
Automatic Synthesis of both the Topology and Parameters
for a Robust Controller for a Non-Minimal Phase Plant and

a Three-Lag Plant by Means of Genetic Programming

John R. Koza
Section on Medical Informatics

School of Medicine
Stanford University

Stanford, California 94305
koza@stanford.edu

www.smi.stanford.edu/peo
ple/koza

Martin A. Keane
Econometrics Inc.
111 E. Wacker Dr.

Chicago, Illinois 60601
makeane@ix.netcom.com

Jessen Yu
Genetic Programming Inc.

Box 1669
Los Altos, California 94023
jyu@cs.stanford.edu

Forrest H Bennett III
Genetic Programming Inc.

Box 1669
Los Altos, California 94023
forrest@evolute.com

www.genetic-
programming.com

William Mydlowec
Genetic Programming Inc.

Box 1669
Los Altos, California 94023
myd@cs.stanford.edu

Oscar Stiffelman
Computer Science Department

Stanford University
Stanford, California 94305

ozzie@cs.stanford.edu

Abstract
This paper describes how genetic programming

can be used to automate the synthesis of the design of
both the topology and parameter values for
controllers. The method described in this paper
automatically makes decisions concerning the total
number of processing blocks to be employed in the
controller, the type of each block, the topological
interconnections between the blocks, the values of all
parameters for the blocks, and the existence, if any,
of internal feedback between the blocks of the overall
controller. This design process can readily combine
optimization of performance (e.g., by a metric such
as the integral of the time-weighted error) with time-
domain constraints and frequency-domain
constraints.

Genetic programming is applied to two
illustrative problems of controller synthesis: the
design of a robust controller for a non-minimal-phase
plant and the design of a robust controller for a three-
lag plant. A previously published PID compensator
(Astrom and Hagglund 1995) for the three-lag plant
delivers credible performance. The automatically
created controller is better than 7.2 times as effective
as the previous controller as measured by the integral
of the time-weighted absolute error, has only 50% of
the rise time in response to the reference input, has
only 35% of the settling time, and is 92.7 dB better in

terms of suppressing the effects of disturbance at the
plant input.

1 Introduction
The process of creating (synthesizing) the design of a
controller entails making decisions concerning the
total number of processing blocks to be employed in
the controller, the type of each block (e.g., lead, lag,
gain, integrator, differentiator, adder, inverter,
subtractor, and multiplier), the interconnections
between the blocks, the values of all parameters for
all the blocks, and the existence, if any, of internal
feedback between the processing blocks. This process
is typically channeled along lines established by
existing mathematical techniques. For example,
existing techniques often lead to a PID-type
controller consisting of one proportional, one
integrative, and one derivative processing block.

It would be desirable to have an automatic system
for creating the design of a controller that did not
require the user to prespecify the topology of the
controller (e.g. PID), but, instead, automatically
produced both the overall topology and parameter
values directly from a high-level statement of the
requirements of the controller.

This paper describes how genetic programming
can be used to automatically create both the topology
and parameter values for a controller. The
automatically created controllers can accommodate

one or more externally supplied reference signals,
external feedback of one or more plant outputs to the
controller, computations of error between the
reference signals and the corresponding external
plant outputs, one or more internal state variables of
the plant, and one or more control variables. These
automatically created controllers can also
accommodate internal feedback of one or more
signals from one part of the controller to another part
of the controller. In addition, this design process can
readily combine optimization of performance (e.g.,
by a metric such as the integral of the time-weighted
error) with time-domain constraints and frequency-
domain constraints.

Section 2 describes two illustrative control
problems involving the design of a robust controller.
Section 3 provides general background on genetic
programming. Section 4 describes how genetic
programming is applied to control problems. Section
5 describes the preparatory steps necessary to apply
genetic programming to the two illustrative control
problems. Sections 6 and 7 presents the results.

