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Abstract – The design (synthesis) of analog electrical circuits starts with a high-
level statement of the circuit's desired behavior and requires creating a circuit that 
satisfies the specified design goals. Analog circuit synthesis entails the creation of both 
the topology and the sizing (numerical values) of all of the circuit's components. The 
difficulty of the problem of analog circuit synthesis is well known and there is no 
previously known general automated technique for synthesizing an analog circuit from 
a high-level statement of the circuit's desired behavior.  

This paper presents a single uniform approach using genetic programming for 
the automatic synthesis of both the topology and sizing of a suite of eight different 
prototypical analog circuits, including a lowpass filter, a crossover (woofer and tweeter) 
filter, a source identification circuit, an amplifier, a computational circuit, a time-
optimal controller circuit, a temperature-sensing circuit, and a voltage reference circuit.  

The problem-specific information required for each of the eight problems is 
minimal and consists primarily of the number of inputs and outputs of the desired 
circuit, the types of available components, and a fitness measure that restates the high-
level statement of the circuit's desired behavior as a measurable mathematical quantity.  

The eight genetically evolved circuits constitute an instance of an evolutionary 
computation technique producing results on a task that is usually thought of as requiring 
human intelligence. The fact that a single uniform approach yielded a satisfactory 
design for each of the eight circuits as well as the fact that a satisfactory design was 
created on the first or second run of each problem are evidence for the general 
applicability of genetic programming for solving the problem of automatic synthesis of 
analog electrical circuits.  
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synthesis, electrical circuits.  
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1. INTRODUCTION 
Automatic programming is one of the central goals of computer science. Samuel [1] described 
this goal as making computers perform required tasks without being told explicitly how to 
accomplish these tasks. A particularly challenging area for applying automatic programming 
involves the design (i.e., synthesis) of analog electrical circuits. Typically, design necessitates 
creation of a complex structure to satisfy user-defined requirements. The requirements indicate 
what needs to be done, while the design details how to do it. Circuit design is a significant 
activity of practicing electrical engineers and is commonly viewed as requiring human 
intelligence.  

The design process for analog circuits begins with a high-level description of the circuit's 
desired behavior. Both the topology and the sizing of the circuit must be chosen such that the 
resulting circuit satisfies the design objectives. The topology comprises the gross number of 
components in the circuit, the type of each component (e.g., a resistor), and a list of all 
connections between components. The sizing entails specifying the values (often numerical) of 
each component in the circuit. 

Circuit design is of considerable practical importance because all electrical circuits are 
ultimately analog circuits. Moreover, a layer of analog circuitry provides an interface between 
most digital circuits and the rest of the world. Further, all commonly used analog circuits must 
be redesigned with the introduction of each new generation of solid-state process technology. 

Progress has been made in automating the design of certain categories of purely digital 
circuits; however, the design of analog circuits and mixed analog-digital circuits has not proved 
as amenable to automation [2]. When describing "the analog dilemma," Aaserud and Nielsen [3] 
noted "Analog designs are few and far between. In contrast to digital design, most of the analog 
circuits are still handcrafted by the experts and so-called 'zahs' of analog design. The design 
process is characterized by a combination of experience and intuition and requires a thorough 
knowledge of the process characteristics and the detailed specifications of the actual product. ... 
Analog circuit design is ... a knowledge-intensive, multiphase, iterative task, which usually 
stretches over a significant period of time and is performed by designers with a large portfolio of 
skills. It is therefore considered by many to be a from of art rather than science." As a result 
there is a shortage of design engineers. 

There has been no general automated technique for synthesizing an analog electrical circuit 
from a high-level statement of the desired behavior of the circuit. The difficulty of this problem 
is well known. In fact, even the analysis of the behavior of an already designed circuit is 
considerably more difficult for analog circuits than for digital circuits. The behavior of an analog 
circuit is specified by a system of integro-differential equations (IDEs) (one equation for each 
node or loop in the circuit in accordance with Kirchhoff's laws). When the circuit contains only 
linear and inactive components, such as capacitors, inductors, and resistors, the equations in the 
system are merely linear IDEs and mathematical techniques (e.g., Laplace transforms) may, in 
principle, be used to solve the equations. But when the circuit contains nonlinear and active 
components (e.g., transistors or diodes), the equations become nonlinear. In practice, the 
behavior of analog circuits is analyzed using numerical simulation. The problem of designing 
(i.e., synthesizing) a circuit with a particular desired behavior is even more vexatious than the 
problem of analyzing the behavior of an existing circuit because synthesis calls for creating both 
the topology and the sizing of each component in the circuit. 

When engineers design complex circuits, they bring human knowledge, intelligence, 
experience, and intuition to bear on the problem. The engineers' approach is very different from 
the process used in nature to design the most complex known structures: living organisms. In 
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nature, the design process proceeds by evolution — random variation and natural selection. It 
does not follow the organized, thought-out approach of the engineer. The question posed in the 
current work is whether the analog of nature's design process, evolutionary computation, can be 
successfully applied to the problem of analog circuit design. 

This paper presents a single, uniform approach to the automatic synthesis of both the topology 
and sizing of analog electrical circuits using genetic programming. The approach is illustrated by 
applying it to eight types of circuits. Section 2 provides background on synthesizing circuits. 
Section 3 presents the eight test problems. Section 4 describes the method for developing a 
circuit starting from an embryonic circuit using genetic programming. Section 5 details 
preparatory steps that are required prior to evolution. Section 6 offers results on the eight 
problems, emphasizing the evolution of a voltage reference circuit. Detailed depiction of evolved 
circuits are offered for readers familiar with circuit design.  Section 7 summarizes, giving 
particular attention to the uniformity of approach and its general applicability to the automatic 
synthesis of analog electrical circuits.  

2. PREVIOUS WORK 
Numerous techniques have been applied to various parts of the problem of circuit synthesis. An 
early effort concerned the use of constraint propagation [4], but in the 1980s attention was 
focused on knowledge-based design of operational amplifiers and comparators based on user-
supplied circuit topologies and associated design knowledge [5,6] (also see [7,8] for an extended 
knowledge-based system that attempted to find an appropriate sizing given a topology and could 
create new topologies when deemed necessary). Recent efforts in [9,10] start with the circuit 
topology and performance specifications. The system first produces an executable performance 
prediction module that is customized for the particular problem at hand. The prediction module 
guides simulated annealing for the sizing and biasing of a satisfactory circuit. This system was 
enhanced [11] to be capable of modifying a user-supplied topology while sizing and biasing. 
Binary variables indicate the presence or absence of certain connections and components in the 
topology. Again, annealing is used to perturb the topology by removing elements from a user-
supplied superset. 

The possibility of applying evolutionary computation to design problems was recognized in 
the earliest pioneering work, including efforts in the 1960s [12, 13]. These methods have been 
extended to evolve the length and structure of recursive digital filters with infinite impulse 
response (IIR) as well as numerical coefficients [14; and others]. Similar procedures have been 
offered within genetic algorithms (GAs) (see [15] for background) using numerical filter 
coefficients and time delays for analogy IIR filters [16], or powers-of-two coefficients for finite 
impulse response (FIR) discrete-time digital filters [17]. Modified GAs have also been used to 
design CMOS operational amplifiers (op amps) [18, 19]; however, the topology of each op amp 
was constrained to be 1 of 24 preselected topologies based on the conventional human-designed 
stages of an op amp. A GA was also used to evolve the topology of passive linear circuits 
composed of two-leaded components such as capacitors, resistors, and inductors [20]; however, 
component values were determined by subsequent numerical optimization. 

Evolvable digital hardware [21-23] offers a potential approach to automating the synthesis of 
circuits. A GA has been used to evolve a frequency discriminator on a Xilinx XC6216 rapidly 
reconfigurable field programmable gate array operating in analog mode [24]. Also, Gruau [25] 
used cellular encoding and genetic programming to evolve the architecture, weights, thresholds, 
and biases of neurons in a neural network.  
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3. EIGHT PROBLEMS OF ANALOG CIRCUIT SYNTHESIS 
The current effort concerns a suite of eight specific problems of analog circuit synthesis. The 
desired circuits comprise a variety of components, including transistors, diodes, resistors, 
inductors, and capacitors. The circuits have zero, one, or two inputs, and have one or two 
outputs. The eight problems involve designing: 

1) A lowpass filter having a one-input, one-output circuit composed of capacitors and 
inductors that passes all frequencies below 1 kHz and suppresses all frequencies above 2 kHz. 
Filters are ubiquitous in analog electrical circuitry. 

