
Foundations of Systems Biology

Foundations of Systems Biology

First Edition

edited by
Hiroaki Kitano

c© 2001 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in Times Roman by the author using the LATEX document preparation
system.
Printed on recycled paper and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

The political economy of trade policy: papers in honor of Jagdish
Bhagwati/edited by Robert C. Feenstra, Gene M. Grossman, Douglas
A. Irwin

p. cm.
Includes bibliographical references and index.
ISBN 0-262-06186-4 (alk. paper)

Contents

Contributors vii

I SOFTWARE PLATFORM AND DATA RESOURCES

1 Automated Reverse Engineering of Metabolic
Pathways from Observed Data by Means of Genetic
Programming 3
John R.Koza, William Mydlowec, Guido Lanza, Jessen
Yu, and Martin A. Keane

References 27

Contributors

Mutsuki Amano
Division of Signal Transduction,
Nara Institute of Science and
Technology.

Katja Bettenbrock
bettenbrock@mpi-magdeburg.mpg.de

Max-Planck-Institute for
Dynamics of Complex Technical
Systems.

Hamid Bolouri
hbolouri@caltech.edu

JST/ERATO Kitano Systems
Biology Project,
Control and Dynamical Systems,
California Institute of Technology,
and
Division of Biology,
California Institute of Technology,
and
Science and Technology Research
Centre,
University of Hertfordshire.

Dennis Bray
d.bray@zoo.cam.ac.uk

Department of Zoology,
University of Cambridge.

Jehoshua Bruck
bruck@paradise.caltech.edu

Division of Engineering and
Applied Science,
California Institute of Technology.

John Doyle
doyle@cds.caltech.edu

Control and Dynamical Systems,

California Institute of Technology.

Andrew Finney
afinney@cds.caltech.edu

JST/ERATO Kitano Systems
Biology Project,
Control and Dynamical Systems,
California Institute of Technology.

Ernst Dieter Gilles
gilles@mpi-magdeburg.mpg.de

Max-Planck-Institute for
Dynamics of Complex Technical
Systems.

Martin Ginkel
ginkel@mpi-magdeburg.mpg.de

Max-Planck-Institute for
Dynamics of Complex Technical
Systems.

Shugo Hamahashi
shugo@symbio.jst.go.jp

JST/ERATO Kitano Symbiotic
Systems Project,
Systems Biology Institute,
and
Department of Computer Science,
Keio University.

Michael Hucka
mhucka@cds.caltech.edu

JST/ERATO Kitano Systems
Biology Project,
Control and Dynamical Systems,
California Institute of Technology.

Kozo Kaibuchi
Division of Signal Transduction,

Nara Institute of Science and
Technology.,
Department of Cell Pharmacology,
Nagoya University.

Mitsuo Kawato
JST/ERATO Kawato Dynamic
Brain Project,
Human Information Processing
Research Laboratories,
ATR.

Martin A. Keane
makeane@ix.netcom.com

Econometric Inc.

Hiroaki Kitano
kitano@symbio.jst.go.jp

JST/ERATO Kitano Symbiotic
Systems Project, Systems Biology
Institute.,
Control and Dynamical Systems,
California Institute of Technology,
and
Sony Computer Science
Laboratories, Inc.,

John R. Koza
koza@stanford.edu

Biomedical Informatics,
Department of Medicine,
Department of Electrical
Engineering,
Stanford University.

Andreas Kremling
kre@mpi-magdeburg.mpg.de

Max-Planck-Institute for
Dynamics of Complex Technical
Systems.

Shinya Kuroda
kuroda@fido.cpmc.columbia.edu

JST/ERATO Kawato Dynamic
Brain Project,
Division of Signal Transduction,
Nara Institute of Science and
Technology,

Present address: Center for
Neurobiology and Behavior,
Columbia University.

Koji M. Kyoda
kyoda@symbio.jst.go.jp

JST/ERATO Kitano Symbiotic
Systems Project,
Systems Biology Institute,
and
Department of Fundamental
Science and Technology,
Keio University.

Guido Lanza
guido@pharmix.com

Genetic Programming Inc.

Andre Levchenko
andre@paradise.caltech.edu

Division of Engineering and
Applied Science,
California Institute of Technology.

Pedro Mendes
mendes@vt.edu

Virginia Bioinformatics Institute,
Virginia Polytechnic Institute and
State University.

Satoru Miyano
miyano@ims.u-tokyo.ac.jp

JST/ERATO Kitano Symbiotic
Systems Project,
Human Genome Center, Institute
of Medical Science,
University of Tokyo.

Eric Mjolsness
mjolsness@jpl.nasa.gov

Jet Propulsion Laboratory,
Division of Biology, California
Institute of Technology
and
JST/ERATO Kitano Symbiotic
Systems Project,

Mineo Morohashi
moro@symbio.jst.go.jp

JST/ERATO Kitano Symbiotic
Systems Project,
Systems Biology Institute,
and
Department of Fundamental
Science and Technology,
Keio University.

William Mydlowec
myd@cs.stanford.edu

Genetic Programming Inc.