2 Two Illustrative Problems
The first illustrative problem is to create both the
topology and parameter values for a robust controller
for non-minimal-phase plant such that plant output
reaches the level of the reference signal in minimal
time, such that the overshoot in response to a step
input is less than 2%, and such that the controller is
robust in the face of significant variation in the plant's
internal gain, K , and the plant's time constant, τ.
Specifically, the transfer function of the non-
minimal-phase plant is

2)1(

)5.01(
)(

s

sK
sG

τ+

−
=

A controller is presented in Villagran and Sbarbaro
(1998) and it delivers credible performance on this
problem. The previously published controller is
specialized for K = 1 and τ = 1 whereas the plant in
this paper operates over several different
combinations of values for K and τ. To make the
problem more realistic, we added an additional
constraint (satisfied by the controller of Villagran and
Sbarbaro) limiting the input to the plant to the range
between -40 and +40 volts.

The second problem is to create both the topology
and parameter values for a robust controller for a
three-lag plant such that plant output reaches the
level of the reference signal in minimal time, such
that the overshoot in response to a step input is less
than 2%, and such that the controller is robust in the
face of significant variation in the plant's internal

gain, K, and the plant's time constant, τ. Specifically,
the transfer function of the three-lag plant is

3)1(
)(

s

K
sG

τ+
=

The plant's internal gain, K, is varied from 1 to 2 and
the plant's time constant, τ, is varied from 0.5 to 1.0.

A PID controller is presented in Astrom and
Hagglund (1995, page 225) and it delivers credible
performance on this problem. To make the problem
more realistic, we added the additional constraint
(satisfied by the controller presented by Astrom and
Hagglund) limiting the input to the plant to the range
between -10 and +10 volts.

3 Background on Genetic
Programming

Genetic programming is an automatic technique for
generating computer programs to solve, or
approximately solve, problems. In particular, genetic
programming is capable of automatically creating the
design of complex structures.

Genetic programming (Koza 1992; Koza and Rice
1992) is an extension of the genetic algorithm
(Holland 1975). Genetic programming is capable
(Koza 1994a, 1994b) of evolving reusable,
parametrized, hierarchically-called automatically
defined functions (ADFs) so that an overall program
consists of a main result-producing branch and one or
more automatically defined functions (function-
defining branches). In addition, architecture-altering
operations (Koza, Bennett, Andre, and Keane 1999;
Koza, Bennett, Andre, Keane, and Brave 1999)
enable genetic programming to automatically
determine the number of automatically defined
functions, the number of arguments that each
possesses, and the nature of the hierarchical
references, if any, among such automatically defined
functions. Architecture-altering operations also
enable genetic programming to automatically
determine whether and how to use internal memory,
iterations, and recursion.

Genetic programming breeds computer programs
to solve problems by executing the following three
steps:
(1) Randomly create an initial population of
individual computer programs.
(2) Iteratively perform the following substeps (called
a generation) on the population of programs until the
termination criterion has been satisfied:

(a) Assign a fitness value to each program in the
population using the fitness measure.

(b) Create a new population of individual programs
by applying the following three genetic

operations. The genetic operations are
applied to one or two individuals in the
population selected with a probability based
on fitness (with reselection allowed).

(i) Reproduction: Reproduce a selected individual
by copying it into the new population.

(ii) Crossover : Create two new individual
programs from two selected parental
individuals by genetically recombining
subtrees from each parental program using
the crossover operation at randomly chosen
crossover points in the parental programs.

(iii) Mutation: Create a new individual from a
selected parental individual by randomly
mutating one randomly chosen subtree of
the parental program.

(iv) Architecture-altering operations: Choose an
architecture-altering operation create one
new offspring program for the new
population by applying the architecture-
altering operation to the selected program.

(3) Designate the individual computer program that is
identified by the method of result designation (e.g.,
the best-so-far individual) as the result of the run of
genetic programming. This result may be a solution
(or approximate solution) to the problem.

Genetic programming often creates novel designs
because it is a probabilistic process that is not
encumbered by the preconceptions that often channel
human thinking down familiar paths. Genet ic
Programming: Darwinian Invention and Problem
Solving (Koza, Bennett, Andre, and Keane 1999) and
the accompanying videotape (Koza, Bennett, Andre,
Keane, and Brave 1999) demonstrate that genetic
programming is capable of synthesizing the design of
both the topology and sizing for a wide variety of
analog electrical circuits from a high-level statement
of the circuit's desired behavior and characteristics.
Five of the evolved analog circuits in that book
infringe on previously issued patents while five
others deliver the same functionality as previously
patented inventions in a novel way.