2) A crossover (woofer and tweeter) filter having a one-input, two-output circuit composed of 
similar components that passes all frequencies below 2.512 kHz to its first output port (the 
woofer), passes all higher frequencies to its second output port (the tweeter), and simultaneously 
suppresses the higher frequencies at the woofer and the lower frequencies at the tweeter. 

3) A four-way source identification circuit having one input and one output and composed of 
resistors, capacitors, and inductors that produces an output of 1/3, 2/3, or 1 V for incoming 
signals whose frequencies are within 10% of 256 Hz, 750 Hz, or 2.56 kHz, respectively, but 
produces an output of 0 V otherwise. 

4) A computational circuit having one input and one output and composed of transistors, 
diodes, resistors, and capacitors that produces an output voltage equal to the cube root of its 
input. The design of such circuits often relies on clever exploitation of the underlying device 
physics of the electrical components that is unique to the particular desired mathematical 
function [26-28]. Computational circuits are of special practical importance when the small 
number of required mathematical calculations does not warrant converting an analog signal into 
a digital signal, performing the mathematical function in the digital domain, and then converting 
the result back to the analog domain. 

5) A time-optimal controller circuit having two inputs and one output composed of similar 
components to those used above that is to control the flight path of an aircraft with nonzero 
turning radius such that the aircraft flies (at constant speed and altitude) to an arbitrary 
destination in minimal time. The inputs are two voltages representing the two-dimensional 
location of the target point in the aircraft's frame of reference. The output is the aircraft's turn 
angle. 

6) An amplifier composed of similar components and capable of delivering amplification of 
about 100 dB (i.e., 100,000 to 1) with low distortion, and little if any bias. Amplifiers are used 
for many purposes in analog electrical circuitry. 

7) A temperature-sensing circuit that is composed of similar components and produces an 
output voltage proportional to the circuit's ambient temperature (between freezing and boiling). 
There is no explicit input, and one output. The circuit is to infer its ambient temperature from the 
fact that its own electrical components operate differently at different temperatures. 

8) A voltage reference source circuit that is composed of similar components and delivers a 
constant 2 V in spite of variation in its incoming 5 V power supply voltage of ±1 V, and in spite 
of variation in the circuit's ambient temperature between freezing and boiling. The voltage 
supplied by all practical sources of electrical power are subject to variation, yet electrical circuits 
operate properly only when they are supplied with reference voltages that closely adhere to 
prespecified values. In addition, the behavior of electric circuits are subject to variation caused 
by the circuit's ambient temperature. Thus there is a need for a circuit that consistently supplies a 
prespecified constant voltage (within a small prespecified tolerance) in spite of variations in the 
incoming power supply and variations in the circuit's ambient temperature. The output is a 
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function of two variables (incoming voltage and temperature); however, the incoming power 
supply voltage is the only explicit input. 

4. USING GENETIC PROGRAMMING TO EVOLVE CIRCUITS 
The circuits are developed using genetic programming (GP) [29, 30], an extension of the GA in 
which the population consists of computer programs. Multipart programs consisting of a main 
program and one or more reusable, parametrized, hierarchically-called subprograms can be 
evolved using automatically defined functions (ADFs) [31, 32]. Architecture-altering operations 
[33] automatically determine the number of such subprograms, the number of arguments that 
each possesses, and the nature of the hierarchical references, if any, among such ADFs. See [34-
37] for current research in GP.  

The procedure breeds a population of rooted, point-labeled trees (acyclic graphs) with ordered 
branches, whereas electrical circuits consist of line-labeled cyclic graphs. GP can be applied to 
circuits if a mapping is established between the program trees used in GP and the cyclic graphs 
germane to electrical circuits. 

The principles of developmental biology suggest a way to map program trees into circuits via 
a growth process that begins with a simple "embryonic circuit." This embryo may include the 
inputs and outputs of the particular circuit being designed and may also include certain fixed 
components (such as source and load resistors). The embryo also contains certain wires that are 
capable of subsequent modification. Until these are modified, however, the circuit does not 
produce any interesting output. An electrical circuit is progressively developed by applying 
various functions in a circuit-constructing program tree to the modifiable wires of the embryonic 
circuit (and as the circuit develops, also to the components and the modifiable wires of the 
successor circuits). 

The functions in the circuit-constructing program trees are divided into four categories: 1) 
connection-modifying functions (CMFs) that alter the circuit topology, 2) component-creating 
functions (CCFs) that insert components into the circuit, 3) arithmetic-performing functions that 
appear in subtrees as argument(s) to the CCFs and specify the numerical value of the component, 
and 4) ADFs that appear in the function-defining branches and potentially enable certain 
substructures of the circuit to be reused (with parametrization). 

Each branch of the program tree is created in accordance with a constrained syntactic 
structure. Branches are composed of construction-continuing subtrees that continue the 
developmental process and arithmetic-performing subtrees (APSs) that determine the numerical 
value of components. CMFs have one or more construction-continuing subtrees, but no APSs. 
CCFs have one or more construction-continuing subtrees and typically have one APS. This 
constrained syntactic structure is preserved using structure-preserving crossover with point 
typing (see [31]). 
4.1 The Embryonic Circuit 
In the automated process for circuit synthesis described here, an electrical circuit is created by 
executing a circuit-constructing program tree. The tree contains various component-creating and 
topology-modifying functions. Each tree in the population creates one circuit. The 
developmental process uses the program tree to convert an embryonic circuit into a fully 
developed circuit, and the specific embryo used depends on the number of inputs and outputs. 

Figure 1 shows a one-input, one-output embryonic circuit in which VSOURCE is the input 
signal and VOUT is the output signal (the probe point). The circuit is driven by an incoming 
alternating circuit source VSOURCE. There is a fixed load resistor RLOAD and a fixed source 
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resistor RSOURCE in the embryo. In addition to the fixed components, there is a modifiable 
wire Z0 between nodes 2 and 3. All development originates from this modifiable wire. 

 
[INSERT FIGURE 1] 
 

4.2 Component-Creating Functions 
Each program tree in the population contains CCFs and CMFs. The CCFs insert a component 
into the developing circuit and assign component value(s) to the component.  

Each CCF has a writing head that points to an associated highlighted component in the 
developing circuit and modifies that component in a specified manner. The construction-
continuing subtree of each CCF points to a successor function or terminal in the circuit-
constructing program tree. 

The APS of a CCF consists of a composition of arithmetic functions (addition and 
subtraction) and random constants (in the range -1.000 to +1.000). The APS specifies the 
numerical value of a component by returning a floating-point value that is interpreted on a 
logarithmic scale as the value for the component in a range of 10 orders of magnitude (using a 
unit of measure that is appropriate for the particular type of component [38,39]). 

The two-argument resistor-creating R function causes the highlighted component to be 
changed into a resistor. The value of the resistor in kilo Ohms (k Ω) is specified by its APS (one 
of two arguments of the R function). The second argument is a construction-continuing subtree. 

Fig. 2a shows a modifiable wire Z0 connecting nodes 1 and 2 of a partial circuit containing 
four capacitors. The circle indicates that Z0 has a writing head (i.e., is the highlighted 
component) so that Z0 is subject to subsequent modification.  

Fig. 2b shows the result of applying the R function to the modifiable wire Z0 of Fig. 2a. The 
circle indicates that the newly created R1 has a writing head so that R1 remains subject to 
subsequent modification.  

 
[INSERT FIGURES 2a and 2b] 
 
Similarly, the two-argument capacitor-creating C function causes the highlighted component 

to be changed into a capacitor whose value in micro Farads (µF) is specified by its APS.  
The one-argument Q_D_PNP diode-creating function causes a diode to be inserted in lieu of 

the highlighted component. This function has only one argument because there is no numerical 
value associated with a diode and thus no APS. In practice, the diode is implemented here using 
a pnp transistor whose collector and base are connected to each other. The Q_D_NPN function 
inserts a diode using an npn transistor in a similar manner. 

There are also six one-argument transistor-creating functions (Q_POS_COLL_NPN, 
Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, 
Q_NEG_COLL_PNP) that insert a bipolar junction transistor in lieu of the highlighted 
component and that directly connect the collector or emitter of the newly created transistor to a 
fixed point of the circuit (the positive power supply, ground, or the negative power supply). 
These functions have only one argument because there is no numerical value associated with a 
transistor and thus no APS. There are only six such functions in this family because the other 
possibilities are not electronically reasonable. 