Masao Nagasaki
masao@ims.u-tokyo.ac.jp

JST/ERATO Kitano Symbiotic
Systems Project,
Department of Information
Science,
Human Genome Center, Institute
of Medical Science,
University of Tokyo.

Yoichi Nakayama
ynakayam@sfc.keio.ac.jp

Institute for Advanced Biosciences,
Keio University.

Shuichi Onami
sonami@symbio.jst.go.jp

JST/ERATO Kitano Symbiotic
Systems Project,
Systems Biology Institute.,
Control and Dynamical Systems,
California Institute of Technology.

Herbert Sauro
hsauro@cds.caltech.edu

JST/ERATO Kitano Systems
Biology Project,
Control and Dynamical Systems,
California Institute of Technology.

Nicolas Schweighofer
JST/ERATO Kawato Dynamic
Brain Project,
Present address: Learning Curve.

Bruce Shapiro
bshapiro@jpl.nasa.gov

Jet Propulsion Laboratory,
California Institute of Technology.

Thomas Simon Shimizu
tss26@cam.ac.uk

Department of Zoology,
University of Cambridge.

Jörg Stelling
stelling@mpi-magdeburg.mpg.de

Max-Planck-Institute for
Dynamics of Complex Technical
Systems.

Paul W. Sternberg
pws@its.caltech.edu

Division of Biology and Howard
Hughes Medical Institute,
California Institute of Technology.

Zoltan Szallasi
zszallas@mxc.usuhs.mil

Department of Pharmacology,
Uniformed Services University of
the Health Sciences.

Masaru Tomita
mt@sfc.keio.ac.jp

Institute for Advanced Biosciences,
Keio University.

Mattias Wahde
mwahde@me.chalmers.se

Division of Mechatronics,
Chalmers University of
Technology.

Tau-Mu Yi
tmy@caltech.edu

JST/ERATO Kitano Symbiotic
Systems Project,
Division of Biology,
California Institute of Technology.

Jessen Yu
jyu@cs.stanford.edu

Genetic Programming Inc.

Part I

Software Platform and Data Resources

1 Automated Reverse Engineering of
Metabolic Pathways from Observed Data by
Means of Genetic Programming

John R.Koza, William Mydlowec, Guido Lanza,
Jessen Yu, and Martin A. Keane

Recent work has demonstrated that genetic programming is capable of au-
tomatically creating complex networks (e.g., analog electrical circuits, con-
trollers) whose behavior is modeled by linear and non-linear continuous-
time differential equations and whose behavior matches prespecified out-
put values. The concentrations of substances participating in networks
of chemical reactions are modeled by non-linear continuous-time differ-
ential equations. This chapter demonstrates that it is possible to auto-
matically create (reverse engineer) a network of chemical reactions from
observed time-domain data. Genetic programming starts with observed
time-domain concentrations of substances and automatically creates both
the topology of the network of chemical reactions and the rates of each
reaction of a network such that the behavior of the automatically cre-
ated network matches the observed time-domain data. Specifically, ge-
netic programming automatically created a metabolic pathway involving
four chemical reactions that consume glycerol and fatty acid as input, use
ATP as a cofactor, and produce diacyl-glycerol as the final product. The
metabolic pathway was created from 270 data points. The automatically
created metabolic pathway contains three key topological features, includ-
ing an internal feedback loop, a bifurcation point where one substance is
distributed to two different reactions, and an accumulation point where
one substance is accumulated from two sources. The topology and sizing
of the entire metabolic pathway was automatically created using only the
time-domain concentration values of diacyl-glycerol (the final product).

INTRODUCTION

A living cell can be viewed as a dynamical system in which a large num-
ber of different substances react continuously and non-linearly with one
another. In order to understand the behavior of a continuous non-linear
dynamical system with numerous interacting parts, it is usually insuf-
ficient to study behavior of each part in isolation. Instead, the behavior

must usually be analyzed as a whole (Tomita et al., 1999).
Considerable amounts of time-domain data are now becoming avail-

able concerning the concentration of biologically important chemicals in
living organisms. Such data include both gene expression data (obtained
from microarrays) and data on the concentration of substances participat-
ing in metabolic pathways (Ptashne, 1992; McAdams and Shapiro, 1995;
Loomis and Sternberg, 1995; Arkin et al., 1997; Yuh et al., 1998; Liang et
al., 1998; Mendes and Kell, 1998; D’haeseleer et al., 1999).

The concentrations of substrates, products, and catalysts (e.g., en-
zymes) participating in chemical reactions are modeled by non-linear
continuous-time differential equations, such as the Michaelis-Menten
equations (Voit, 2000).

The question arises as to whether it is possible to start with observed
time-domain concentrations of substances and automatically create both
the topology of the network of chemical reactions and the rates of each re-
action that produced the observed data — that is, to automatically reverse
engineer the network from the data.

Genetic programming (Koza et al., 1999a) is a method for automati-
cally creating a computer program whose behavior satisfies certain high-
level requirements. Recent work has demonstrated that genetic program-
ming can automatically create complex networks that exhibit prespecified
behavior in areas where the network’s behavior is governed by differential
equations (both linear and non-linear).

