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ABSTRACT 
This paper describes ongoing work 

involving the use of the Xilinx XC6216 
rapidly reconfigurable field-
programmable gate array to evolve 
sorting networks using genetic 
programming.  We successfully evolved 
a network for sorting seven items that 
employs two fewer steps than the 
sorting network described in a l962 
patent and that has the same number of 
steps as the seven-sorter devised by 
Floyd and Knuth subsequent to the 
patent.   

1. Introduction 
Genetic programming is an extension of John Holland's 
genetic algorithm (1975).  In genetic programming, the 
population consists of computer programs of varying sizes 
and shapes (Koza 1992, 1994a, 1994b; Koza and Rice 
1992).  Recent work on genetic programming is described 
in Kinnear (1994), Angeline and Kinnear (1996), Koza, 
Goldberg, Fogel, and Riolo (1996), and Koza et al. (1997).  

The dominant component of the computational burden 
of solving a problem with the genetic algorithm or genetic 
programming is the task of evaluating the fitness for each of 
the thousands of individuals in the evolving population for 
each of the hundreds of generations in the run.  Other tasks, 
such as the creation of the initial population and the 
execution of the genetic operations (e.g., Darwinian 
reproduction, crossover, and mutation) are relatively fast.  

Rapidly reconfigurable computing devices (Sanchez and 
Tomassini 1996 and Higuchi 1997) open the possiblity of 
greatly accelerating the fitness evaluation task of genetic 
algorithms by translating each individual of the evolving 

population into hardware and then exploiting the 
parallelism of the hardware for the fitness evaluation task.   

Section 2 describes the minimal sorting network 
problem.  Section 3 describes rapidly reconfigurable field-
programmable gate arrays and the Xilinx XC6216 chip.  
Section 4 outlines the preparatory steps for applying genetic 
programming to the problem of evolving a sorting network.  
Section 5 outlines the mapping of the fitness evaluation task 
for sorting networks onto the chip.   

2. Minimal Sorting Networks 
A sorting network is an algorithm for sorting items 
consisting of a sequence of comparison-exchange 
operations that are executed in a fixed order.  Figure 1 
shows a sorting network for four items.   
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Figure 1  Minimal sorting network for 4 items.   

The to-be-sorted items, A1, A2, A3, A4, start at the left 
on the horizontal lines.  A vertical line connecting 
horizontal line i and j indicates that items i and j are to be 
compared and exchanged, if necessary, so that the larger of 
the two is on the bottom.  In this figure, the first step causes 
A1 and A2 to be exchanged if A2 < A1.  This step and the 
next three steps cause the largest and smallest items to be 
routed down and up, respectively.  The fifth step ensures 
that the remaining two items end up in the correct order.  
The correctly sorted output appears at the right.  A five-step 
network is known to be minimal for four items.   

Even though sorting networks are oblivious to their 
inputs in the sense that they always perform the same fixed 
sequence of comparison-exchange operations, they are of 
considerable practical importance because they are more 
efficient for sorting small numbers of items than the well-
known non-oblivious sorting algorithms such as Quicksort.  
Thus, there is considerable interest in sorting networks with 
a minimum number of comparison-exchange operations.   



 

As the number of items to be sorted increases, 
construction of a minimal sorting network becomes 
increasingly difficult.  There has been a lively search over 
the years for smaller sorting networks (Knuth 1973).  In U. 
S. patent 3,029,413, O'Connor and Nelson (1962) described 
sorting networks for 4, 5, 6, 7, and 8 items using 5, 9, 12, 
18, and 19 comparison-exchange operations, respectively.   

During the l960s, Floyd and Knuth devised a 16-step 
seven-sorter and proved it to be the minimal seven-sorter.  
They also proved that the four other sorting networks in the 
1962 O'Connor and Nelson patent were minimal.  

The 16-sorter has received considerable attention.  In 
1962, Bose and Nelson devised a 65-step sorting network 
for 16 items.  In 1964, Batcher and Knuth presented a 63-
step 16-sorter.  In l969, Shapiro discovered a 62-step 16-
sorter and, in the same year, Green discovered one with 60 
steps.   

Hillis (1990, 1992) used the genetic algorithm to evolve 
16-sorters with 65 and 61 steps – the latter using co-
evolution of a population of sorting networks competing 
with a population of fitness cases.  In this work, the first 32 
steps of Green's 60-step 16-sorter was incorporated as a 
fixed beginning for all sorters.   