Figure 3 shows the result of applying Q_POS_COLL_NPN that inserts a bipolar junction 
transistor whose collector is connected to the positive power supply. The function operates on 
the modifiable wire Z0 of Fig. 2a, thereby creating a transistor Q6 connecting nodes 1 and 2 in 
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Figure 3. The base of the transistor is connected to the node at the positive end of Z0 (node 2 of 
Fig. 2a) and the emitter is connected to the node at the negative end of Z0 (node 1 of Fig. 2a). 
The collector is connected to a +5 V DC positive power supply POS. 

 
[INSERT FIGURE 3] 
 
Each of the functions in the family of six different three-argument transistor-creating 

Q_3_NPN functions causes an npn bipolar junction transistor to be inserted in place of the 
highlighted component and one of the nodes to which the highlighted component is connected. 
The Q_3_NPN function creates five new nodes and three modifiable wires. There is no writing 
head on the new transistor, but there is a writing head on each of the three new modifiable wires. 
There are 12 members (called Q_3_NPN0, ..., Q_3_NPN11) in this family of functions because 
there are two choices of nodes (1 and 2) in Fig. 2a to be bifurcated and then there are six ways of 
attaching the transistor's base, collector, and emitter after the bifurcation. Figure 4 shows the 
result of applying the Q_3_NPN0 function, thereby creating transistor Q6 in lieu of the 
modifiable wire Z0 of Fig. 2a. 

 
[INSERT FIGURE 4] 
 
Similarly the family of 12 Q_3_PNP functions causes a pnp bipolar junction transistor to be 

inserted. For additional details of these functions see [38-45]. 
4.3 Connection-Modifying Functions 
Each CMF in a program tree points to an associated highlighted component and modifies the 
topology of the developing circuit. 

The one-argument polarity-reversing FLIP function attaches the positive end of the 
highlighted component to the node to which its negative end is currently attached and vice versa. 
After execution of the FLIP function, there is one writing head pointing to the component. 

The three-argument SERIES division function creates a series composition consisting of the 
highlighted component (with a writing head), a copy of it (with a writing head), one new 
modifiable wire (with a writing head), and two new nodes. Fig. 5 illustrates the result of 
applying the SERIES division function to resistor R1 from Fig. 2b. 

 
[INSERT FIGURE 5] 
 
The four-argument PSS and PSL parallel division functions create a parallel composition 

consisting of the original highlighted component (with a writing head), a copy of it (with a 
writing head), two new modifiable wires (each with a writing head), and two new nodes. Fig. 6 
shows the result of applying PSS to the resistor R1 from Fig. 2b. 

 
[INSERT FIGURE 6] 
 
There are six three-argument functions (T_GND_0, T_GND_1, T_POS_0, T_POS_1, 

T_NEG_0, T_NEG_1) that insert two new nodes and two new modifiable wires, and then make 
a connection to ground, positive power supply, or negative power supply, respectively. Fig. 7 
shows the T_GND_0 function connecting resistor R1 of Fig. 2b to ground. There are two 
members in each of these three families of functions (T_GND_0 and T_GND_1 for the first 
family) because resistor R1 can become connected to node 1 or node 2.  
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[INSERT FIGURE 7] 
 
There are two three-argument functions (PAIR_CONNECT_0 and PAIR_CONNECT_1) that 

enable distant parts of a circuit to be connected together. The first PAIR_CONNECT to occur in 
the development of a circuit creates two new wires, two new nodes, and one temporary port. The 
next PAIR_CONNECT creates two new wires and one new node, connects the temporary port to 
the end of one of these new wires, and then removes the temporary port. 

The one-argument NOOP function has no effect on the highlighted component; however, it 
delays activity on the developmental path on which it appears in relation to other developmental 
paths in the overall program tree.  

The zero-argument END function causes the highlighted component to lose its writing head, 
thereby ending that particular developmental path.  

The zero-argument SAFE_CUT function causes the highlighted component to be removed 
from the circuit provided that the degree of the nodes at both ends of the highlighted component 
is three (i.e., no dangling components or wires are created). 

5. PREPARATORY STEPS 
Before applying GP to circuit synthesis, seven major preparatory steps are required: 1) identify 
the suitable embryonic circuit, 2) determine the architecture of the overall circuit-constructing 
program trees, 3) identify the terminals of the programs to be evolved, 4) identify the primitive 
functions contained in these programs, 5) create the fitness measure, 6) choose control 
parameters (e.g., population size, the maximum number of generations), and 7) determine the 
termination criterion and method of result designation. Each of these is discussed below. 
5.1 Embryonic Circuit 
The embryonic circuit used on a particular problem depends on the circuit's number of inputs 
and outputs. Fig. 1 showed an embryo suitable for a one-input, one output circuit. But consider a 
crossover (woofer and tweeter) filter having a single input and two outputs. This circuit has two 
probe points VOUT1 and VOUT2, not just one. Moreover, each probe point needs its own 
separate load resistor. Finally, there must be a way to establish connections between the input 
and the two outputs. Thus, the embryo of Fig. 1 is not suitable for the crossover filter.    

Fig. 8 shows an embryonic circuit that meets the requirements of the problem of designing a 
crossover filter.  The three modifiable wires Z0, Z1, and Z2 provide full connectivity between 
the single input at node 2 and the two outputs at nodes 3 and 6.  This embryonic circuit has two 
probe points (VOUT1 and VOUT2) and two separate load resistors (RLOAD1 and RLOAD2, 
respectively).   
 

[INSERT FIGURE 8] 
 

All development originates from the modifiable wires of the embryonic circuit. For each such 
wire there is an associated result-producing branch in the circuit-constructing program tree. The 
top portion of Fig. 8 contains a highly abbreviated circuit-constructing program tree showing 
only the uppermost functions (L, C, and C, respectively) of the three result-producing branches 
and omitting the APSs associated with the L, C, and C functions. In the figure, the inductor-
creating function L in the first result-producing branch points to the modifiable wire Z0. There is 
a writing head associated with each function in the program tree. When the L function is 
executed, it converts Z0 into an inductor; the newly created inductor acquires the writing head. 
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Similarly, the two capacitor-creating C functions convert modifiable wires Z1 and Z2 into 
capacitors (each with a writing head).  

Note that a valid one-input, two output circuit is always produced when any sequence of 
CCFs and CMFs is applied to the embryo. For example, after the three wires are modified by the 
three CCFs in Fig. 8, connectivity is maintained between the original input at node 2 and the two 
original outputs at nodes 3 and 6. Similarly, connectivity will also be maintained between the 
original input and outputs when the topology of the developing circuit is later modified by 
CMFs.  It should also be noted that the number of items connected to each node of the 
embryonic circuit is either two or three.  Moreover, after the execution of any sequence of CCFs 
and CMFs, the number of items connected to each node of every fully developed circuit will also 
be either two or three.  That is, the CCFs and CMFs preserve both circuit validity and the degree 
of connectivity (two or three) of each node.   

The foregoing two embryonic circuits (and all of the subsequent embryos herein) can each be 
viewed as having two distinct parts.  First, the inputs, outputs, and their associated source and 
load resistors can together be viewed as a fixed "harness" that does not change during the 
developmental process.  Second, the modifiable wires provide an initial means of connecting the 
inputs to the outputs and provide a site for the development of the full circuit.   

The problem of designing a time-optimal controller differs from the above two problems in 
that the desired controller must have two inputs and one output. Thus, its embryonic circuit (Fig. 
9) has two inputs VSOURCE1 and VSOURCE2, and each input has a separate load resistor 
(RSOURCE1 and RSOURCE2, respectively). This embryo has three modifiable wires Z0, Z1, 
and Z2 that provide full connectivity between the two inputs at nodes 2 and 6 and the single 
output at node 3. All development originates from the three modifiable wires Z1, Z2, and Z3.  

 
[INSERT FIGURE 9] 
 
The desired temperature-sensing circuit has no explicit input and one output. Fig. 10 shows a 

suitable embryo. It has a loop consisting of two modifiable wires Z1 and Z2.  
 
[INSERT FIGURE 10] 
 
In some problems, such as designing an amplifier, the embryo contains additional fixed 

components because additional problem-specific functionality is required. Fig. 11 shows a one-
input, one-output feedback embryo containing a 100 mega Ohm feedback resistor 
RFEEDBACK and a 100 Ω source resistor RSOURCE. The possible amplification of the 
circuit that will be evolved in lieu of the three modifiable wires Z0, Z1, and Z2 will be limited to 
120 dB (a 1,000,000-to-1 gain) by the ceiling established by the ratio of the feedback resistor 
RFEEDBACK to the source resistor RSOURCE. This embryo also contains a 100 mega Ohm 
balance feedback resistor RBALANCE_FEEDBACK and a 100 Ω balance source resistor 
RBALANCE_SOURCE.  