For example, genetic programming is capable of automatically creat-
ing both the topology and sizing (component values) for analog electri-
cal circuits (e.g., filters, amplifiers, computational circuits) composed of
transistors, capacitors, resistors, and other components merely by speci-
fying the circuit’s output — that is, the output data values that would be
observed if one already had the circuit. This reverse engineering of cir-
cuits from data is performed by genetic programming even though there
is no general mathematical method for creating the topology and sizing of
analog electrical circuits from the circuit’s desired (or observed) behavior
(Koza et al., 1999b). Seven of the automatically created circuits infringe on
previously issued patents. Others duplicate the functionality of previously
patented inventions in a novel way.

As another example, genetic programming is capable of automati-
cally creating both the topology and sizing (tuning) for controllers com-
posed of time-domain blocks such as integrators, differentiators, multipli-
ers, adders, delays, leads, and lags merely by specifying the controller’s
effect on the to-be-controlled plant (Koza et al., 1999c, 2000a). This reverse
engineering of controllers from data is performed by genetic program-
ming even though there is no general mathematical method for creat-
ing the topology and sizing for controllers from the controller’s behavior.
Two of the automatically created controllers infringe on previously issued
patents.

4 John R.Koza, et al.

As yet another example, it is possible to automatically create antennas
composed of a network of wires merely by specifying the antenna’s high-
level specifications (Comisky, Yu, and Koza 2000).

Our approach to the problem of automatically creating both the topol-
ogy and sizing of a network of chemical reactions involves

(1) establishing a representation involving program trees (composed of
functions and terminals) for chemical networks,
(2) converting each individual program tree in the population into an
electrical circuit representing a network of chemical reactions,
(3) obtaining the behavior of the network of chemical reactions by simu-
lating the electrical circuit,
(4) defining a fitness measure that measures how well the behavior of an
individual network in the population matches the observed data, and
(5) applying genetic programming to breed a population of improving
program trees using the fitness measure.

The implementation of our approach entails working with five differ-
ent representations for a network of chemical reactions, namely

Reaction Network: Biochemists often use this representation (shown in
Figure 1.1) to represent a network of chemical reactions. In this represen-
tation, the blocks represent chemical reactions and the directed lines rep-
resent flows of substances between reactions.
Program Tree: A network of chemical reactions can also be represented
as a program tree whose internal points are functions and external points
are terminals. This representation enables genetic programming to breed
a population of programs in a search for a network of chemical reactions
whose time-domain behavior concerning concentrations of final product
substance(s) closely matches observed data.
Symbolic Expression: A network of chemical reactions can also be rep-
resented as a symbolic expression (S-expression) in the style of the LISP
programming language. This representation is used internally by the run
of genetic programming.
System of Non-Linear Differential Equations: A network of chemical
reactions can also be represented as a system of non-linear differential
equations.
Analog Electrical Circuit: A network of chemical reactions can also be
represented as an analog electrical circuit (as shown in Figure 1.3). Rep-
resentation of a network of chemical reactions as a circuit facilitates simu-
lation of the network’s time-domain behavior.

5 Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

STATEMENT OF THE ILLUSTRATIVE PROBLEM

The goal is to automatically create (reverse engineer) both the topology
and sizing of a network of chemical reactions.

The topology of a network of chemical reactions comprises (1) the num-
ber of substrates consumed by each reaction, (2) the number of products
produced by each reaction, (3) the pathways supplying the substrates (ei-
ther from external sources or other reactions) to the reactions, and (4) the
pathways dispersing the reaction’s products (either to other reactions or
external outputs). The sizing of a network of chemical reactions consists of
the numerical values representing the rates of each reaction.

We chose, as an illustrative problem, a network that incorporates three
key topological features. These features include an internal feedback loop,
a bifurcation point (where one substance is distributed to two different re-
actions), and an accumulation point (where one substance is accumulated
from two sources). The particular chosen network is part of a phospho-
lipid cycle, as presented in the E-CELL cell simulation model (Tomita et
al., 1999). The network’s external inputs are glycerol and fatty acid. The
network’s final product is diacyl-glycerol. The network’s four reactions
are catalyzed by Glycerol kinase (EC2.7.1.30), Glycerol-1-phosphatase
(EC3.1.3.21), Acylglycerol lipase (EC3.1.1.23), and Triacylglycerol lipase
(EC3.1.1.3). Figure 1.1 shows this network of chemical reactions with the
correct rates of each reaction in parenthesis. The rates that are outside the
parenthesis are the rates of the best individual from generation 225 of the
run of genetic programming.