Juille (1995) used an evolutionary algorithm to evolve a 
13-sorter with 45 steps thereby improving on the 13-sorter 
with 46 steps presented in Knuth (1973).  Juille (1997) has 
also evolved networks for sorting 14, 15, and 16 items 
having the same number of steps (i.e., 51, 56, and 60, 
respectively) as reported in Knuth (1973).   

Verification of the validity of a network (through 
analysis, instead of exhaustive enumeration) grows in 
difficulty as the number of items to be sorted increases.  A 
sorting network can be exhaustively tested for validity by 
testing all n! permutations of n distinct numbers.  However, 
thanks to the "zero-one principle" (Knuth 1973, page 224), 
if a sorting network for n items correctly sorts n  bits into 
non-decreasing order (i.e., all the 0's ahead of all the 1's) for 
all 2n sequences of n  bits, it necessarily will correctly sort 
any set of n distinct numbers into non-decreasing order.  
Thus, it is sufficient to test a putative 16-sorter against only 
216 = 65,536 combinations of binary inputs, instead of all 
16! ~ 2 ∞ 1013 inputs.  Nonetheless, in spite of this "zero-
one principle," testing a putative 16-sorter consisting of 
around 60 steps on 65,536 different 16-bit input vectors is a 
formidable amount of computation when it appears in the 
inner loop of a genetic algorithm.  

3. Field-Programmable Gate Arrays 
and the Xilinx XC6216 

A field-programmable gate array (FPGA) is a type of 
digital chip that contains a regular two-dimensional array of 
thousands of logical function units and a regular network of 
interconnection lines for connecting the function units in 
which both the functionality of each logical function unit 
and the connectivity between the logical function units can 
be programmed by the user in the field (rather than at the 
chip fabrication factory) (Trimberger 1994).   

FPGAs were commercially introduced in the mid 1980s 
by Xilinx.  They are primarily used to facilitate rapid 
prototyping of new electronic products –  particularly those 
for which time-to-market or low product volume precludes 
the fabrication of a custom application-specific integrated 
circuit (ASIC).  Thus, when first marketed, many new 
electronic products contain an FPGA.  If the product's sales 
volume is sufficient, an ASIC may be used in later versions 
of the product after the design has stabilized.  

Ignoring the anti-fuse type of FPGA that is irreversibly 
programmed by the user in the field by the one-time 
application of a high voltage, we focus on the infinitely 
reprogrammable type of FPGA where the functionality of 
each function unit and the connectivity between the function 
units is stored in memory within the device, such as static 
random access memory (SRAM).   

Engineers working with FPGAs typically employ a 
computer-aided design (CAD) tool to design and optimize 
their circuits. First, the engineer conceives the design 
(which often uses subcircuits from a library).  Second, the 
engineer's design of the desired circuit is captured by the 
CAD tool in the form of Boolean expressions, a schematic 
diagram, or a general-purpose high-level description 
language such as VLSI Hardware Description Language 
(VHDL).  Third, a technology mapping converts the 
description of the circuit into logical function blocks of the 
particular type that are present on the particular FPGA chip 
that is to be used.  Fourth, the logical function blocks are 
placed into particular locations on the FPGA.  Fifth, a 
routing using the FPGA's limited interconnection resources 
is created between the logical function units on the chip.  
Sixth, hundreds of thousands of configuration bits (which, 
for almost all commercially available FPGAs, are both 
highly complex and confidential) are created.  Seventh, the 
configuration bits are downloaded into the FPGA's memory.   

An engineer may spend several days in designing a 
circuit and perhaps an hour in entering the design into the 
CAD tool (the first two steps above).  The CAD tool may 
require hours (or, at best, many minutes) to compile a single 
design (the next four steps above).  The downloading of the 
configuration bits for a single design into memory may take 
a half a second.  For almost all FPGAs, all the configuration 
bits must be reloaded if even one bit changes.   

Note that all of the above times compare very favorably 
with the weeks or months that may be required to produce 
an ASIC for a single design (i.e., a time advantage of 
around two orders of magnitude).  

Once an FPGA is configured, its thousands of logical 
function units operate in parallel at the chip's clock rate.   