 
[INSERT FIGURE 11] 
 
There is often considerable flexibility in choosing the embryonic circuit. For example, Fig. 1 

showed the one-input, one-output embryo with one modifiable wire that was used for the source 
identification circuit, voltage reference circuit, and the computational circuit for the cube root; 
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however, an embryo with two modifiable wires (Z0 and Z1) (Fig. 12) would also have been 
suitable for these circuits and was, in fact, used for the lowpass filter.  

 
[INSERT FIGURE 12] 
 

5.2 Program Architecture 
Since there is one result-producing branch in the program tree for each modifiable wire in the 
embryo, the architecture of each circuit-constructing program tree depends on the embryonic 
circuit. One result-producing branch was used for problems 3, 4, and 8, two were used for 
problems 1 and 7, and three were used for problems 2, 5, and 6 (see above). The architecture of 
each circuit-constructing program tree also depends on the use, if any, of ADFs. ADFs and 
architecture-altering operations were used in problems 3, 5, and 6. For these problems, each 
program in the initial population of programs had a uniform architecture with no ADFs. In later 
generations, the number of ADFs, if any, emerged as a consequence of the architecture-altering 
operations. 
5.3 Function and Terminal Sets 
The function set for each design problem depended on the type of electrical components that 
were used to construct the circuit. Capacitors, diodes, and transistors were used for five of the 
eight circuits (problems 4-8). Resistors were used for problem 3. When transistors were used, 
functions to provide connectivity to the positive and negative power supplies were also included, 
except that these were not included for problem 8 because the power supply was, by the nature 
of the problem, an independent input to the circuit. 

For problems 4, 5, 6, and 7, the function set, Fccs-initial, for each construction-continuing 
subtree was 
Fccs-initial = {R, C, SERIES, PSS, PSL, FLIP, NOOP, T_GND_0, T_GND_1, T_POS_0, 

T_POS_1, T_NEG_0, T_NEG_1, PAIR_CONNECT_0, PAIR_CONNECT_1, 
Q_D_NPN, Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11, Q_3_PNP0, ..., Q_3_PNP11, 
Q_POS_COLL_NPN, Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, 
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP}. 

For the npn transistors, the Q2N3904 model was used. For pnp transistors, the Q2N3906 
model was used. 

The initial terminal set, Tccs-initial, for each construction-continuing subtree was 
Tccs-initial = {END, SAFE_CUT}.  

The initial terminal set, Taps-initial, for each arithmetic-performing subtree consisted of 
Taps-initial = {←}, 
where ← represents floating-point random constants from –1.0 to +1.0.  

The function set, Faps, for each APS was, 
Faps = {+, -}.  

The terminal and function sets were identical for all result-producing branches for a particular 
problem. 

For problems 1-3 there was no need for functions to provide connectivity to the positive and 
negative power supplies. 

For problems 3, 5, and 6 the architecture-altering operations were used and the set of potential 
new functions, Fpotential, was 
Fpotential = {ADF0, ADF1, ...}.  
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The set of potential new terminals, Tpotential, for the ADFs was 
Tpotential = {ARG0}.  

The architecture-altering operations changed the function set, Fccs for each construction-
continuing subtree of all three result-producing branches and the function-defining branches, so 
that 
Fccs = Fccs-initial ≈ Fpotential. 

The architecture-altering operations generally changed the terminal set for ADFs, Taps-adf, 
for each APS, so that 
Taps-adf = Taps-initial ≈ Tpotential.  

5.4 Fitness Measure 
The fitness measure guides the evolutionary process. The evaluation of each individual circuit-
constructing program tree in the population begins with its execution. This execution applies the 
functions in each program tree to an embryonic circuit, thereby creating a fully developed 
circuit. A netlist is created that identifies each component of the developed circuit, the nodes to 
which each component is connected, and the value of each component. The netlist becomes the 
input to the 217,000-line SPICE (Simulation Program with Integrated Circuit Emphasis) 
simulation program [45].  SPICE then determines the behavior of the circuit. It was necessary to 
make considerable modifications in SPICE so that it could run as a submodule within the GP 
system.  

Fig. 13 provides additional detail on the calculation of fitness. First, the current circuit is set 
to the embryonic circuit. The individual circuit-constructing program is then executed causing 
the CCFs and CMFs in the program tree to be applied. When completed, the current circuit is 
translated into a netlist. 

 
[INSERT FIGURE 13] 
 
The netlist is then simplified. All wires are removed and the nodes to which they are 

connected are merged. Dangling components and any isolated substructures are removed. A very 
large resistance (e.g., a 1 giga-Ohm resistor) is inserted between ground and any node for which 
there is no DC path to ground (e.g., a node to which only capacitors are connected). This has no 
significant electrical effect; however, it enables SPICE to numerically simulate the circuit. In 
addition, the time required for a SPICE simulation generally increases nonlinearly as a function 
of the number of nodes in the netlist (in an approximately subquadratic to quartic way). To 
shorten the netlist, all series and parallel compositions of like passive components are replaced, 
for purposes of the simulation only, by a single component of appropriate value. 

The fitness measure varies for each problem. The high-level statement of desired circuit 
behavior is translated into a well-defined measurable quantity that can be used by GP to guide 
the evolutionary process. The specific fitness measures were as follows: 

1) Lowpass filter: The desired lowpass LC filter should have a passband below 1 kHz and a 
stopband above 2 kHz. The circuit will be driven by an incoming AC voltage source with a 2 V 
amplitude. If the source (internal) resistance RSOURCE and the load resistance RLOAD in the 
embryonic circuit are each 1 k Ω, the incoming 2 V signal is divided in half.  

 The attenuation of the filter is defined in terms of the maximum signal in its stopband 
relative to the reference voltage (half of 2 V here). A decibel is a unitless measure of relative 
voltage that is defined as 20 times the common (base 10) logarithm of the ratio between the 
voltage at a particular probe point and a reference voltage. Since the maximum acceptable signal 
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in the stopband relative to the 1 V reference voltage is 1,000-to-1, the design goal calls for an 
attenuation of at least 60 dB. 

In this problem, a voltage in the passband of exactly 1 V and a voltage in the stopband of 
exactly 0 V is regarded as ideal. The (preferably small) variation within the passband is called 
the passband ripple. Similarly, the incoming signal is never fully reduced to zero in the stopband 
of an actual filer. The (preferably small) variation within the stopband is called the stopband 
ripple. A voltage in the passband of between 970 mV and 1 V (i.e., a passband ripple of 30 mV 
or less) and a voltage in the stopband of between 0 V and 1 mV (i.e., a stopband ripple of 1 mV 
or less) is regarded as acceptable. Any voltage lower than 970 mV in the passband and any 
voltage above 1 mV in the stopband is regarded as unacceptable. 

A practicing electrical engineer would recognize that the above design goals can be satisfied 
by a fifth-order elliptic filter  (Cauer filter) with a modular angle Θ of 30 degrees (i.e., the arcsin 
of the ratio of the boundaries of the passband and stopband) and a reflection coefficient ρ of 20% 
[46].  

Since the high-level statement of behavior for the desired circuit is expressed in terms of 
frequencies, the voltage VOUT is measured in the frequency domain. SPICE performs an AC 
small signal analysis and report the circuit's behavior for frequencies chosen over five decades 
(between 1 Hz and 100 kHz). Each decade is divided into 20 parts (using a logarithmic scale) so 
there are 101 fitness cases for this problem.  

Fitness is measured in terms of the sum over these cases of the absolute weighted deviation 
between the actual value of the voltage that is produced by the circuit at the probe point VOUT 
and the target value for voltage. The smaller the value of fitness, the better. A fitness of zero 
represents an (unattainable) ideal filter. 

Specifically, the standardized fitness is 

F(t) = 
i=0

100
∑ [W (d ( f i ), f i )d ( f i )] 

where fi  is the frequency of fitness case i; d(x) is the absolute value of the difference between 
the target and observed values at frequency x; and W(y,x) is the weighting for difference y at 
frequency x. 

The fitness measure is designed to not penalize ideal values, to slightly penalize every 
acceptable deviation, and to heavily penalize every unacceptable deviation. Specifically, the 
procedure for each of the 61 points in the 3-decade interval between 1 Hz and 1 kHz is as 
follows: If the voltage equals the ideal value of 1.0 V in this interval, the deviation is 0.0. If the 
voltage is between 970 mV and 1 V, the absolute value of the deviation from 1 V is weighted by 
a factor of 1.0. If the voltage is less than 970 mV, the absolute value of the deviation from 1 V is 
weighted by a factor of 10.0.  