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.95 (1.95)

Glycerol
kinase

Glycerol

Glycerol-1-
phosphatase

INT-2C00162

C00116

INT-1

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K =1.45 (1.45)

EC3.1.3.21
K = 1.17 (1.19)

EC2.7.1.30
K = 1.69 (1.69)

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

ATP

C00002

Figure 1.1 Network of chemical reactions involved in the phospholipid cycle

6 John R.Koza, et al.

BACKGROUND ON GENETIC PROGRAMMING

Genetic programming (Koza, 1992, 1994a,b; Koza et al., 1999a,b; Koza and
Rice, 1992) is a method for automatically creating a computer program
whose behavior satisfies user-specified high-level requirements. Genetic
programming is an extension of the genetic algorithm (Holland, 1992) in
which the population being bred consists of computer programs. Genetic
programming starts with a primordial ooze of thousands of randomly cre-
ated computer programs (program trees) and uses the Darwinian princi-
ple of natural selection, crossover (sexual recombination), mutation, gene
duplication, gene deletion, and certain mechanisms of developmental bi-
ology to breed a population of programs over a series of generations. Al-
though there are many mathematical algorithms that solve problems by
producing a set of numerical values, a run of genetic programming can
create both a graphical structure and a set of numerical values. That is, ge-
netic programming will produce not just numerical values, but the struc-
ture in which those numerical values reside.

Genetic programming breeds computer programs to solve problems
by executing the following three steps:

(1) Generate an initial population of compositions (typically random) of
the functions and terminals of the problem.
(2) Iteratively perform the following substeps (referred to herein as a
generation) on the population of programs until the termination criterion
has been satisfied:

(A)Execute each program in the population and assign it a fitness
value using the fitness measure.

(B)Create a new population of programs by applying the following
operations. The operations are applied to program(s) selected from
the population with a probability based on fitness (with reselection
allowed).

(i) Reproduction: Copy the selected program to the new popula-
tion.
(ii) Crossover: Create a new offspring program for the new pop-
ulation by recombining randomly chosen parts of two selected
programs.
(iii) Mutation: Create one new offspring program for the new
population by randomly mutating a randomly chosen part of the
selected program.
(iv) Architecture-altering operations: Select an architecture-altering
operation from the available repertoire of such operations and
create one new offspring program for the new population by ap-
plying the selected architecture-altering operation to the selected
program.

7 Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

(3) Designate the individual program that is identified by result desig-
nation (e.g., the best-so-far individual) as the result of the run of genetic
programming. This result may be a solution (or an approximate solution)
to the problem.

The individual programs that are evolved by genetic programming
are typically multi-branch programs consisting of one or more result-
producing branches and zero, one, or more automatically defined func-
tions (subroutines).
The architecture of such a multi-branch program involves

(1) the total number of automatically defined functions,
(2) the number of arguments (if any) possessed by each automatically
defined function, and
(3) if there is more than one automatically defined function in a program,
the nature of the hierarchical references (including recursive references),
if any, allowed among the automatically defined functions.

Architecture-altering operations enable genetic programming to auto-
matically determine the number of automatically defined functions, the
number of arguments that each possesses, and the nature of the hierarchi-
cal references, if any, among such automatically defined functions.

Additional information on genetic programming can be found in
books such as (Banzhaf et al., 1998); books in the series on genetic pro-
gramming from Kluwer Academic Publishers such as (Langdon, 1998); in
edited collections of papers such as the Advances in Genetic Programming
series of books from the MIT Press (Spector et al., 1999); in the proceedings
of the Genetic Programming Conference (Koza et al., 1998); in the proceed-
ings of the annual Genetic and Evolutionary Computation Conference
(combining the annual Genetic Programming Conference and the Inter-
national Conference on Genetic Algorithms) held starting in 1999 (Whit-
ley et al., 2000); in the proceedings of the annual Euro-GP conferences
held starting in 1998 (Poli et al., 2000); at web sites such as www.genetic-
programming.org; and in the Genetic Programming and Evolvable Ma-
chines journal (from Kluwer Academic Publishers).

REPRESENTATION OF CHEMICAL REACTION NETWORKS

This section describes a method for representing a network of chemical re-
actions as a program tree suitable for use in a run of genetic programming.
Each program tree represents an interconnected network of chemical re-
actions involving various substances. A chemical reaction may consume
one or two substances and produce one or two substances. The consumed
substances may be external input substances or intermediate substances
produced by reactions. The chemical reactions, enzymes, and substances
of a network may be represented by a program tree that contains

8 John R.Koza, et al.

• internal nodes representing chemical reaction functions,
• internal nodes representing selector functions that select the reaction’s
first versus the reaction’s second (if any) product,
• external points (leaves) representing substances that are consumed and
produced by a reaction,
• external points representing enzyme that catalyze a reaction, and
• external points representing numerical constants (reaction rates).

Each program tree in the population is a composition of functions from
the problem’s function set and terminals from the problem’s terminal set.

Repertoire of Functions

There are four chemical reaction functions and two selector functions.
The first argument of each chemical reaction (CR) function identifies

the enzyme that catalyzes the reaction. The second argument specifies
the reaction’s rate. In addition, there are two, three, or four arguments
specifying the substrate(s) and product(s) of the reaction. Table 1.1 shows
the number of substrate(s) and product(s) and overall arity for each of the
four chemical reaction functions. The runs in this chapter use a first-order
and second-order rate law.