Since the major component of the computational burden 
of executing a genetic algorithm is the fitness evaluation 
task, the massive parallellism of FPGAs raises the possiblity 
that an FPGA could be used to accelerate the fitness 
evaluation task.  However, this alluring possiblity is 
precluded as a practical possiblity for almost all 
commercially available FPGAs for several reasons.  First, 
the technology mapping, placement, and routing tasks 
required to map each individual of each generation of the 
evolving population onto the chip is complex and consumes 



 

so much time (typically hours or, at best, minutes) as to 
preclude practical use of an FPGA in the inner loop of an 
genetic algorithm. Second, the serial downloading of the 
configuration bits alone consumes so much time (typically 
about half a second) as to preclude practical use of an 
FPGA in the inner loop of a genetic algorithm. Third, the 
encoding scheme for the configuration bits are confidential.   

As will be seen below, the new Xilinx XC6200 series of 
FPGAs minimizes or eliminates the above obstacles to the 
rapid reconfigurability required for a practical run of a 
genetic algorithm.  If a problem can be successfully mapped 
onto this type of FPGA, reconfigurability can be accelerated 
by about 6 orders of magnitude – enough to make it 
practical for the inner loop of a genetic algorithm.   

The Xilinx XC6216 chip contains a 64 ∞ 64 two-
dimensional array of identical cells.  Each cell is capable of 
performing any two-argument Boolean function (as well as 
many useful three-argument Boolean functions) and 
contains a flip-flop for storing one bit of information 
(Xilinx 1997).  The functionality of each of these 4,096 
cells is controlled by 24 configuration bits whose meaning 
is both straightforward and public.  

Each cell can directly receive inputs from its four 
neighbors (as well as certain more distant cells).  The 
interconnection between cells is controlled by additional 
configuration bits (also straightforward and public). Finally, 
additional configuration bits are used to establish 
interconnections between cells and 256 input-output units 
located on the periphery of the chip.   

Unlike other FPGAs, the 6200 can be randomly 
accessed, and the memory containing the configuration bits 
is directly memory-mapped onto the address space of the 
host processor.  Thus, it is possible to change single bits.  

Most important, the Xilinx XC6216 FPGA is designed 
so that no combination of configuration bits for function 
cells can cause internal contention (i.e., conflicting '1' and 
'0' signals simultaneously driving a destination) and 
potential damage of the chip.  Specifically, it is not possible 
for two or more signal sources to ever simultaneously drive 
a routing line or input node of a function cell.  This is 
accomplished by obtaining the driving signal for each 
routing line and each input node from a multiplexer.  Thus, 
only a single driving signal can be selected regardless of the 
choice of configuration bits.  In contrast, in most other 
FPGAs, the driving signal is selected by multiple 
independently programmable interface points (pips). (Care 
must still be taken with the configuration bits that control 
the chip's I/O cells because an outside signal connected to 
one of the chip's input pins can potentially contend with a 
signal generated on the chip).   

A PC board containing the XC6216 chip with a PCI 
interface and SRAM and  supporting tools is available from 
Virtual Computer Corporation (www.vcc.com).   

Thompson (1996) used a genetic algorithm to evolve a 
frequency discriminator on a Xilinx XC6216 reconfigurable 
digital gate array operating in analog mode.   

4. Preparatory Steps 
Before applying genetic programming to a problem, the 
user must perform six major preparatory steps, namely (1) 
identifying the terminals, (2) identifying the primitive 
functions, (3) creating the fitness measure, (4) choosing 
control parameters, (5) setting the termination criterion and 
method of result designation, and (6) determining the 
architecture of the program trees in the population.   

For the problem of evolving a sorting network for 16 
items, the terminal set, T, is 
T = {D1, ..., D16, NOOP}.   
Here NOOP is the zero-argument "No Operation" function.  

The function set, F, is 
F = {COMPARE–EXCHANGE, PROGN2, PROGN3, 

PROGN4}.  
Note that none of these functions have return values.  
Each individual in the population consists of a 

constrained syntactic structure composed of primitive 
functions from the function set, F, and terminals from the 
terminal set, T such that the root of each program tree is a 
PROGN2,  PROGN3, or PROGN4; each argument to 
PROGN2,  PROGN3, and PROGN4 must be a NOOP or a 
function from F; and both arguments to every COMPARE–
EXCHANGE function must be from T (but not NOOP)   

The PROGN2,  PROGN3, and PROGN4 functions 
respectively evaluate each of their two, three, or four 
arguments sequentially.   