The procedure for each of the 35 points in the interval from 2 kHz to 100 kHz similarly 
weights the acceptable and unacceptable deviations. 

For each of the five points in the interval from 1 kHz to 2 kHz (i.e., the five points in the 
"don't care" band), the deviation is deemed to be zero. 

The number of “hits” for this problem (and all other problems herein) is defined as the 
number of fitness cases for which the voltage is acceptable or ideal or that lie in the "don't care" 
band.  

Many of the random initial circuits and many that are created by the crossover and mutation 
operations in subsequent generations cannot be simulated by SPICE. These circuits receive a 
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high penalty value of fitness (108) and become the worst-of-generation programs for each 
generation. For additional details, see [38, 39].  

2) Crossover Filter: The main differences between the problem of designing the lowpass 
filter and the problem of designing the crossover filter are that the crossover filter has two 
outputs and that the tweeter output calls for a highpass filter (also fifth-order elliptic). The fitness 
measure for this problem reflects these requirements. SPICE is called to perform an AC small 
signal analysis and to report the circuit's behavior at two probe points, VOUT1 and VOUT2, 
instead of just one. Specifically, the standardized fitness, F(t), is 

F(t) =
i=0

100
∑ [W1 (d1 ( f i ), f i )d1 ( f i ) + W2 (d2 ( f i ), f i )d2 ( f i ) ] 

where fi  is the frequency of fitness case i; d1(x) is the difference between the target and 
observed values at frequency x for probe point VOUT1; d2(x) is the difference between the 
target and observed values at frequency x for probe point VOUT2;W1(y,x) is the weighting for 
difference y at frequency x for probe point VOUT1; andW2(y,x) is the weighting for difference 
y at frequency x for probe point VOUT2. For additional details, see [40]. 

3) Source Identification Circuit: As before, fitness is measured in terms of the sum, over 101 
fitness cases, of the absolute weighted deviation between the actual value of the voltage that is 
produced by the circuit and the target value for voltage.  

The three points that are closest to the band located within 10% of 256 Hz are 229.1 Hz, 
251.2 Hz, and 275.4 Hz. The procedure for each of these three points is as follows: If the voltage 
equals the ideal value of 0.5 V in this interval, the deviation is 0.0. If the voltage is more than 
240 mV from 0.5 V, the absolute value of the deviation from 0.5 V is weighted by a factor of 20. 
If the voltage is more than 240 mV of 0.5 V, the absolute value of the deviation from 0.5 V is 
weighted by a factor of 200. This arrangement reflects the fact that the ideal output voltage for 
this range of frequencies is 0.5 V, that a 240 mV discrepancy is acceptable, and that a larger 
discrepancy is not acceptable. 

Similar weighting was used for the three points (2.291 kHz, 2.512 kHz, and 2.754 kHz) that 
are closest to the band located within 10% of 2.560 kHz and for the three points (2.291 kHz, 
2.512 kHz, and 2.754 kHz) that are closest to the band located within 10% of 750 Hz.  

The procedure for each of the remaining 92 points is as follows: If the voltage equals the ideal 
value of 0 V, the deviation is 0.0. If the voltage is within 240 mV of 0 V, the absolute value of 
the deviation from 0 V is weighted by a factor of 1.0. If the voltage is more than 240 mV from 0 
volts, the absolute value of the deviation from 0 V is weighted by a factor of 10. For additional 
details, see [47, 48]. 

4) Computational Circuit: The target voltage is the cube root of the input voltage. SPICE is 
called to perform a DC sweep analysis at 21 equidistant voltages between –250 mV and +250 
mV. Fitness is the sum, over these 21 fitness cases, of the absolute weighted deviation between 
the actual value of the voltage that is produced by the circuit and the target value for voltage. 
Also see [49].  

5) Time-Optimal Controller Circuit: The fitness of a controller was evaluated using 72 
randomly chosen fitness cases each representing a different target (fly-to) point. Fitness is the 
sum, over the 72 fitness cases, of the fly-to times. If the aircraft came within a capture radius of 
0.28 nautical miles (NM) of its target point before the end of the 80 time steps allowed for a 
particular fitness case, the contribution to fitness for that fitness case was the actual fly-to time. 
However, if the aircraft failed to come within the capture radius during the 80 time steps, the 
contribution to fitness was 0.160 hours (i.e., double the worst possible time).  
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SPICE performs a nested DC sweep, which provides a way to simulate the DC behavior of a 
circuit with two inputs. It resembles a nested pair of FOR loops in a computer program in that 
both of the loops have a starting value for the voltage, an increment, and an ending value for the 
voltage. For each voltage value in the outer loop, the inner loop simulates the behavior of the 
circuit by stepping through its range of voltages. Specifically, the starting value for voltage is –4 
V, the step size is 0.2 V, and the ending value is +4 V. These values correspond to the 
dimensions of the aircraft's world of 64 square nautical miles (NM) extending 4 NM in each of 
the four directions from the origin of a coordinate system (i.e., 1 V equals 1 NM).  

When an individual program is executed, it produces a numeric value which the wrapper 
(output interface) transforms into the turn angle Θ for the aircraft. Also see [50]. 

6) Amplifier: SPICE was requested to perform a DC sweep analysis to determine the circuit's 
response for several different DC input voltages. An ideal inverting amplifier circuit would 
receive the DC input, invert it, and multiply it by the amplification factor. A circuit is flawed to 
the extent that it does not achieve the desired amplification, the output signal is not perfectly 
centered on 0 V (i.e., it has a bias), or the DC response is not linear. The circuits are analyzed 
with a 5 point DC sweep ranging from –10 mV to +10 mV, with input points at –10 mV, –5 mV, 
0 mV, +5 mV, and +10 mV.  

Fitness is then calculated by summing an amplification penalty, a bias penalty, and two non-
linearity penalties – each derived from these five DC outputs. 

The amplification factor of the circuit is measured by the slope of the straight line between 
the output for –10 mV and the output for +10 mV (i.e., between the outputs for the endpoints of 
the DC sweep). If the amplification factor is less than the maximum allowed by the feedback 
resistor (120 dB for this problem), there is a penalty equal to the shortfall in amplification.  

The bias is computed using the DC output associated with a DC input of 0 V. The penalty is 
equal to the bias times a weight of 0.1. 

Linearity is measured by the deviation between the slope of each of two line segments and the 
overall amplification factor of the circuit. The first line segment spans the output values 
associated with inputs of –10 mV through –5 mV. The second line segment spans the output 
values associated with inputs of +5 mV through +10 mV. The penalty for each of these line 
segments is equal to the absolute value of the difference in slope between the respective line 
segment and the overall amplification factor of the circuit. Also see [51]. 

7) Temperature-Sensing Circuit: The circuit will operate in an environment whose 
temperature ranges between 0˚ C (freezing) and 100˚ C (boiling) and will be expected to report 
the ambient temperature in voltages using a linear scale in which 0 V equals 0˚ C and 10 V 
equals 100˚ C. SPICE performs 21 consecutive operating point analyses for temperatures 
between 0˚ and 100˚ C in increments of 5˚ C.  

Fitness is the sum over the 21 fitness cases of the absolute value of the weighted difference 
between the output voltage and the target voltage.  

If the output voltage is within 0.1 V of the target, the absolute value of the deviation is 
weighted by a factor of 1.0. If the deviation is greater, the absolute value of the deviation is 
weighted by a factor of 10.0. 

8) Voltage Reference Circuit: The goal is to design a voltage reference source that delivers a 
prespecified constant 2 V (with a small prespecified tolerance) in spite of variation in the voltage 
of the incoming 5 V power supply of ± 20% (i.e., from 4 to 6 V) and variation in the circuit's 
ambient temperature between 0˚ and 100˚ C. This one-output circuit has only one input (the 
incoming power supply voltage).  



IEEE TEC Paper No. 26 – Version 4 -June 9, 1997       16 

SPICE performs five consecutive DC sweeps. Each is performed for a particular temperature: 
0˚, 25˚, 50˚, 75˚, and 100˚ C. Each sweep runs from 4 to 6 V in 21 increments of 0.1 V.  

Fitness is the sum, over the 105 fitness cases, of the absolute value of the weighted difference 
between the output voltage and the target voltage.  

If the output voltage is within the acceptable range of 0.1 volts of the target, the absolute 
value of the deviation is weighted by a factor of 1.0. If the deviation is greater, the absolute value 
of the deviation is weighted by a factor of 10.0. 
5.5 Control Parameters 
The population size, M, was 640,000 for all problems.  