Table 1.1 Four chemical reaction functions

Function Substrates Products Arity
CR 1 1 1 1 4
CR 1 2 1 2 5
CR 2 1 2 1 5
CR 2 2 2 2 6

Each function returns a list composed of the reaction’s one or two
products. The one-argument FIRST function returns the first of the one or
two products produced by the function designated by its argument. The
one-argument SECOND function returns the second of the two products
(or, the first product, if the reaction produces only one product).

Repertoire of Terminals

Some terminals represent substances (input substances, intermediate sub-
stances created by reactions, or output substances). Other terminals repre-
sent the enzymes that catalyze the chemical reactions. Still other terminals
represent numerical constants for the rate of the reactions.

9 Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

Constrained Syntactic Structure

The trees are constructed in accordance with a constrained syntactic struc-
ture. The root of every result-producing branch must be a chemical reac-
tion function. The enzyme that catalyzes a reaction always appears as the
first argument of its chemical reaction function. A numerical value rep-
resenting a reaction’s rate always appears as the second argument of its
chemical reaction function. The one or two input arguments to a chemical
reaction function can be either a substance terminal or selector function
(FIRST or SECOND). The result of having a selector function as an input
argument is to create a cascade of reactions. The one or two output argu-
ments to a chemical reaction function must be a substance terminal. The
argument to a one-argument selector function (FIRST or SECOND) is al-
ways a chemical reaction function.

Example

The chemical reactions, enzymes, and substances of a network of chemical
reactions may be completely represented by a program tree that contains

• internal nodes representing chemical reaction functions,
• internal nodes representing selector functions that select the reaction’s
first versus the reaction’s second (if any) product,
• external points (leaves) representing substances that are consumed and
produced by a reaction,
• external points representing enzymes that catalyze a reaction, and
• external points representing numerical constants (reaction rates).

Each program tree in the population is a composition of functions from
the following function set and terminals from the following terminal set.

Figure 1.2 shows a program tree that corresponds to the metabolic
pathway of figure 1.1. The program tree is presented in the style of
the LISP programming language. The program tree (Figure 1.2) has two
result-producing branches, RPB0 and RPB1. These two branches are con-
nected by means of a connective PROGN function.

As can be seen, there are four chemical reaction functions in Figure
1.2. The first argument of each chemical reaction function is constrained
to be an enzyme and the second argument is constrained to be a numerical
rate. The remaining arguments are substances, such as externally supplied
input substances, intermediate substances produced by reactions within
the network, and the final output substance produced by the network.
The remaining arguments of each chemical reaction function are marked,
purely as a visual aid to the reader, by an arrow. An upward arrow
indicates that the substance at the tail of the arrow points to a substrate
of the reaction. An downward arrow indicates that the head of the arrow

10 John R.Koza, et al.

points to a product of the reaction.
There is a two-substrate, one-product chemical reaction function

CR 2 1 in the lower left part of Figure 1.2. For this reaction, the enzyme
is Acylglycerol lipase (EC3.1.1.23) (the first argument of this chemical re-
action function); its rate is 1.95 (the second argument); its two substrates
are fatty acid (C00162) (the third argument) and Glycerol (C00116) (the
fourth argument); and its product is Monoacyl-glycerol (C01885) (the fifth
argument).

There is a FIRST-PRODUCT function between the two chemical reac-
tion functions in the left half of Figure 1.2. The FIRST-PRODUCT func-
tion selects the first of the two products of the lower CR 2 1 function.
The line in the program tree from the lower chemical reaction function to
the FIRST-PRODUCT function and the line between the FIRST-PRODUCT
function and the higher CR 2 1 reaction means that when this tree is con-
verted into a network of chemical reactions, the first (and, in this case,
only) substance produced by the lower CR 2 1 reaction is a substrate to
the higher reaction. In particular, the product of the lower reaction func-
tion (i.e., an intermediate substance called Monoacyl-glycerol) is the sec-
ond of the two substrates to the higher chemical reaction function (i.e.,
the fourth argument of the higher function). Thus, although there is no
return value for any branch or for the program tree as a whole, the re-
turn value(s) of all but the top chemical reaction function of a particular
branch (as well the return values of a FIRST-PRODUCT function and a
SECOND-PRODUCT function) define the flow of substances in the net-
work of chemical reactions represented by the program tree.

Notice that the fatty acid (C00162) substance terminal appears as a
substrate argument to both of these chemical reaction functions (in the
left half of Figure 1.2 and also in the left half of Figure 1.1). The repetition
of a substance terminal as a substrate argument in a program tree means
that when the tree is converted into a network of chemical reactions, the
available concentration of this particular substrate is distributed to two
reactions in the network. That is, the repetition of a substance terminal as
a substrate argument in a program tree corresponds to a bifurcation point
where one substance is distributed to two different reactions in the net-
work of chemical reactions represented by the program tree. There is an-
other bifurcation point in this network of chemical reactions where Glyc-
erol (C00116) appears as a substrate argument to both the two-substrate,
one-product chemical reaction function CR 2 1 (in the lower left of Fig-
ure 1.2 and in the upper left part of Figure 1.1) and the two-substrate,
two-product chemical reaction function CR 2 2 (in the upper right part of
Figure 1.2 and in the upper right part of Figure 1.1).