The two-argument COMPARE–EXCHANGE function 
side-effects the current state of the vector of to-be-sorted 
bits.  The result of executing a (COMPARE–EXCHANGE i 
j) is that the bit currently in position i of the vector is 
compared with the bit currently in position j of the vector.  
If the first bit is greater than the second bit, the two bits are 
exchanged.  That is, the effect of executing a(COMPARE–
EXCHANGE i j) is that the two bits are sorted into non-
decreasing order.  Table 1 shows the two results Ri and Rj 
produced by executing a (COMPARE–EXCHANGE i j).  
Note that column Ri is the Boolean AND function and 
column Rj is the Boolean OR function.   
Table 1  The COMPARE–EXCHANGE function. 

Two Arguments Two Results 
Ai Aj Ri Rj 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 1 
The fitness of each individual program in the population 

is based on the correctness of its sorting of 216 = 65,536 
fitness cases consisting of all possible vectors of 16 bits.  If, 
after an individual program is executed on a particular 
fitness case, all the 1's appear after all the 0's), the program 
is deemed to have correctly sorted that particular fitness 
case.   

Because our goal is to evolve small (and preferably 
minimal) sorting networks, we ignore exchanges where i = j 



 

and exchanges that are identical to the previous exchange.  
Moreover, during the depth-first execution of a program 
tree, only the first Cmax = 65 COMPARE–EXCHANGE 
functions (i.e., five more steps than in Green's 60-step 16-
sorter) in a program are actually executed (thereby 
relegating the remainder of the program to be unused code).   

Hits are defined as the number of fitness cases for which 
the sort is performed correctly.   

The fitness measure for this problem is multi-objective 
in that it involves both the correctness and size of the 
sorting network.  Standardized fitness is defined in a lexical 
fashion to be the number of fitness cases (0 to 16 ∞ 216) for 
which the sort is performed incorrectly plus 0.01 times the 
number (1 to Cmax) of COMPARE–EXCHANGE functions 
that are actually executed.  For example, the fitness of a 16-
sorter with 60 COMPARE–EXCHANGE functions (such as 
Green's) is 0.60 while the fitness of an imperfect network 
with 60 COMPARE–EXCHANGE functions that correctly 
handles all but 12 fitness cases (out of 16 ∞ 216) is 12.60.  
Note that we used tournament selection.  

The population size was 1,000.  The percentage of 
genetic operations on each generation was 89% one-
offspring crossovers, 10% reproductions, and 1% mutations.  
The maximum size, Hrpb, for the result-producing branch 
was 300 points.  The other parameters for controlling the 
runs were the default values specified in Koza 1994a 
(appendix D).  The architecture of the overall program 
consisted of one result-producing branch.   

5. Mapping the Fitness Evaluation 
Task onto the Xilinx XC6216 Chip 

The problem of evolving sorting networks was run on a host 
PC Pentium type computer containing a Virtual Computer 
Corporation "HOT Works" PCI board containing a Xilinx 
XC6216 field-programmable gate array.  This combination 
permits the field-programmable gate array to be 
advantageously used for the computationally burdensome 
fitness evaluation task while permitting the general-purpose 
host computer to perform all the other tasks.   

In this arrangement, the host PC begins the run by 
creating the initial random population (with the XC6216 
waiting).  Then, for generation 0 (and each succeeding 
generation), the PC creates the necessary configuration bits 
to enable the XC6216 to measure the fitness of the first 
individual program in the population (with the XC6216 
waiting).  Thereafter, the XC6216 measures the fitness of 
one individual.  Note that the PC can simultaneously 
prepare the configuration bits for the next individual in the 
population and then polling to see if the XC6216 is 
finished).  After the fitness of all individuals in the current 
generation of the population is measured, the genetic 
operations (reproduction, crossover, and mutation) are 
performed (with the XC6216 waiting).  This arrangement is 
beneficial because the computational burden of creating the 
initial random population and of performing the genetic 
operations is small in comparison with the fitness evaluation 
task.   

The clock rate at which a field-programmable gate array 
can be run on a problem is considerably slower than that of 
a contemporary serial microprocessor (e.g., Pentium or 
PowerPC) that might run a software version of the same 
problem.  Thus, in order to advantageously use the Xilinx 
XC6216 field-programmable gate array for the 
computationally burdensome fitness evaluation task, it is 
necessary to find a mapping of the fitness evaluation task 
onto the XC6216 that exploits at least some of the massive 
parallelism of the 4,096 function cells of the XC6216. 