Additional information on current research in
genetic programming can be found in Banzhaf,
Nordin, Keller, and Francone 1998; Langdon 1998;
Kinnear 1994; Angeline and Kinnear 1996; Spector,
Langdon, O'Reilly, and Angeline 1999; Koza,
Goldberg, Fogel, and Riolo 1996; Koza, Deb,
Dorigo, Fogel, Garzon, Iba, and Riolo 1997; Koza,
Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon,
Goldberg, Iba, and Riolo 1998; Banzhaf, Poli,
Schoenauer, and Fogarty 1998; Banzhaf, Daida,
Eiben, Garzon, Honavar, Jakiela, and Smith 1999;
Poli, Nordin, Langdon, and Fogarty 1999; in the new
journal Genetic Programming and Evolvable

Machines (from Kluwer Academic Publishers) and at
www.genetic-programming.org.

4 Genetic Programming and
Control

The output of a controller causes the actual
response(s) of a process (called the plant) to match
desired response(s), called the reference signal(s). In
a closed loop controller, the difference(s) between the
actual plant response(s) and the reference signal(s)
are computed and fed back into the controller.
Controllers are often represented by directed graphs
in which the internal points represent certain
functions, in which external points represent the
controller's input(s), and in which cycles correspond
to internal feedback within the controller.

Genetic programming can be extended to the
problem of creating both the topology and parameter
values for a closed loop controller by establishing a
mapping between the program trees used in genetic
programming and the specialized type of directed
graphs germane to controllers.

Various functions and terminals may be included
in the repertoire from which controllers can be
constructed. The functions correspond to blocks in a
block diagram representing a controller.

The number of main result-producing branches in
the to-be-evolved controller equals the number of
control variables that are to be passed from the
controller to the plant. Each result-producing branch
is a composition of the functions and terminals from
a repertoire (below) of functions and terminals.

Programs trees in the population during the initial
random generation (generation 0) consist only of
result-producing branch(es). Automatically defined
functions are introduced incrementally (and
sparingly) into the population on subsequent
generations by means of the architecture-altering
operations. Each automatically defined function is a
composition of the functions and terminals
appropriate for control problems, references to
existing automatically defined functions, and
(possibly) dummy variables (formal parameters) that
permit parameterization of the automatically defined
function. In control problems, automatically defined
functions provide a mechanism for internal feedback
(recursion) within the to-be-evolved controller.

Each branch of each program tree in the initial
random population is created in accordance with a
constrained syntactic structure. Each genetic
operation (crossover, mutation, reproduction, and
architecture-altering operation) produces offspring
that comply with the constrained syntactic structure.

4.1 Repertoire of Functions
The functions may include the following:

The two-argument GAIN function multiplies the
time-domain signal represented by its first argument
by a constant numerical factor represented by its
second argument.

The one-argument INVERTER function negates
the time-domain signal represented by its argument.

The DIFFERENTIAL_INPUT_INTEGRATOR
function has two arguments and integrates the time-
domain signal representing the difference between its
two arguments.

The two-argument LAG function applies the
transfer function 1 / (1 + τs), where s is the Laplace
operator and τ is a constant parameter. The first
argument is the time-domain input signal. The second
argument, τ, is numerically valued.

The three-argument LAG2 function applies the
transfer function

2
00

2

2
0

2 ωξω

ω

++ ss
,

where s is the Laplace operator, ζ is the damping
ratio, and ω0 is the corner frequency.

The two-argument LEAD function applies the
transfer function 1 + τs, where s is the Laplace
operator and τ is a constant parameter. The first
argument is the time-domain input signal. The second
argument, τ, is numerically valued.

The one-argument DIFFERENTIATOR function
differentiates the time-domain signal represented by
its argument.

The two-argument A D D _ S I G N A L and
SUB_SIGNAL functions perform addition or
subtraction, respectively, on the time-domain signals
represented by their two arguments.

The three-argument ADD_3_SIGNAL adds the
time-domain signals represented by its three
arguments.

4.2 Repertoire of Terminals
The terminals may include the following:

The REFERENCE_SIGNAL is the time-domain
signal representing the reference signal (desired plant
response).

The PLANT_OUTPUT is the plant output.
The CONTROLLER_OUTPUT is the time-domain

signal representing the output of the controller. Note
that this signal can be used, if desired to provide
feedback of the controller's output directly back into
the controller.