Glycerol (C00116) has two sources in this network of chemical reac-
tions. First, it is externally supplied (shown at the top right of Figure 1.1).
Second, this substance is the product of the one-substrate, two-product
chemical reaction function CR 1 2 (in the middle of Figure 1.1 and in the

11 Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

lower right of Figure 1.2). When a substance in a network has two or more
sources (by virtue either of being externally supplied, by virtue of being a
product of a reaction of a network, or any combination thereof), the sub-
stance is accumulated. When the program tree is converted into a network,
all the sources of this substance are pooled. That is, there is an accumula-
tion point for the substance.

Also, Glycerol (C00116) appears as part of an internal feedback loop
consisting of two reactions, namely

• the one-substrate, two-product chemical reaction function CR 1 2 cat-
alyzed by EC3.1.3.21 (in the middle of Figure 1.1 and in the lower right of
Figure 1.2) and
• the two-substrate, two-product chemical reaction function CR 2 2 cat-
alyzed by EC2.7.1.30 (in the upper right part of Figure 1.2 and in the right
part of Figure 1.1).

The presence of an internal feedback loop is established in this net-
work because of the following two features of this program tree:

• There exists a substance, namely sn-Glycerol-3-Phosphate (C00093)
such that this substance

–is a product (sixth argument) that is produced by the two-substrate,
two-product chemical reaction function CR 2 2 (catalyzed by EC2.7.1.30)
in the upper right part of Figure 1.2, and

–is also a substrate that is consumed by the one-substrate, two-
product chemical reaction function CR 1 2 (catalyzed by EC3.1.3.21)
in the lower right part of Figure 1.2 that lies beneath the CR 2 2 func-
tion.

• There exists a second substance, namely glycerol (C00116), that

–is a product that is produced by the chemical reaction function
CR 1 2 (catalyzed by EC3.1.3.21) and

–is a substrate that is consumed by the chemical reaction function
CR 2 2 (catalyzed by EC2.7.1.30).

In summary, the network of Figure 1.2 contains the following three
noteworthy topological features:

• an internal feedback loop in which Glycerol (C00116) is both consumed
and produced in the loop,
• two bifurcation points (one where Glycerol is distributed to two differ-
ent reactions and one where and fatty acid is distributed to two different
reactions), and
• an accumulation point where one substance, namely Glycerol, is accu-
mulated from two sources.

A Stanford University technical report provides additional details and
explanatory figures (Koza, Mydlowec, Lanza, Yu, and Keane 2000).

12 John R.Koza, et al.

EC3.1.1.23 1.95 C00162 C00116 C01885

CR_2_1

EC3.1.1.3 1.45 C00162 C00165

RPB0

CR_1_2

C00093 C00009C00116

FIRST-PRODUCT

CR_2_2

EC2.7.1.30 1.69 C00002 C00093C00008

RPB1

EC3.1.3.21 1.19

PROGN

Acylglycerol
Lipase

Triacylglycerol
Lipase

Glycerol-1-
phosphatase

Glycerol
Kinease

sn-glycerol-3-
phosphate

Glycerol Orthophosphate

sn-glycerol-3-
phosphate

ADPATPFatty
Acid

Diacyl-glycerol

Fatty
Acid

Glycerol Monoacyl-
glycerol

CR_2_1

FIRST-PRODUCT

Figure 1.2 Program tree corresponding to metabolic pathway of Figure 1.1.

Figure 1.3 shows the electrical circuit corresponding to the network of
Figure 1.1. The triangles in the figure represent integrators.

PREPARATORY STEPS

Six major preparatory steps are required before applying genetic program-
ming: (1) determine the architecture of the program trees, (2) identify the
functions, (3) identify the terminals, (4) define the fitness measure, (5)
choose control parameters for the run, and (6) choose the termination cri-
terion and method of result designation. For additional details, see (Koza
et al., 2000b).

Program Architecture

Each program tree in the initial random population (generation 0) has
one result-producing branch. In subsequent generations, the architecture-
altering operations (patterned after gene duplication and gene deletion
in nature) may insert and delete result-producing branches to particular
individual program trees in the population. Each program tree may have
four result-producing branches.

Function Set

The function set, F, consists of six functions.
F = {CR1 1, CR1 2, CR2 1, CR2 2, FIRST, SECOND}.

13 Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

Figure 1.3 Electrical circuit corresponding to the chemical reaction network of
Figure 1.1.

Terminal Set

The terminal set, T, is

T = {�, C00116, C00162, C00002, C00165, I NT 1, I NT 2, I NT 3,

EC2 7 1 30, EC3 1 3 21, EC3 1 1 23, EC3 1 1 3}.
� denotes a perturbable numerical value. In the initial random generation
(generation 0) of a run, each perturbable numerical value is set, individu-
ally and separately, to a random value in a chosen range (from 0.0 and 2.0
here).