Figure 2 shows our placement on 32 horizontal rows and 
64 vertical columns of the XC6216 chip of eight major 
computational elements (labeled A through H).  The figure 
does not show that a second such 32 ∞ 64 area operates in 
parallel on the chip.  The figure also does not show the ring 
of input-output blocks (OIBs) that surround the 64 ∞ 64 
area of function cells or the physical input-output pins that 
connect the chip to the outside.  

H G F E
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Figure 2  Arrangement of major elements A through H 
on a 32 ∞ 64 portion of the Xilinix XC6216 chip.   

For a k-sorter (k ≤ 16), a 16-bit counter B (near the 
upper left corner of the chip) counts down from 2k  - 2 to 0 
under control of control logic A (upper left corner).  The 
vector of k bits resident in counter B on a given time step 
represents one fitness case of the sorting network problem.  
The vector of bits from counter B is fed into the first 
(leftmost) 16 ∞ 1 vertical column of cells of the large 16 ∞ 
40 area C.  Each 16 ∞ 1 vertical column of cells in C (and 
each cell in similar area E) corresponds to one COMPARE–
EXCHANGE operation of an individual candidate sorting 
network.  The vector of 16 bits produced by the 40th 
(rightmost) sorting step of area C then proceeds to U-turn 
area D and is channeled into the first (rightmost) column of 
the large 16 ∞ 40 area E.  The final output from area E is 
checked by answer logic F for whether the individual 
candidate sorting network has correctly rearranged the 
original incoming vector of bits so that all the 0s are above 
all the 1s.  The 16-bit accumulator G is incremented by one 
if the bits are correctly sorted.  Note that the 16 bits of 
accumulator G are sufficient for tallying the number of 



 

correctly sorted fitness cases because the host computer 
starts counter B at 2k - 2, thereby skipping the uninteresting 
fitness case of consisting of all 1s (which cannot be 
incorrectly sorted by any network). The final value of raw 
fitness is reported in 16-bit register H after all the 2k - 2 
fitness cases have been processed.   

The logical function units and interconnection resources 
of areas A, B, D, F, G, and H are permanently configured to 
handle the sorting network problem for k ≤ 16.   

The two large areas, C and E, together represent the 
individual candidate sorting network.  The configuration of 
the logical function units and interconnection resources of 
the 1,280 cells in areas C and E become personalized to the 
current individual candidate sorting network.   

For area C, each cell in a 16 ∞ 1 vertical column is 
configured in one of three main ways.  First, the logical 
function unit of exactly one of the 16 cells is configured as 
a two-argument Boolean AND function (corresponding to 
result Ri of table 1).  Second, the logical function unit of 
exactly one other cell is configured as a two-argument 
Boolean OR function (corresponding to result Rj of table 
1).  Bits i and j become sorted into the correct order by 
virtue of the fact that the single AND cell in each 16 ∞ 1 
vertical column always appears above the single OR cell.  
Third, the logical function units of 14 of the 16 cells are 
configured as "pass through" cells that horizontally pass 
their input from one vertical column to the next.   

For area E, each cell in a 16 ∞ 1 vertical column is 
configured in one of three similar main ways.   

There are four subtypes each of AND and OR cells and 
four types of "pass through" cells. Half of these subtypes 
are required because all the cells in area E differ in chirality 
(handedness) from those in area C in that they receive their 
input from their right and deliver output to their left.  

If the sorting network has fewer than 80 COMPARE–
EXCHANGE operations, the last few vertical columns of area 
E contain 16 "pass through" cells.  Note that the genetic 
operations are constrained so as to not produce networks 
with more than 80 steps.   

Within each cell of areas C and E, the one-bit output of 
the cell's logical function unit is stored into a flip-flop.  The 
contents of the 16 flip-flops in one vertical column become 
the inputs to the next vertical column on the next time step.   

The overall arrangement operates as an 87-stage 
pipeline (the 80 stages of areas C and E, the three stages of 
answer logic F, and four stages of padding at both ends of C 
and E).   

Figure 3 shows the bottom six cells of an illustrative 
vertical column from area C whose purpose is to implement 
a (COMPARE–EXCHANGE 2 5) operation.  As can be 
seen, cell 2 (second from top of the figure) is configured as 
a two-argument Boolean AND function (*) and cell 5 is 
configured as a two-argument OR function (+).  All the 
remaining 14 cells of the vertical column (of which only 
four are shown in this abbreviated figure) are "pass 
through" cells.  These "pass through" cells  horizontally 
convey the bit in the previous vertical column to the next 

vertical column.  In addition, each "pass through" cell (3 
and 4) that lies between the AND and OR cells (1 and 5) is 
configured so that it conveys one signal vertically upwards 
and one signal vertically downwards as "fly over" signals.  
These "fly overs" of the two intervening "pass through" 
cells (3 and 4) enable cell 2's input to be shared with cell 5 
and cell 5's input to be shared with cell 2.  Specifically, the 
input coming into cell 2 horizontally from the previous 
vertical column (i.e., from the left in the figure) is 
bifurcated so that it feeds both the two-argument AND in 
cell 2 and the two-argument OR in cell 5 (and similarly for 
the input coming into cell 5).   