The CONSTANT_0_SIGNAL function is a time-
domain signal that is always zero.

Floating-point numerical constant terminals
(ranging from -5.0 to +5.0) are represented by

arithmetic-performing subtrees (described in detail in
Koza, Bennett, Andre, and Keane 1999) for the non-
minimal phase problem and by perturbable numerical
constants for the three-lag plant problem. They are
interpreted on a logarithmic scale so that they
represent values in a range of 10 orders of magnitude.

5 Preparatory Steps
Six major preparatory steps are required before
applying genetic programming to a problem: (1)
determine the architecture of the program trees, (2)
identify the terminals, (3) identify the functions, (4)
define the fitness measure, (5) choose control
parameters for the run, and (6) choose the termination
criterion and method of result designation.

5.1 Program Architecture
Since both problems involve one-output controllers,
each program tree in the population has one result-
producing branch. Each program tree also has up to
five automatically defined functions. Each program
tree in the initial random population (generation 0)
has no automatically defined functions. However, in
subsequent generations, the architecture-altering
operations may insert (and delete) automatically
defined functions to particular individual program
trees in the population.

5.2 Terminal Set
The terminal set, T, is
T = {CONSTANT_0, REFERENCE_SIGNAL,

CONTROLLER_OUTPUT,
PLANT_OUTPUT}.

5.3 Function Set
For the three lag plant problem, the function set, F, is
F = {GAIN, INVERTER, LEAD, LAG, LAG2,

DIFFERENTIAL_INPUT_INTEGRATOR,
DIFFERENTIATOR, ADD_SIGNAL,
SUB_SIGNAL, ADD_3_SIGNAL, ADF0,
ADF1, ADF2, ADF3, ADF4}.

Here ADF0 , ADF1, … denote the automatically
defined functions added during the run by the
architecture-altering operations. LAG2 is not used
for the non-minimal phase plant problem.

5.4 Fitness
Genetic programming is a probabilistic search
algorithm through the space of compositions of the
available functions and terminals. The search is
guided by a fitness measure. The fitness measure is a
mathematical implementation of the high-level
requirements of the problem. The fitness measure is
couched in terms of “what needs to be done” not
“how to do it.”

The fitness measure may incorporate any
measurable, observable, or calculable behavior or
characteristic or combination of behaviors or
characteristics. The fitness measure for most
problems of controller design is multi-objective in the
sense that there are several different (usually
conflicting) requirements for the controller.
Construction of the fitness measure requires
translating the high-level requirements of the
problem into a mathematically precise computation.

The fitness of each individual is determined by
executing the program tree (i.e., the result-producing
branch and any automatically defined functions that
may be present) to produce an interconnected
sequence of signal processing blocks that is, a
block diagram for the controller. The netlist for the
resulting controller is wrapped inside an appropriate
set of SPICE commands and the controller is then
simulated using our modified version of the SPICE
simulator (Quarles, Newton, Pederson, and
Sangiovanni-Vincentelli 1994). The SPICE
simulator returns tabular and other information from
which the fitness of the individual can be computed.
Three-Lag Plant Problem
For the three-lag plant problem, the fitness of a
controller is measured using 10 elements, including

(1) eight time-domain-based elements based on a
modified integral of time-weighted absolute
error (ITAE) measuring the rapidity of
achievement of the desired value of the plant
response, the controller's robustness, and the
controller's minimization of overshoot,

(2) one time-domain-based element measuring the
controller's stability when faced with an
extreme spiked reference signal, and

(3) one time-domain-based element measuring
disturbance rejection.

The fitness of an individual controller is the sum
of the detrimental contributions of these ten elements.
The smaller the fitness, the better.