In the illustrative problem herein, C00116 is the concentration of glyc-
erol. C00162 is the concentration of fatty acid. These two substances are
inputs to the illustrative overall network of interest herein. C00002 is the
concentration of the cofactor ATP. C00165 is the concentration of diacyl-
glycerol. This substance is the final product of the illustrative network
herein. INT 1, INT 2, and INT 3 are the concentrations of intermediate
substances 1, 2, and 3 (respectively).

INT 1, INT 2, and INT 3 are the concentrations of intermediate sub-
stances 1, 2, and 3 (respectively).

EC2 7 1 30, EC3 1 3 21, EC3 1 1 23, and EC3 1 1 3 are enzymes.

14 John R.Koza, et al.

Fitness Measure

Genetic programming is a probabilistic algorithm that searches the space
of compositions of the available functions and terminals under the guid-
ance of a fitness measure. In order to evaluate the fitness of an individual
program tree in the population, the program tree is converted into a di-
rected graph representing the network. The result-producing branches are
executed from left to right. The functions in a particular result-producing
branch are executed in a depth-first manner. One reactor (representing the
concentration of the substances participating in the reaction) is inserted
into the network for each chemical reaction function that is encountered
in a branch. The reactor is labeled with the reaction’s enzyme and rate. A
directed line entering the reactor is added for each of the reaction’s one or
two substrate(s). A directed line leaving the reactor is added for each of
the reaction’s one or two product(s). The first product of a reaction is se-
lected whenever a FIRST function is encountered in a branch. The second
product of a reaction is selected whenever a SECOND function is encoun-
tered in a branch.

After the network is constructed, the pathway is converted into an
electrical circuit. A SPICE netlist is then constructed to represent the elec-
trical circuit. We provide SPICE with subcircuit definitions to implement
all the chemical reaction equations. This SPICE netlist is wrapped inside
an appropriate set of SPICE commands to carry out analysis in the time
domain (described below). The electrical circuit is then simulated using
our modified version of the original 217,000-line SPICE3 simulator (Quar-
les et al., 1994). We have embedded our modified version of SPICE as a
submodule within our genetic programming system.

Each individual chemical reaction network is exposed to nine time-
domain signals (table 2) representing the time-varying concentrations of
four enzymes (EC2.7.1.30, EC3.1.3.21, EC3.1.1.23, and EC3.1.1.3) over 30
half-second time steps. None of these time series patterns are extreme.
Each has been structured so as to vary the concentrations between 0 and
2.0 in a pattern to which a living cell might conceivably be exposed.

There are a total of 270 data points. The data was obtained from the
E-CELL cell simulation model (Tomita et al., 1999; Voit, 2000).

The concentrations of all intermediate substances and the network’s
final product are 0 at time step 0.

For the runs in this paper, Glycerol (C00116), Fatty acid (C00162), and
ATP (C00002) are externally supplied at a constant rate (table 3). That is,
these values are not subject to evolutionary change during the run.

Fitness is the sum, over the 270 fitness cases, of the absolute value
of the difference between the concentration of the end product of the
individual reaction network and the observed concentration of diacyl-
glycerol (C00165). The smaller the fitness, the better. An individual that
cannot be simulated by SPICE is assigned a high penalty value of fitness

15 Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

Table 1.2 Variations in the levels of the four enzymes

Signal EC2.7.1.30 EC3.1.3.21 EC.1.1.23 EC3.1.1.3
1 Slope-Up Sawtooth Step-Down Step-Up
2 Slope-Down Step-Up Sawtooth Step-Down
3 Step-Down Slope-Up Slope-Down Step-Up
4 Step-Up Slope-Down Step-Up Step-Down
5 Sawtooth Step-Down Slope-Up Step-Up
6 Sawtooth Step-Down Knock-Out Step-Up
7 Sawtooth Knock-Out Slope-Up Step-Down
8 Knock-Out Step-Down Slope-Up Sawtooth
9 Step-Down Slope-Up Sawtooth Knock-Out

Table 1.3 Rates for three externally supplied substances

Substance Rate
Glycerol (C00116) 0.5
Fatty acid (C00162) 1.2
ATP (C00002) 1.5

(108). The number of hits is defined as the number of fitness cases (0 to
270) for which the concentration of the measured substances is within 5%
of the observed data value.

See Koza, Mydlowec, Lanza, Yu, and Keane 2000 for additional details.

Control Parameters for the Run

The population size, M, is 100,000. A generous maximum size of 500
points (for functions and terminals) was established for each result-
producing branch. The percentages of the genetic operations for each
generation is 58.5% one-offspring crossover on internal points of the pro-
gram tree other than perturbable numerical values, 6.5% one-offspring
crossover on points of the program tree other than perturbable numerical
values, 1% mutation on points of the program tree other than perturbable
numerical values, 20% mutation on perturbable numerical values, 10%
reproduction, 3% branch creation, and 2% subroutine deletion. The other
parameters are the default values that we apply to a broad range of prob-
lems (Koza et al., 1999a).

Termination

The run was manually monitored and manually terminated when the fit-
ness of many successive best-of-generation individuals appeared to have
reached a plateau.