Notice that when a 1 is received from the previous 
vertical column on horizontal row 2 and a 0 is received on 
horizontal row 5 (i.e., the two bits are out of order), the 
AND of cell 2 and the OR of cell 5 cause a 0 to be emitted 
as output on horizontal row 2 and a 1 to be emitted as 
output on horizontal row 5 (i.e., the two bits have become 
sorted into the correct order).  

The remaining "pass through" cells (i.e., cells 1 and 6 in 
the figure and cells 7 through 16 in the full 1 ¥ 16  vertical 
column) are of a subtype that does not have the "fly over" 
capability of the two "intervening" cells (3 and 4).  The 
design of this subtype prevents possible contention with the 
unpredictable signals available from the input-output blocks 
(IOBs) that surround the main 64 ¥ 64 area of the chip.  All 
AND and OR cells are similarly designed since they 
necessarily sometimes occur at the top or bottom of a 
vertical column.   

 
Figure 3  Implementation of (COMPARE–EXCHANGE 2 
5). 

Note that the intervening "pass through" cells (cells 3 
and 4 in the figure) invert their "fly over" signals.  Thus, if 
there is an odd number of "pass through" cells  intervening 
vertically between the AND cells and OR cells, the signals 
being conveyed upwards and downwards in a vertical 
column will arrive at their destinations in inverted form.  



 

Accordingly, special subtypes of the AND cells and OR 
cells reinvert (and thereby correct) such arriving signals.   

When the XC6216 begins operation for a particular 
individual sorting network, all the 16 ∞ 80 flip-flops in C 
and E (as well as the flip-flops in three-stage answer logic F, 
the four insulative stages, and the "done bit" flip-flop) are 
initialized to zero.  Thus, the first 87 output vectors received 
by the answer logic F each consist of 16 0's.  Since the 
answer logic F treats a vector of 16 0's as incorrect, 
accumulator G is not incremented for these first 87 vectors.   

A "past zero" flip-flop is set when counter B counts 
down to 0.  As B continues counting, it rolls over to 216 – 1, 
and continues counting down.  When counter B reaches 216 
– 87 (with the "past zero" flip-flop being set), control logic 
A stops further incrementation of accumulator G.  The raw 
fitness from G appears in reporting register H and the "done 
bit" flip-flop is set to 1.  The host computer polls this "done 
bit" to determine that the XC6216 has completed its fitness 
evaluation task for the current individual.   

The flip-flop toggle rate of the chip (220 MHz) provides 
an upper bound on the speed at which a field-programmable 
gate array can be run.  In practice, the speed at which an 
FPGA can be run is determined by the longest routing 
delay.  The FPGA can be run at 20 MHz for the current 
unoptimized version of the design.   

The above approach exploits the massive parallelism of 
the XC6216 chip in five ways.  First, the Boolean AND 
functions and OR functions of each COMPARE–EXCHANGE 
operation are performed in parallel (in the vertical columns 
of areas C and E).  Second, numerous operations are 
performed in parallel in counter B, accumulator G, control 
logic A, and especially in answer logic F.  The FPGA 
relieves the host computer of performing these operations in 
software in serial.  Third, most importantly, the 87-step 
pipeline (80 steps for areas C and E and 7 steps for areas F 
and G) enables 87 fitness cases to be processed in parallel 
in the pipeline.  Fourth, there are two separate 32 ∞ 64 areas 
operating in parallel on the chip.  Fifth, the XC6216 
evaluates the 2k fitness cases independently of the activity 
of the host PC Pentium type computer (which 
simultaneously can prepare the next individual for the 
XC6216).  

6. Results 
A 16-step 7-sorter was evolved that has two fewer steps 
than the sorting network described in O'Connor and 
Nelsons' patent (1962) and that has the same number of 
steps as the 7-sorter that was devised by Floyd and Knuth 
subsequent to the patent and described in Knuth 1973.  
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