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This paper demonstrates that it is possible to use genetic programming to 

automatically create (reverse engineer) a computer program representing the logic 
underlying the genetic network for the expression level of the lac operon as measured by 
its mRNA. Genetic programming starts with observed time-domain expression levels of 
two genes (REPRESSOR or CAP) and the concentrations of two substances (GLUCOSE or 
LACTOSE) and automatically creates both a topological arrangement of conditional and 
comparative functions of the genetic network as well as all necessary numerical 
parameters of the genetic network whose behavior matches the observed time-domain 
data.  

 

1. Introduction 
Considerable amounts of data are becoming available concerning gene expression levels (obtained from 
microarrays) and concentrations of other substances that participate in genetic networks (Ptashne 1992; McAdams 
and Shapiro 1995; Loomis and Sternberg 1995; Yuh, Bolouri, and Davidson 1998; Voit 2000). 

The question arises as to whether it is possible to start with observed time-domain gene expression levels and 
concentrations of other substances and automatically "reverse engineer" the logic underlying a genetic network.  
This reverse engineering entails creating both a topological arrangement of conditional and comparative functions 
and all necessary numerical parameters of a genetic network whose behavior matches observed time-domain data.   

2. Statement of an Illustrative Problem 
Figure 1 is a schematic representation of a genetic network for the expression level of the lac operon (composed of 
the Z, Y, and A genes). The network involves of two genes (REPRESSOR or CAP) and substances (GLUCOSE or 
LACTOSE).   
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Figure 1 Genetic network for lac operon.    

The actual performance of the genetic network shown in figure 1 is determined by the expression levels of the 
two genes and the concentrations of the two substances in relation to threshold values.  These threshold values serve 



as numerical parameters of certain conditional and comparative functions. The logic underlying the genetic network 
for the lac operon can be succinctly written in C-style pseudo code as shown below. The numerical value returned 
by this program is the expression level of the lac operon (LAC_mRNA_LEVEL).  

 
if(LACTOSE_LEVEL >= LACTOSE_THRESHOLD) 
{ 
    if(GLUCOSE_LEVEL >= GLUCOSE_THRESHOLD) 
    { 
        LAC_mRNA_LEVEL = low; 
    } 
    else 
    { 
        if (CAP_LEVEL >= CAP_THRESHOLD) 
        { 
            LAC_mRNA_LEVEL = high; 
        } 
        else 
        { 
            LAC_mRNA_LEVEL = low; 
        } 
    } 
} 
else 
{ 
    if(REPRESSOR_LEVEL >= REPRESSOR_THRESHOLD) 
    { 
        LAC_mRNA_LEVEL = 0; 
    } 
    else  
    { 
        LAC_mRNA_LEVEL = low; 
    } 
} 
The goal in this paper is to automatically create (reverse engineer) both a topological arrangement of conditional 

and comparative functions and all necessary numerical parameters that represent the expression of the expression 
level of the lac operon as measured by its mRNA.  In other words, we seek to automatically create logic equivalent 
to that shown above from the time-domain data for the expression levels of the two genes and the concentrations of 
the two substances.   

3. Background of Genetic Programming 
Genetic programming (Koza, Bennett, Andre, and Keane 1999) is a method for automatically creating a computer 
program whose behavior satisfies specified high-level requirements. Genetic programming starts with a primordial 
ooze of thousands of randomly created computer programs (program trees) and uses the Darwinian principle of 
natural selection, recombination (crossover), mutation, gene duplication, gene deletion, and certain mechanisms of 
developmental biology to breed a population of programs over a series of generations. 

Recent work has demonstrated that genetic programming can automatically create complex networks that exhibit 
prespecified behavior in areas where the network's behavior is governed by differential equations (both linear and 
non-linear).  

For example, genetic programming is capable of automatically creating both the topology and sizing (component 
values) for analog electrical circuits (e.g., filters, amplifiers, computational circuits) composed of transistors, 
capacitors, resistors, and other components merely by specifying the circuit's output  that is, the output data 
values that would be observed if one already had the circuit (Koza, Bennett, Andre, and Keane 1999). Seven of the 
automatically created circuits infringe on previously issued patents.  