The first eight elements of the fitness measure for
the three-lag plant problem together evaluate how
quickly the controller causes the plant to reach the
reference signal, the robustness of the controller in
face of significant variations in the plant's internal
gain and the plant's time constant, and the success of
the controller in avoiding overshoot. These eight
elements of the fitness measure represent the eight
choices of a particular one of two different values of
the plant's internal gain, K , in conjunction with a
particular one of two different values of the plant's
time constant τ, in conjunction with a particular one
of two different values for the height of the reference
signal. The two values of K are 1.0 and 2.0. The two
values of τ are 0.5 and 1.0. The first reference signal

is a step function that rises from 0 to 1 volts at t =
100 milliseconds. The second reference signal rises
from 0 to 1 microvolts at t = 100 milliseconds. The
two values of K and τ are used in order to obtain a
robust controller. The two step functions are used to
deal with the non-linearity caused by the limiter. For
each of these eight fitness cases, a transient analysis
is performed in the time domain using the SPICE
simulator. The contribution to fitness for each of
these eight elements of the fitness measure is based
on the integral of time-weighted absolute error

∫
=

6.9

0
))(()(

t
BdtteAtet .

Here e(t) is the difference (error) at time t between
the plant output and the reference signal. We
modified the integral of time-weighted absolute error
in three ways. First, we used a discrete
approximation to the integral by considering 120 80-
millisecond time steps between t = 0 to t = 9.6
seconds. Second, we multiplied each fitness case by
the reciprocal of the amplitude of the reference
signals so that both reference signals are equally
influential. Specifically, B multiplies the difference
e(t) associated with the 1-volt step function by 1 and
multiplies the difference e(t) associated with the 1-
microvolt step function by 106. Third, the integral
contains an additional weight, A , that varies
depending on e (t). The function A weights all
variations below the reference signal and all
variations up to 2% above the reference signal by a
factor of 1.0, but A heavily penalizes overshoots
above 2% by a factor 10.0.

The ninth element of the fitness measure for the
three-lag plant problem evaluates the stability of the
controller when faced with an extreme spiked
reference signal. The spiked reference signal rises to
10-9 volts at time t = 0 and persists for 10-
nanoseconds. The reference signal is then 0 for all
other times. An additional transient analysis is
performed using the SPICE simulator for 121 fitness
cases representing times t = 0 to t = 120
microseconds. If the plant output never exceeds a
fixed limit of 10-8 volts (i.e., a order of magnitude
greater than the pulse’s magnitude) for any of these
121 fitness cases, then this element of the fitness
measure is zero. However, if the absolute value of
plant output goes above 10-8 volts for any time t, then
the contribution to fitness is 500(0.000120 - t), where
t is first time (in seconds) at which the absolute value
of plant output goes above 10-8 volts. This penalty is
a ramp defined from the point (0, P) to (1.2, 0),
where P = 0.06 seconds is the maximum penalty.

The tenth element of the fitness measure for the
three-lag plant problem is based on disturbance
rejection. This tenth element is computed based on a

time-domain analysis for 9.6 seconds. In this
analysis, the reference signal is held at a value of 0.
A disturbance signal consisting of a unit step is added
to the CONTROLLER_OUTPUT at time t = 0 and the
resulting disturbed signal is provided as input to the
plant. The detrimental contribution to fitness is the
absolute value of the largest single difference
between the plant output and the reference signal
(which is invariant at 0 throughout).

A controller that cannot be simulated by SPICE is
assigned a high penalty value of fitness (108).
Non-Minimal Phase Plant Problem
This problem illustrates that a frequency domain
constraint can be readily intermixed with
optimization requirements and time-domain
constraints in the fitness measure.

The fitness measure for the non-minimal phase
plant problem consists of 11 elements. The first nine
elements are identical to that above. The tenth
element is identical, except that the test is performed
for 2.4 seconds. The eleventh element of the fitness
measure for the non-minimal phase plant problem
reflects a desire to avoid responding to high-
frequency perturbations in the reference signal. This
eleventh element is based on 121 fitness cases
representing an AC sweep of the reference signal
over 20 sampled frequencies (equally spaced on a
logarithmic scale) in each of six decades of frequency
between 0.01 Hz and 10,000 Hz. A gain of 0 dB is
ideal for the 80 fitness cases in the first four decades
of frequency between 0.01 Hz and 100 Hz; however,
a gain of up to +3 dB is acceptable. The detrimental
contribution to fitness for each of these 80 fitness
cases is zero if the gain is ideal or acceptable, but
18/121 per fitness case otherwise. The ideal gain for
the 41 fitness cases in the two decades between 100
Hz and 10,000 Hz is given by the straight line
connecting (100 Hz, -3 dB) and (10,000 Hz, -83 dB)
with a logarithmic horizontal axis and a linear
vertical axis. The detrimental contribution to fitness
for each of these fitness cases is zero if the gain is on
or below this straight line, but 18/121 per fitness case
otherwise.