For problems 1, 2, 4, 7, and 8 the percentages of the genetic operations [29] on each 
generation were the same as those used over a period of years on numerous other problems that 
the authors have solved using genetic programming. Specifically, the percentages were 89% one-
offspring crossovers, 10% reproductions, and 1% mutations.  No effort has been made to 
determine the sensitivity of these parameters.   

For the problems on which ADFs and architecture-altering operations were used (i.e., 
problems 3, 5, and 6), the percentages of operations on each generation were again based on the 
author's consistent prior practice using ADFs and architecture-altering operations. Specifically, 
the percentages after generation 5 were 86.5% one-offspring crossovers, 10% reproductions, 1% 
mutations, 1% branch duplications, 0.5% branch deletions, and 1% branch creations. Since we 
did not want to waste large amounts of computer time in early generations where only a few 
programs have any ADFs at all, the percentage of operations on each generation before 
generation 6 was 78.0% one-offspring crossovers, 10% reproductions, 1% mutations, 5.0% 
branch duplications, 1% branch deletions, and 5.0% branch creations.  

The other parameters were substantially the same for each of the eight problems (as presented 
in the individual references cited above for each problem).  

Each problem was run on a medium-grained parallel Parsytec computer system [52] 
consisting of 64 80-MHz PowerPC 601 processors arranged in an 8 by 8 toroidal mesh with a 
host PC Pentium type computer. The distributed GA was used with a population size of Q = 
10,000 at each of the D = 64 demes (reproductive populations). On each generation, four 
boatloads of emigrants, each consisting of B = 2% (the migration rate) of the node's 
subpopulation (selected on the basis of fitness) were dispatched to each of the four toroidally 
adjacent processing nodes. 
5.6 Termination Criterion and Results Designation 
Each run was monitored and terminated when it was in substantial compliance with all the 
design requirements of the problem. The best-so-far individual was designated as the result of 
each run.  

6. RESULTS 
In all eight problems, fitness was observed to improve over successive generations. Satisfactory 
results were generated in every case on the first or second trial. (In most cases on the first trial. 
Moreover, when two runs were required, the first produced a nearly satisfactory result.) This rate 
of success suggests that the capabilities of the approach and current computing system have not 
been fully exploited. In addition, although a large majority of the initial circuits were not able to 
be simulated by SPICE, most were simulatable after only a few generations. This suggests that 
the genetic operators have the property that offspring from simulatable circuits are also able to 
be simulated. Specific results for each problem are listed below. 
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6.1 Lowpass Filter 
Many of the runs produced lowpass filters having a topology similar to that employed by human 
engineers. For example, in generation 32 of one run, a circuit (Fig. 14a) was evolved with a near-
zero fitness of 0.00781.  The circuit was 100% compliant with the design requirements in that it 
scored 101 hits (out of 101).  After the evolutionary run, this circuit (and all evolved circuits 
herein) were simulated anew using the commercially available Microsim circuit simulator to 
verify performance.  This circuit had the recognizable ladder topology [46] of a Butterworth or 
Chebychev filter (i.e., a composition of series inductors horizontally with capacitors as vertical 
shunts).  
 
[INSERT FIGURES 14a and 14b] 
 

Fig. 14b shows the behavior in the frequency domain of this genetically evolved lowpass 
filter. As can be seen, the genetically evolved circuit delivers around a full volt for all 
frequencies up to 1 kHz and essentially 0 V for all frequencies above 2 kHz.   

In another run, a recognizable "bridged T" arrangement (Fig. 15a) was evolved with a near-
zero fitness. The "T" consists of capacitors C3 and C15 and inductor L11 and the "bridge" 
consists of inductor L14. The frequency domain behavior of this 100%-compliant circuit is 
indistinguishable from that of Fig. 14b.  

In another run using ADFs [43], a 100% compliant circuit with the recognizable elliptic 
(Cauer) topology was evolved (Fig. 15b). This genetically evolved circuit has the equivalent of 
six inductors horizontally across the top of the circuit and five vertical shunts. Each shunt 
consists of an inductor and a capacitor (e.g., L34 and C18 appear in the first shunt). This is the 
topology of the elliptic invented and patented by Cauer. The Cauer filter was a significant 
advance (both theoretically and commercially) over the Butterworth and Chebychev filters. For 
example, for one illustrative set of commercial specifications, a 5th-order elliptic filter could 
match the performance of 17th-order Butterworth filter or an 8th-order Chebychev filter. The 
8th-order Chebychev filter has one more component than the 5th-order elliptic filter.  

 
[INSERT FIGURES 15a AND 15b] 
 
Thus, genetic programming rediscovered the ladder topology used in Butterworth and 

Chebychev filters, the "bridged T" topology, and the elliptic (Cauer) topology.   
6.2 Crossover Filter 
The evolved crossover (woofer and tweeter) filter consists of a recognizable combination of a 
standard lowpass ladder filter and an almost standard highpass ladder filter. The lowpass part of 
this circuit from generation 137 (Fig. 16a) has the ladder topology. Except for additional 
capacitor C38, the highpass part also has the ladder topology. Note that the locations of the 
capacitors and inductors in the ladder topology are reversed between the lowpass and highpass 
filters.  
 
[INSERT FIGURES 16a AND 16b]  
 

Fig. 16b shows the behavior in the frequency domain of this genetically evolved crossover 
filter. This circuit has a fitness of 0.7807 and scores 192 hits (out of 202). The two outputs 
crossover in the desired area around 2.512 kHz. The performance of this circuit is slightly better 
than the combination of lowpass and highpass Butterworth filters of order 7.  
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6.3 Source Identification Circuit 
The genetically evolved crossover four-way source identification circuit from generation 85 
achieves a fitness of 404.3 and scores a total of 199 hits (out of 202). Fig. 17a shows this circuit 
after expansion of its ADFs.  
 
[INSERT FIGURES 17a AND 17b] 
 

Fig. 17b shows the behavior of this best-of-run circuit in the frequency domain. The three 
boxes indicate the range of allowable output voltages (along the linear vertical axis) for the 
specified range of input frequencies (along the logarithmic horizontal axis). As can be seen, the 
circuit produces the desired 1 V, 2/3 V, and 1/3 V (each within the 1/6 V tolerance) for the three 
specified narrow bands of frequencies and the desired near-zero signal for all other frequencies.  
6.4 Computational circuit 
The genetically evolved computational circuit for the cube root from generation 60 (Fig. 18a), 
achieves a fitness of 1.68, and has 36 transistors, two diodes, no capacitors, and 12 resistors (in 
addition to the source and load resistors in the embryo). 
 
[INSERT FIGURES 18a AND 18b] 
 

Fig. 18b shows the output voltage produced by this best-of-run circuit (along the linear 
vertical axis) overlain over the target values (i.e., the cube root of the input voltage). The two 
curves are almost indistinguishable.  
6.5 Time-Optimal Controller Circuit 
The best-of-run time-optimal controller circuit (Fig. 19) appeared in generation 31, scores 72 
hits, and achieves a near-optimal fitness of 1.541 hours. In comparison, the optimal value of 
fitness for this problem is known to be 1.518 hours [53]. This best-of-run circuit has 10 
transistors and 4 resistors. The program has one ADF that is called twice.  
 
[INSERT FIGURE 19] 
 
6.6 Amplifier 
The best circuit from generation 86 (Fig. 20a) achieves a fitness of 938,427.3. Based on the DC 
sweep, the amplification is 96.2 dB (64,860-to-1) and the bias is 7.44 V. Based on a transient 
analysis at 1,000 Hz, the amplification is 94.1 dB; the bias is 7.46 V; and the distortion is 7.07%. 
The 3 dB bandwidth is 1,078.4 Hz. The program has two ADFs. ADF0 is called once; however, 
ADF1 is not called. The circuit has 25 transistors, no diodes, two capacitors, and two resistors (in 
addition to the five resistors of the feedback embryo). Thus, a high-gain amplifier with low 
distortion and acceptable bias has been evolved.  
 
[INSERT FIGURES 20a AND 20b] 
 

Fig. 20b shows ADF0 (with 12 transistors, no diodes, one capacitor, and two resistors).  
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6.7 Temperature-Sensing Circuit 
The best temperature-sensing circuit from generation 25 (Fig. 21a) achieves a fitness of 26.4, 
scores 16 hits (out of 21), and is composed of 42 transistors, six diodes, and six resistors (not 
counting the one fixed resistor inherited from the embryonic circuit). 
 
