tuning rules,  
• 99.5% of the reciprocal of minimum attenuation 
of the Astrom-Hagglund tuning rules, and 
• 98.5% of the maximum sensitivity, Ms, of the 
Astrom-Hagglund tuning rules.  

Averaged over the 16 plants originally used by 
Astrom and Hagglund in their 1995 book (a subset of 
the 30 plants used by the evolutionary process here), 
the best-of-run tuning rules from generation 76 have  

• 90.5% of the setpoint ITAE of the Astrom-
Hagglund tuning rules,  
• 96% of the disturbance rejection ITAE of the 
Astrom-Hagglund tuning rules,  
• 99.3% of the reciprocal of minimum attenuation 
of the Astrom-Hagglund tuning rules, and 
• 98.5% of the maximum sensitivity, Ms, of the 
Astrom-Hagglund tuning rules.  
 

5 CONCLUSION 

We presented genetically evolved tuning rules that 
outperform the automatic tuning rules developed by 
Astrom and Hagglund in 1995 for an industrially 
representative set of plants.  
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Table 2 Comparison of performance of the best-of-run PID tuning rules from generation 76 as a percentage of 

the value for the Astrom and Hagglund controller for 30 plants.  
Plant Plant 

parameter 
value 

ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 Stability Sensitivity 

A 0.1 94.4 94.4 94.1 94.2 86.9 98.2 95.4 96.7 
A 0.3 96.1 96.1 96.1 96.1 90.3 99.7 93.1 98.9 
A 1 90.2 90.2 90.2 90.2 83.2 96.3 94.6 99.4 
A 3 93.8 93.8 93.8 93.8 92.7 95.8 94.1 99.8 
A 4.5 94.2 94.2 94.2 94.2 93.6 96 95.9 99.8 
A 6 94.8 94.8 94.8 94.8 94.5 95.5 93.2 99.8 
A 7.5 95.4 95.4 95.4 95.4 95.3 96.3 88 99.7 
A 9 95.5 95.5 95.5 95.5 95.4 96.6 81.2 99.7 
A 10 95.6 95.6 95.6 95.6 95.4 96.6 60.2 99.6 
B 3 95.7 95.5 95.7 95.7 95.6 96 92.2 OK 
B 4 94.9 94.8 95.1 94.9 93.4 96.8 91.9 OK 
B 5 94.4 94.6 94.8 94.4 91.5 97.2 92.9 OK 
B 6 94.2 94 94.1 94.2 90.1 97.9 87.2 OK 
B 7 94.1 94.2 94 94.1 87.9 98.3 83.6 OK 
B 8 93.8 93.8 93.8 93.7 87 98.5 82.5 OK 
C 0.2 97.6 97.1 97.6 97.6 97.6 97.4 OK 93.5 
C 0.21 97.1 97.3 97.3 97.1 97 97.7 52.1 OK 
C 0.23 96.8 96.8 97.1 96.8 96.6 97.3 77.6 OK 
C 0.26 96.4 96.8 96.8 96.4 96.3 97.4 89.5 OK 
C 0.3 96.2 96.2 96.6 96.2 95.9 97.4 94.3 OK 
C 0.4 96.1 95.8 95.8 96.1 95.8 96.9 92.4 OK 
C 0.5 95.4 95.7 95.9 95.4 94.7 96.5 95.6 OK 
C 0.6 95 95.3 94.8 95 94 96.4 91.1 OK 
C 0.7 95.1 95 95.3 95.1 93.9 96.7 91.3 OK 
D 0.1 94.9 95.1 94.9 94.9 94.3 95.7 92.4 OK 
D 0.2 94.2 94.2 93.9 94.2 93.1 95.8 90 OK 
D 0.5 91.8 91.7 91.9 91.8 88.6 94.6 93.7 OK 
D 0.7 91 90.9 91.4 91 86.4 94.7 88.8 OK 
D 1 90.1 90.1 90.1 90.1 84.6 94.4 87.4 OK 
D 2 91.4 91.4 91.2 91.5 88.4 93.2 73.3 OK 

 
Table 3 Comparison of performance of the best-of-run PID tuning rules from generation 76 as a percentage of 

the value for the Astrom and Hagglund controller for 18 additional plants.  
Plant Plant 

parameter 
value 

ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 Stability Sensitivity 

A 0.15 94.7 94.7 94.3 94.5 88 98.6 95.5 93.2 
A 0.5 90.7 90.7 90.7 90.7 79.7 98.8 91 98.5 
A 0.9 90.1 90.1 90.1 90.1 82.3 96.8 95.1 99.5 
A 2.5 93.2 93.2 93.2 93.2 91.6 95.4 95.4 99.8 
A 4.0 94 94 94 94 93.2 96.2 96.5 99.8 
A 9.0 95.5 95.5 95.5 95.5 95.4 96.6 81.2 99.7 
C 0.25 96.6 96.9 96.9 96.6 96.5 97.7 86.7 OK 
C 0.34 96.4 96.6 96.5 96.4 96.1 96.9 96.2 OK 
C 0.43 96 95.9 95.7 96 95.7 96.6 93.7 OK 
C 0.52 95.8 95.3 95.7 95.8 95.3 96.3 95.9 OK 
C 0.61 95.1 95.3 94.9 95.1 94.2 96.4 89.6 OK 
C 0.69 95.2 95.1 95.4 95.2 94 96.7 91.1 OK 
D 0.15 94.7 94.9 94.3 94.7 94.1 95.7 88.4 OK 
D 0.3 93.2 93.3 93.4 93.2 91.2 95.7 91.9 OK 
D 0.6 91.2 91.3 91.5 91.2 87.4 94.6 88.3 OK 
D 0.85 90.2 90 90.4 90.2 85.3 94.4 89.8 OK 
D 1.2 90.4 90.4 90.4 90.4 84.4 94.2 86.6 OK 
D 1.8 91.1 91 90.8 91.1 87 93.5 59.6 OK 