5.5 Control Parameters
The population size, M , was 66,000. A maximum
size of 150 points (for functions and terminals) was
established for each result-producing branch and a
maximum size of 100 points was established for each
automatically defined function. The other parameters
for controlling the runs are the default values that we
apply to a broad range of problems (Koza, Bennett,
Andre, and Keane 1999).

5.6 Termination
The run was manually monitored and manually
terminated when the fitness of many successive best-
of-generation individuals appeared to have reached a
plateau. The single best-so-far individual is
harvested and designated as the result of the run.

5.7 Parallel Implementation
This problem was run on a home-built Beowulf-style
(Sterling, Salmon, Becker, and Savarese 1999;
Bennett, Koza, Shipman, and Stiffelman 1999)
parallel cluster computer system consisting of 66
processing nodes (each containing a 533-MHz DEC
Alpha microprocessor and 64 megabytes of RAM).
The processing nodes are connected with a 100
megabit-per-second Ethernet. The processing nodes
and the DEC Alpha type host use the Linux operating
system. The distributed genetic algorithm (Andre and
Koza 1996) was used with a population size of Q =
1,000 at each of the D = 66 demes (semi-isolated
subpopulations). Generations are asynchronous on
the nodes. On each generation, four boatloads of
emigrants, each consisting of B = 2% of the node's
subpopulation (each selected probabilistically on the
basis of fitness) emigrate to adjacent processing
nodes. For additional information, visit
www.genetic-programming.com.

6 Results for Non-Minimal
Phase Plant

The best individual from the initial random
generation (generation 0) for the non-minimal phase
plant problem has a fitness of 94.99.

The best-of-run individual from generation 38 has
a fitness of 21.72. Table1 shows the contribution of
each of the 11 elements of the fitness measure.
Table 1 Fitness of best-of-run individual for non-
minimal phase plant problem

Step size Internal
Gain, K

Time
constant

Fitness

1 1 1 1.0 3.00
2 1 1 0.5 3.94
3 1 2 1.0 1.54
4 1 2 0.5 2.12
5 10-6 1 1.0 3.00
6 10-6 1 0.5 3.94
7 10-6 2 1.0 1.54
8 10-6 2 0.5 2.14
9 Spiked reference signal 0.00
10 Disturbance rejection 0.49
11 AC sweep 0.00
TOTAL 21.72

Figure 1 shows the evolved best-of-run individual
from generation 38 (at the left of the figure) and the
non-minimal phase plant (on the right).

Figure 2 compares the plant response in the time
domain for the best-of-run individual (dashed curve)
and the controller presented by Villagran and
Sbarbaro (solid curve). The transfer functions for the
best-of-run individual from generation 38 are

()
()ss

ss
sH

+
++

=
51.2
78.167.113.1

)(
2

()()
()2

2

78.167.1

16.223.113.6221.0
)(

ss

sss
sF

++

+++
=

The evolved controller performs robustly. A
Bode plot for the entire system (not shown) confirms
that the evolved controller conforms to the desired
40db/decade roll-off at frequencies higher than
100Hz.

7 Results for Three-Lag Plant
The best individual from generation 0 of our one and
only run of this problem has a fitness of 14.35.

The best-of-run individual emerged in generation
31 and had a near-zero fitness of 1.14.

Figure 3 shows this individual controller in the
form of a block diagram.

Table 2 shows (for each of the eight combinations
of step size, internal gain, K, and time constant, τ) the
values of disturbance rejection (in microvolts out per
disturbance volt), integral of time-weighted error (in
volt-second2), closed loop bandwidth (in Hertz), rise
time (90%), and settling time (2%), for the best-of-
run individual of generation 31 for three-lag plant.

The system bandwidth is the frequency of the
reference signal above which the plant’s output is
attenuated by at least a specified degree (3db here) in
comparison to the plant’s output at a specified lower
frequency (e.g., DC or very low frequencies).