[INSERT FIGURES 21a AND 21b] 
 

Fig. 21b shows the output voltage (along the linear vertical axis) of the best evolved 
temperature-sensing circuit as a function of temperature. The circuit provides a good measure of 
temperature.  
6.8 Voltage Reference Circuit 
We illustrate the progressive nature of the evolutionary process by showing the best-of-
generation circuits for several selected generations of the run.  

The best circuit from generation 0 (Fig. 22a) achieves a fitness of 131.1, scores 10 hits, and is 
composed of three transistors, two diodes, and one resistor (not counting the two fixed resistors 
inherited from the embryonic circuit). 
 
[INSERT FIGURES 22a AND 22b] 
 

Fig. 22b shows the voltages produced by the best circuit of generation 0. The top graph 
indicates the voltages produced for 0˚ C when the incoming 5 V power supply actually delivers 
between 4 and 6 V. The four remaining graphs in the figure represent 25˚, 50˚, 75˚, and 100˚ C.  

The four panels of Fig. 23 show the output voltage (along the linear vertical axis) produced by 
the best circuit of generations 0, 6, 49, and 80. As one proceeds over these four selected 
generations, fitness improves (decreases) from 131.1, 65.7, 35.2, and 35.2, respectively, as 
shown by the progressive coalescence of the five graphs around the desired output of 2 V and a 
progressive flattening of the five graphs. The best circuit from generation 80 delivers almost 
constant voltages.  
 
[INSERT 4 PANELS OF FIGURE 23] 
 

The best circuit (Fig. 24) from generation 6 achieves a fitness of 65.7, scores 16 hits (out of 
105), and has six transistors, two diodes, and two resistors.  

 
[INSERT FIGURE 24] 
 
The best circuit (Fig. 25) from generation 49 achieves a fitness of 35.2, scores 49 hits, and has 

11 transistors, four diodes, and four resistors.  
 
[INSERT FIGURE 25] 
 
The best circuit (Fig. 26) from generation 80 achieves a fitness of 6.6, scores 90 hits (out of 

105), and has 40 transistors, 14 diodes, and 13 resistors.  
 
[INSERT FIGURE 26] 
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6.9 Other Circuits 
Numerous other analog electrical circuits have been evolved using the above approach, including 
other amplifiers [44], a different source identification circuit [47], a comb filter [43], and an 
asymmetric bandpass filter with stringent requirements [41].   

7. CONCLUSION 
We have demonstrated that genetic programming can automatically design the topology and 
sizing of eight different prototypical analog electrical circuits containing various components 
and having various numbers of inputs and outputs. There is no previously known general 
automated technique for synthesizing an analog electrical circuit from a high-level statement of 
the circuit's desired behavior. The genetically evolved circuits for the eight problems constitute 
an instance of an evolutionary computation technique producing results on a task that is usually 
thought of as requiring human intelligence. The problem-specific information required for each 
of the eight problems was minimal and consisted primarily of the number of inputs and outputs 
of the desired circuit, the types of available components, and a fitness measure that restates the 
high-level statement of the circuit's desired behavior as a measurable mathematical quantity. The 
fact that a uniform approach was taken to each of the design problems studied here, along with 
the satisfactory results that were obtained in at most two runs of genetic programming, suggests 
that genetic programming is generally applicable to the problem of synthesis of analog electrical 
circuits.  

The question arises as to what would be required to extend the foregoing examples of the 
automated synthesis of analog electrical circuits to the design of commercial-quality circuits in 
the next few years. For specificity, this question can be posed in terms of designing an 
operational amplifier with characteristics equivalent to a commercial amplifier such as the µ741 
op amp (whose design took many years). Addressing this question involves considering 1) the 
amount of computer time used to evolve the eight circuits presented herein, 2) the ever-
increasing availability of computer time over the next few years, 3) optimizations for 
accelerating the process, and 4) the additional computing effort required to satisfy the stringent 
electrical requirements of a commercial-quality circuit such as the µ741 op amp.  

The best-of-run circuits for the eight problems presented herein emerged between generations 
31 and 137 (the average being 67). With a population size of 640,000 (with 10% Darwinian 
reproduction on each generation), the average result thus required 38,592,000 fitness 
evaluations. Each fitness evaluation required a separate SPICE simulation consisting of an 
average of 2.3 x 107 computer operations and consuming about 0.25 second of computer time on 
an 80-MHz processor. The runs for the eight problems took about 2 days each on a parallel 
computing system with 64 80-MHz processors and thus entailed about 1015 operations each. 
Petaflop computers [54] capable of executing 1015 operations per second are expected to be 
available to high-end institutional users by 2010. Thus, it will be possible to run the foregoing 
examples of automated synthesis in a matter of seconds in the relatively near future.   

Even today, a single workstation of current vintage with dual 240-MHz processors could 
perform the above-mentioned 1015 operations in 21 days. If available computer capacity 
continues to double approximately every 18 months in accordance with Moore's law, this 21-day 
computation would, in six years, require only about 1.3 days.   

None of the above computer times reflect known optimizations that could be implemented 
currently. For example, SPICE can be accelerated by a factor of three to ten by using improved 
versions of SPICE that are currently commercially available (as opposed to the public domain 
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SPICE simulator [45] that we modified and used). In addition, SPICE simulations can be 
accelerated by several fold [55] by using known techniques to tune its various control parameters 
to the specific type of circuit being designed. If the combined effect of both of these 
optimizations were an acceleration of 10-to-1, a single workstation of current vintage with dual 
240-MHz processors could today execute the above-mentioned average run in about 2.1 days. 
Again, if available computer capacity continues to double approximately every 18 months, this 
2.1-day computation would, in six years, require only about three hours.  

The fitness measures for each of the eight problems incorporated the most important desired 
characteristics of the circuits and establish the principle that non-trivial analog circuits can be 
designed with genetic programming. However, the fitness measures for some of the problems did 
not incorporate certain additional secondary characteristics that would be required of 
commercial-quality circuits. For example, the fitness measure for the amplifier (problem 6) 
explicitly incorporated three important characteristics: gain, bias, and distortion. As it happened, 
the genetically evolved circuit generalized beyond these characteristics in the sense that it also 
possessed several unrequested desirable characteristics (e.g., reasonable bandwidth and parts 
count). However, the data sheet for a commercial-quality op amp includes several additional 
requirements (e.g., power supply rejection ratio, power consumption, slew rate) and various 
different component models may be used in particular amplifiers.  Our ongoing work has already 
demonstrated the principle that genetic programming can evolve amplifiers that partially satisfy 
certain additional requirements. It is not known how much additional computational effort might 
be required to evolve a circuit that simultaneously satisfies all the requirements of a commercial 
quality op amp.  We view creation of such a design as an appropriate challenge problem for this 
field.  
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Fig. 1 A one-input, one-output embryonic circuit used for the source identification circuit, 
the computational circuit, and the voltage reference circuit.  The input appears at 
VSOURCE and the output is probed at VOUT.  The circled wire Z0 is modifiable.  
RSOURCE and RLOAD are resistors.  Nodes are numbered from 0 to 5.   
Fig. 2a Modifiable wire Z0 connecting nodes 1 and 2.  The symbols C2 - C5 refer to 
capacitors.   

 
Fig. 2b Result of applying the resistor-creating R function to modifiable wire Z0 of Fig. 2a, 
thereby transforming wire Z0 into a resistor R1.   

 
Fig. 3 Result of applying transistor-creating Q_POS_COLL_NPN function to modifiable 
wire Z0 of Fig. 2a.  The wire Z0 is replaced by the transistor Q6 connected to nodes 1 and 2 
and the positive power supply POS.    

 
Fig. 4 Result of applying transistor-creating Q_3_NPN0 function to resistor R1 of Fig. 2b, 
thereby transforming it into transistor Q6.    

 
Fig. 5 Result after applying the SERIES function to resistor R1 of Fig. 2b, thereby 
transforming it into resistors R7 and R1 and wire Z6.     

 
Fig. 6 Result of applying the PSS parallel division function to resistor R1 of Fig. 2b, 
thereby transforming it into resistors R7 and R1 and wires Z6 and Z8.   

 
Fig. 7 Result of applying the T_GND_0 function to resistor R1 of Fig. 2b, thereby creating a 
connection to ground.   

 
Fig. 8 One-input, two-output embryonic circuit for the crossover (woofer and tweeter) 
filter with a small portion of an illustrative circuit-constructing program tree.  The two 
outputs are VOUT1 and VOUT2.  The functions L, C, and C in the program tree refer to 
inductor- and capacitor-creating functions, respectively.  See text for the application of 
these functions.   
Fig. 9 Two-input, one-output embryonic circuit for the time-optimal controller. The two 
inputs are VSOURCE1 and VSOURCE2.   