As another example, genetic programming is capable of automatically creating both the topology and sizing 
(tuning) for controllers composed of time-domain blocks such as integrators, differentiators, multipliers, adders, 



delays, leads, and lags merely by specifying the controller's effect on the to-be-controlled plant (Koza, Keane, Yu, 
Bennett, Mydlowec 2000). Two of the automatically created controllers infringe on previously issued patents.  

As yet another example, it is possible to automatically create antennas composed of a network of wires merely 
by specifying the antenna's high-level specifications (Comisky, Yu, and Koza 2000).  

4. Representation of Genetic Networks as Computer Programs 
Each program tree represents the logic of a genetic network. A program tree is a composition of functions from the 
function set and terminals from the terminal set and contains  

• internal nodes representing conditional and comparative functions,  
• external points (leaves) representing expression level of various genes, and 
• external points (leaves) representing concentration of substances.  

The value returned by the result-producing branch of the program tree is the expression level of the lac 
operation (called LAC_mRNA_LEVEL in the C-style pseudo code above).   

4.1. Repertoire of Functions 
The three-argument IF function returns the results of evaluating its third argument (the "else" clause) if its first 
argument is FALSE, but returns the results of evaluating its second argument (the "then" clause) if its first argument 
is TRUE.  

The two-argument < comparative function returns a value of TRUE if its first argument is less than its second 
argument, but otherwise FALSE.   

The two-argument > comparative function performs the opposite function.  

4.2. Repertoire of Terminals 
GLUCOSE_LEVEL and LACTOSE_LEVEL are substances.  

REPRESSOR_LEVEL and CAP_LEVEL are expression levels of genes.  
ℜ denotes a perturbable numerical value. In the initial random generation (generation 0) of a run, each 

perturbable numerical value is set, individually and separately, to a random value in a chosen range (from 0.0 and 
10.0 here).  These numerical values will serve as the thresholds in the overall logic of the evolved program.   

4.3. Constrained Syntactic Structure 
The trees are constructed in accordance with a constrained syntactic structure. The entire program tree returns a 
floating-point number. The first argument of an IF function must be a comparative function (< or >).  The two 
arguments of a comparative function must be a terminal. The second and third arguments of an IF function may be 
another IF function or a perturbable numerical value.  

5. Preparatory Steps 
5.1. Program Architecture 

Each program tree has one result-producing branch.  

5.2. Function Set 
The function set is 
F = {IF, <, >} 
with arity of three, two, and two, respectively.  

5.3. Terminal Set 
The terminal set is 
T = {GLUCOSE_LEVEL, LACTOSE_LEVEL, REPRESSOR_LEVEL, CAP_LEVEL, ℜ}.  

5.4. Fitness Measure 
Genetic programming is a probabilistic algorithm that searches the space of compositions of the available functions 
and terminals under the guidance of a fitness measure.  

Each individual genetic network is exposed to four time-domain scenarios representing the concentrations of 
substances (GLUCOSE_LEVEL or LACTOSE_LEVEL) and expression values of genes (REPRESSOR_LEVEL or 
CAP_LEVEL) over 20 time steps (except that there are only 19 time steps in the first scenario since time t = 0 is 
ignored).  



The first of the four fitness cases is based on a high level (10) of GLUCOSE_LEVEL and a low level (0) of 
LACTOSE_LEVEL. In this context the network is exposed, during the 20 time steps, to all four combinations of 
high and low values of CAP_LEVEL and REPRESSOR_LEVEL. Broadly speaking, the expression level of 
CAP_LEVEL initially rises.  While CAP_LEVEL is steady, REPRESSOR_LEVEL begins to rise. When 
REPRESSOR_LEVEL reaches it peak, CAP begins to fall.   