Table 3 shows (for each of the eight combinations
of step size, internal gain, K, and time constant, τ) the
values of disturbance rejection (in microvolts out per
disturbance volt), integral of time-weighted error (in
volt-second2), closed loop bandwidth (in Hertz), rise
time (90%), and settling time (2%), for the PID
solution (Astrom and Hagglund 1995) for three-lag
plant.

Astrom and Hagglund (1995) did not consider
seven of the eight combinations of values for K, τ,
and the step size used in computing the averages in
table 6, whereas we used all eight combinations of
values in our run. Accordingly, table 3 compares the
performance of the best-of-run controller from
generation 31 for the three-lag plant and the PID
controller (Astrom and Hagglund 1995) for the

specific value of plant internal gain, K, of 1.0 used in
Astrom and Hagglund, the specific value of the plant
time constant τ, of 1.0 used in Astrom and Hagglund,
and the specific step size of the reference signal (1.0
volts) used in Astrom and Hagglund. As can be seen
in table 4, the best-of-run genetically evolved
controller from generation 31 is 7.2 times better than
the textbook controller as measured by the integral of
the time-weighted absolute error, has only 50% of the
rise time in response to the reference input, has only
35% of the settling time, and is 92.7 dB better in
terms of suppressing the effects of disturbance at the
plant input. The genetically evolved controller has
2.9 times the bandwidth of the PID controller.

References
Andre, David and Koza, John R. 1996. Parallel

genetic programming: A scalable implementation
using the transputer architecture. In Angeline, P. J.
and Kinnear, K. E. Jr. (editors). 1996. Advances in
Genetic Programming 2. Cambridge: MIT Press.

Angeline, Peter J. and Kinnear, Kenneth E. Jr.
(editors). 1996. Advances in Genetic Programming
2. Cambridge, MA: The MIT Press.

Astrom, Karl J. and Hagglund, Tore. 1995. PID
Controllers: Theory, Design, and Tuning. Second
Edition. Research Triangle Park, NC: Instrument
Society of America.

Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E.,
Garzon, Max H., Honavar, Vasant, Jakiela, Mark,
and Smith, Robert E. (editors). 1999. GECCO-99:
Proceedings of the Genetic and Evolutionary
Computation Conference, July 13-17, 1999,
Orlando, Florida USA. San Francisco, CA: Morgan
Kaufmann.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E.,
and Francone, Frank D. 1998. G e n e t i c
Programming – An Introduction. San Francisco,
CA: Morgan Kaufmann and Heidelberg: dpunkt.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer,
Marc, and Fogarty, Terence C. 1998. Genetic
Programming: First European Workshop.
EuroGP'98. Paris, France, April 1998
Proceedings. Paris, France. April l998. Lecture
Notes in Computer Science. Volume 1391. Berlin,
Germany: Springer-Verlag.

Bennett, Forrest H III, Koza, John R., Shipman,
James, and Stiffelman, Oscar. 1999. Building a
parallel computer system for $18,000 that performs
a half peta-flop per day. In Banzhaf, Wolfgang,
Daida, Jason, Eiben, A. E., Garzon, Max H.,

Honavar, Vasant, Jakiela, Mark, and Smith, Robert
E. (editors). 1999. GECCO-99: Proceedings of the
Genetic and Evolutionary Computation
Conference, July 13-17, 1999, Orlando, Florida
USA. San Francisco, CA: Morgan Kaufmann.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in
Genetic Programming. Cambridge, MA: The MIT
Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge, MA:
MIT Press.

Koza, John R., Banzhaf, Wolfgang, Chellapilla,
Kumar, Deb, Kalyanmoy, Dorigo, Marco, Fogel,
David B., Garzon, Max H., Goldberg, David E.,
Iba, Hitoshi, and Riolo, Rick. (editors). 1998.
Genetic Programming 1998: Proceedings of the
Third Annual Conference. San Francisco, CA:
Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1999. Genetic Programming
III: Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann. Forthcoming.

Koza, John R., Bennett III, Forrest H, Andre, David,
Keane, Martin A., and Brave Scott. 1999. Genetic
Programming III Videotape. San Francisco, CA:
Morgan Kaufmann. Forthcoming.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco,
Fogel, David B., Garzon, Max, Iba, Hitoshi, and
Riolo, Rick L. (editors). 1997. Genetic
Programming 1997: Proceedings of the Second
Annual Conference San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Goldberg, David E., Fogel, David B.,
and Riolo, Rick L. (editors). 1996. Gene t i c
Programming 1996: Proceedings of the First
Annual Conference. Cambridge, MA: MIT Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT
Press.