 
Fig. 10 Zero-input, one-output embryonic circuit for the temperature-sensing circuit.  Z0 
and Z1 are modifiable wires.   
 
Fig. 11 One-input, one-output feedback embryo for an amplifier.  

Fig. 12 One-input, one-output embryonic circuit for the lowpass filter.  
 

Fig. 13 Detailed flowchart for calculation of circuit fitness.  
 

Fig. 14a Genetically evolved ladder lowpass filter with seven series inductors (located 
horizontally across the top) and seven shunt capacitors (located vertically).   

 



IEEE TEC Paper No. 26 – Version 4 -June 9, 1997       29 

Fig. 14b Frequency domain behavior of genetically evolved ladder lowpass filter.  The filter 
delivers about 1V for frequencies up to 1 kHz and almost 0 V for frequencies greater than 
2 kHz.  

 
Fig. 15a Genetically evolved "bridged T" lowpass filter.  The "T" consists of capacitors C3 
and C15 and inductor L11 and the "bridge" consists of inductor L14.   

 
Fig. 15b  Genetically evolved elliptic (Cauer) lowpass filter with inductors located 
horizontally across the top of the figure and five vertical shunts, each containing one 
inductor and one capacitor in series.   

 
Fig. 16a Genetically evolved crossover (woofer and tweeter) filter.   

 
Fig. 16b Frequency domain behavior of genetically evolved crossover filter.  

 
Fig. 17a Genetically evolved four-way source identification circuit.   

 
Fig. 17b Frequency domain behavior of genetically evolved four-way source identification 
circuit.  The three boxes indicate the range of allowable output voltages (along the linear 
vertical axis) for the specified range of input frequencies (along the logarithmic horizontal 
axis).   
Fig. 18a Genetically evolved cube root circuit.  
Fig. 18b Performance of the genetically evolved cube root circuit.  The actual output and 
the target output voltages (along the linear vertical axis) are overlain and virtually 
identical.   
Fig. 19 Best genetically evolved time-optimal controller.   
Fig. 20a Best genetically evolved amplifier.   

 
Fig. 20b ADF0 for best genetically evolved amplifier.   

 
Fig. 21a Best-of-run temperature-sensing circuit. 

 
Fig. 21b Performance of the genetically evolved temperature-sensing circuit (with output 
voltage along the linear vertical axis).  

 
Fig. 22a Best voltage reference circuit from generation 0.  
Fig. 22b Close-up of output of best voltage reference circuit from generation 0.  

 
Fig. 23 Output (with voltage along the linear vertical axis) of the best voltage reference 
circuits from generations 0, 6, 49, and 80 for temperatures of 0˚, 25˚, 50˚, 75˚, and 100˚ C.   

 
Fig. 24 Best voltage reference circuit from generation 6.  
Fig. 25 Best voltage reference circuit from generation 49.  
Fig. 26 Best voltage reference circuit from generation 80. 
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Fig. 1 A one-input, one-output embryonic circuit used for the source identification circuit, 
the computational circuit, and the voltage reference circuit.  The input appears at 
VSOURCE and the output is probed at VOUT.  The circled wire Z0 is modifiable.  
RSOURCE and RLOAD are resistors.  Nodes are numbered from 0 to 5.  
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Fig. 2a Modifiable wire Z0 connecting nodes 1 and 2.  The symbols C2 - C5 refer to 
capacitors.   
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Fig. 2b Result of applying the resistor-creating R function to modifiable wire Z0 of Fig. 2a, 
thereby transforming wire Z0 into a resistor R1.   
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Fig. 3 Result of applying transistor-creating Q_POS_COLL_NPN function to modifiable 
wire Z0 of Fig. 2a.  The wire Z0 is replaced by the transistor Q6 connected to nodes 1 and 2 
and the positive power supply POS.    
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Fig. 4 Result of applying transistor-creating Q_3_NPN0 function to resistor R1 of Fig. 2b, 
thereby transforming it into transistor Q6.    
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Fig. 5 Result after applying the SERIES function to resistor R1 of Fig. 2b, thereby 
transforming it into resistors R7 and R1 and wire Z6.     
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Fig. 6 Result of applying the PSS parallel division function to resistor R1 of Fig. 2b, 
thereby transforming it into resistors R7 and R1 and wires Z6 and Z8.   
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Fig. 7 Result of applying the T_GND_0 function to resistor R1 of Fig. 2b, thereby creating a 
connection to ground.   
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Fig. 8 One-input, two-output embryonic circuit for the crossover (woofer and tweeter) 
filter with a small portion of an illustrative circuit-constructing program tree.  The two 
outputs are VOUT1 and VOUT2.  The functions L, C, and C in the program tree refer to 
inductor- and capacitor-creating functions, respectively.  See text for the application of 
these functions.  



IEEE TEC Paper No. 26 – Version 4 -June 9, 1997       39 

 
 
 
 
Fig. 9 Two-input, one-output embryonic circuit for the time-optimal controller. The two 
inputs are VSOURCE1 and VSOURCE2.   



IEEE TEC Paper No. 26 – Version 4 -June 9, 1997       40 

 
 
 
 
Fig. 10 Zero-input, one-output embryonic circuit for the temperature-sensing circuit.  Z0 
and Z1 are modifiable wires.   
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Fig. 11 One-input, one-output feedback embryo for an amplifier. 
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Fig. 12 One-input, one-output embryonic circuit for the lowpass filter.   



IEEE TEC Paper No. 26 – Version 4 -June 9, 1997       43 

Start

Set CIRCUIT  =
embryonic circuit

Evaluate individual
circuit-constructing program tree by
progressively applying component-
creating and connection-modifying
functions to the current CIRCUIT
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Fig. 13 Detailed flowchart for calculation of circuit fitness.  



IEEE TEC Paper No. 26 – Version 4 -June 9, 1997       44 

 
 
 
 
Fig. 14a Genetically evolved ladder lowpass filter with seven series inductors (located 
horizontally across the top) and seven shunt capacitors (located vertically).   
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Fig. 14b Frequency domain behavior of genetically evolved ladder lowpass filter.  The filter 
delivers about 1V for frequencies up to 1 kHz and almost 0 V for frequencies greater than 
2 kHz.  
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Fig. 15a Genetically evolved "bridged T" lowpass filter.  The "T" consists of capacitors C3 
and C15 and inductor L11 and the "bridge" consists of inductor L14.   
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Fig. 15b  Genetically evolved elliptic (Cauer) lowpass filter with inductors located 
horizontally across the top of the figure and five vertical shunts, each containing one 
inductor and one capacitor in series.   
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Fig. 16a Genetically evolved crossover (woofer and tweeter) filter.   
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Fig. 16b Frequency domain behavior of genetically evolved crossover filter.  
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Fig. 17a Genetically evolved four-way source identification circuit.   
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Fig. 17b Frequency domain behavior of genetically evolved four-way source identification 
circuit.  The three boxes indicate the range of allowable output voltages (along the linear 
vertical axis) for the specified range of input frequencies (along the logarithmic horizontal 
axis).  
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Fig. 18a Genetically evolved cube root circuit. 
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Fig. 18b Performance of the genetically evolved cube root circuit.  The actual output and 
the target output voltages (along the linear vertical axis) are overlain and virtually 
identical.  



IEEE TEC Paper No. 26 – Version 4 -June 9, 1997       54 

 
 
 
 
Fig. 19 Best genetically evolved time-optimal controller.  
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Fig. 20a Best genetically evolved amplifier.   
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Fig. 20b ADF0 for best genetically evolved amplifier.   
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Fig. 21a Best-of-run temperature-sensing circuit. 
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Fig. 21b Performance of the genetically evolved temperature-sensing circuit (with output 
voltage along the linear vertical axis).  
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Fig. 22a Best voltage reference circuit from generation 0. 

75 deg

25 deg
50 deg

0 deg

100 deg

 
 
 
 
Fig. 22b Close-up of output of best voltage reference circuit from generation 0.  
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Fig. 23 Output (with voltage along the linear vertical axis) of the best voltage reference 
circuits from generations 0, 6, 49, and 80 for temperatures of 0˚, 25˚, 50˚, 75˚, and 100˚ C.   
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Fig. 24 Best voltage reference circuit from generation 6. 
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Fig. 25 Best voltage reference circuit from generation 49. 
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Fig. 26 Best voltage reference circuit from generation 80. 
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