The second fitness case is based on a high level (10) of GLUCOSE_LEVEL and a high level (10) of 
LACTOSE_LEVEL. 

The third fitness case is based on a low level (0) of GLUCOSE_LEVEL and a high level (10) of 
LACTOSE_LEVEL. 

The fourth fitness case is based on a low level (0) of GLUCOSE_LEVEL and a low level (0) of 
LACTOSE_LEVEL.  

Fitness is the sum, over the 79 fitness cases, of the absolute weighted value of the difference between the value 
returned by the result-producing branch and the observed expression level of the lac operon (as measured by 
mRNA). If the value returned by the result-producing branch is within 5% of the observed expression level data, the 
weight is 1.0; otherwise it is 10. The smaller the fitness, the better. 

The number of hits is defined as the number of fitness cases (time steps 1 to 79) for which the difference is 
within 5% of the correct value.   

5.5. Control Parameters for the Run 
The population size, M, is 10,000.  A maximum size of 1,000 points (for functions and terminals) was established 
for the result-producing branch.  

6. Results  
The fitness of the best individual from the initial random generation (generation 0) is very high (namely 116.6).  
This individual scores 0 hits (out of 79).   

The best individual evolved during the run of genetic programming appeared in generation 93.  This individual 
has a fitness of 3.15 and scores 78 hits. This actual program is shown below:  

(IF (< LACTOSE_LEVEL 9.139 ) (IF (< REPRESSOR_LEVEL 6.270 ) (IF (> 
GLUCOSE_LEVEL 5.491 ) 2.02 (IF (< CAP_LEVEL 0.639 ) 2.033 (IF (< CAP_LEVEL 
4.858 ) (IF (> LACTOSE_LEVEL 2.511 ) (IF (> CAP_LEVEL 7.807 ) 5.586 (IF (> 
LACTOSE_LEVEL 2.114 ) 1.978 2.137 ) ) 0.0 ) (IF (> REPRESSOR_LEVEL 4.015 ) 
0.036 (IF (< GLUCOSE_LEVEL 5.128 ) 10.0 (IF (< REPRESSOR_LEVEL 4.268 ) 2.022 
9.122 ) ) ) ) ) ) (IF (> CAP_LEVEL 0.842 ) 0.0 5.97 ) ) (IF (< CAP_LEVEL 1.769 
) 2.022 (IF (< GLUCOSE_LEVEL 2.382 ) (IF (> LACTOSE_LEVEL 1.256 ) (IF (> 
LACTOSE_LEVEL 1.933 ) (IF (> GLUCOSE_LEVEL 2.022 ) (IF (< GLUCOSE_LEVEL 5.183 
) 6.323 (IF (> CAP_LEVEL 1.208 ) 9.713 0.842 ) ) 10.0 ) (IF (> GLUCOSE_LEVEL 
6.270 ) 2.109 ) 1.965 ) ) 0.665 ) 1.982 ) ) ) 

 
When the logic of this program is simplified and the program is rewritten in C-style pseudo code, the result is as 

follows: 
if(LACTOSE_LEVEL < 9.139)  
{ 
    if(REPRESSOR_LEVEL < 6.270)  
    { 
        LAC_mRNA_LEVEL = 2.022;  
    } 
    else 
    { 
        LAC_mRNA_LEVEL = 0.0; 
    } 
} 
else 
{ 
    if(CAP_LEVEL < 1.769) 
    { 
        LAC_mRNA_LEVEL = 2.022;  
    } 



    else 
    { 
        if(GLUCOSE_LEVEL < 2.382) 
        { 
            LAC_mRNA_LEVEL = 10.0;  
        } 
        else 
        { 
            LAC_mRNA_LEVEL = 1.982;  
        } 
    }  
} 

7. Conclusion 
The behavior of the above automatically created genetic network closely matches observed time-domain data. 
Notice that genetic programming automatically created both the topological arrangement of conditional and 
comparative functions as well as all necessary numerical parameters of the logic for this genetic network. 
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