Langdon, William B. 1998. Genetic Programming
and Data Structures: Genetic Programming + Data
Structures = Automatic Programming! Amsterdam:
Kluwer.

Poli, Riccardo, Nordin, Peter, Langdon, William B.,
and Fogarty, Terence C. 1999. G e n e t i c
Programming: Second European Workshop.
EuroGP'99. Proceedings. Lecture Notes in
Computer Science. Volume 1598. Berlin: Springer-
Verlag.

Quarles, Thomas, Newton, A. R., Pederson, D. O.,
and Sangiovanni-Vincentelli, A. 1994. SPICE 3
Version 3F5 User's Manual. Department of
Electrical Engineering and Computer Science,
Univ. of California. Berkeley, CA. March 1994.

Spector, Lee, Langdon, William B., O'Reilly, Una-
May, and Angeline, Peter (editors). 1999. Advances
in Genetic Programming 3. Cambridge, MA: MIT
Press.

Sterling, Thomas L., Salmon, John, Becker, D. J., and
Savarese, D. F. 1999. How to Build a Beowulf: A
Guide to Implementation and Application of PC
Clusters. Cambridge, MA: MIT Press.

Villagran, Victor and Sbarbaro, Daniel. 1998. A new
approach for turning PID controller based on iterative
learning. Proceedings of the 1998 IEEE International
Conference on Control Applications. Volume I.
Pages 139 - 143.

Figure 2 Comparison of evolved best-of-run
individual from generation 38 (dashed curve) and
previous result for non-minimal-phase plant (solid
curve).

Figure 1 Best-of-run genetically evolved controller from generation 38 controller and plant for non-minimal-
phase plant problem.

Figure 3 Best-of-run genetically evolved controller from generation 31 for the three-lag plant.

Table 2 Characteristics of best-of-run individual of generation 31 for the three-lag plant.
Step size K τ Disturban

ce
ITAE Bandwidt

h
Rise time Settling

time
1 1 1 1.0 4.3 0.360 0.72 1.25 1.87
2 1 1 0.5 4.3 0.190 0.72 0.97 1.50
3 1 2 1.0 4.3 0.240 0.72 0.98 1.39
4 1 2 0.5 4.3 0.160 0.72 0.90 1.44
5 10-6 1 1.0 4.3 0.069 0.72 0.64 1.15
6 10-6 1 0.5 4.3 0.046 0.72 0.53 0.97
7 10-6 2 1.0 4.3 0.024 0.72 0.34 0.52
8 10-6 2 0.5 4.3 0.046 0.72 0.52 0.98

AVERA
GE

4.3 0.142 0.72 0.77 1.23

Table 3 Characteristics of PID solution (Astrom and Hagglund 1995) for the three-lag plant.
Step size K τ Disturban

ce
ITAE Bandwidt

h
Rise time Settling

time
1 1 1 1.0 186,000 2.6 0.248 2.49 6.46
2 1 1 0.5 156,000 2.3 0.112 3.46 5.36
3 1 2 1.0 217,000 2.0 0.341 2.06 5.64
4 1 2 0.5 164,000 1.9 0.123 3.17 4.53
5 10-6 1 1.0 186,000 2.6 0.248 2.49 6.46
6 10-6 1 0.5 156,000 2.3 0.112 3.46 5.36
7 10-6 2 1.0 217,000 2.0 0.341 2.06 5.64
8 10-6 2 0.5 164,000 1.9 0.123 3.17 4.53

AVERA
GE

180,750 2.2 0.21 2.8 5.5

Table 4 Comparison of characteristics for K = 1.0, τ = 1.0, and step size of 1.0 for the three-lag plant.
Units Genetically evolved

controller
Astrom and Hagglund
1995 controller

Disturbance sensitivity µvolts /volt 4.3 186,000
ITAE volt sec2 0.360 2.6
Bandwidth (3dB) Hz 0.72 0.248
Rise time seconds 1.25 2.49
Settling time seconds 1.87 6.46