16 John R.Koza, et al.

Implementation on Parallel Computing System

We used a home-built Beowulf-style (Sterling et al., 1999; Koza et al.,
1999a) parallel cluster computer system consisting of 1,000 350 MHz Pen-
tium II processors (each accompanied by 64 megabytes of RAM). The sys-
tem has a 350 MHz Pentium II computer as host. The processing nodes are
connected with a 100 megabit-per-second Ethernet. The processing nodes
and the host use the Linux operating system. The distributed genetic al-
gorithm with unsynchronized generations and semi-isolated subpopula-
tions was used with a subpopulation size of Q = 500 at each of D = 1,000
demes. As each processor (asynchronously) completes a generation, four
boatloads of emigrants from each subpopulation are dispatched to each of
the four toroidally adjacent processors. The 1,000 processors are hierarchi-
cally organized. There are 5 × 5 = 25 high-level groups (each containing 40
processors). If the adjacent node belongs to a different group, the migra-
tion rate is 2% and emigrants are selected based on fitness. If the adjacent
node belongs to the same group, emigrants are selected randomly and the
migration rate is 5% (10% if the adjacent node is in the same physical box).

RESULTS

The population for the initial random generation (generation 0) of a run
of genetic programming is created at random. The fitness of the best
individual (Figure 1.4) from generation 0 is 86.4. This individual scores
126 hits (out of 270). Substance C00162 (fatty acid) is used as an input
substance to this metabolic pathway; however, glycerol (C00116) and ATP
(C00002) are not. Two of the four available reactions (EC 3.1.1.23 and
EC 3.1.1.3) are used. However; a third reaction (EC 3.1.3.21) consumes a
non-existent intermediate substance (INT 2) and the fourth reaction (EC
2.7.1.30) is not used at all. This metabolic pathway contains one important
topological feature, namely the bifurcation of C00162 to two different
reactions. However, this metabolic pathway does not contain any of the
other important topological features of the correct metabolic pathway.

In generation 10, the fitness of the best individual (Figure 1.5) is 64.0.
This individual scores 151 hits. This metabolic pathway is superior to the
best individual of generation 0 in that it uses both C00162 (fatty acid) and
glycerol (C00116) as external inputs. However, this metabolic pathway
does not use ATP (C00002). This metabolic pathway is also defective in
that it contains only two of the four reactions.

In generation 25, the fitness of the best individual (figure 1.6) is 14.3.
This individual scores 224 hits. This metabolic pathway contains all four
of the available reactions. This metabolic pathway is more complex than
previous best-of-generation individuals in that it contains two topologi-
cal features not previously seen. First, this metabolic pathway contains an
internal feedback loop in which one substance (glycerol C00116) is con-

17 Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

C00162

C00162

C00165

Cell Membrane

Fatty Acid

OUTPUT
(MEASURED)

EC3.1.1.23
K = 0.69 (1.95)

Acylglycerol
lipase

INT-1

EC3.1.1.3
K = 1.80 (1.45)

INT-2
EC3.1.3.21

K = 1.03 (1.95)

Glycerol-1-
Phosphatase

Figure 1.4 Best of generation 0

sumed by one reaction (catalyzed by enzyme EC 2.7.1.30), produced by
another reaction (catalyzed by enzyme EC 3.1.3.21), and then supplied as
a substrate to the first reaction. Second, this metabolic pathway contains
a place where there is an addition of quantities of one substance. Specifi-
cally, glycerol (C00116) comes from the reaction catalyzed by enzyme EC
3.1.3.21 and is also externally supplied. This metabolic pathway also con-
tains two substances (C00116 and C00162) where a substance is bifurcated
to two different reactions.

d[AT P]

dt
= 1.5 − 1.69[C00116][C00002][EC2.7.1.30] (1.1)

In generation 120, the fitness of the best individual (Figure 1.7) is 2.33.
The cofactor ATP (C00002) appears as an input to this metabolic pathway.
This pathway has the same topology as the correct network.. However,
the numerical values (sizing) is not yet correct and this individual scores
only 255 hits.

The best-of-run individual (Figure 1.1) appears in generation 225. Its
fitness is almost zero (0.054). This individual scores 270 hits (out of 270).
In addition to having the same topology as the correct metabolic pathway,
the rate constants of three of the four reactions match the correct rates (to
three significant digits) while the fourth rate differs by only about 2% from
the correct rate (i.e., the rate of EC 3.1.3.21 is 1.17 compared with 1.19 for
the correct network).

In the best-of-run network from generation 225, the rate of production

18 John R.Koza, et al.

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

C00162

C00162

C00165

Cell Membrane

Fatty Acid

OUTPUT
(MEASURED)

EC3.1.1.23
K = 1.12 (1.95)

Acylglycerol
lipase

C00116

C00116 Glycerol

Glycerol

INT-1

EC3.1.1.3
K = 1.33 (1.45)

Figure 1.5 Best of generation 10

of the network’s final product, diacyl-glycerol (C00165), is given by

d[C00165]

dt
= 1.45[C00162][I NT2][EC3.1.1.3] (1.2)

Note that genetic programming has correctly determined that the re-
action that produces the network’s final product diacyl-glycerol (C00165)
has two substrates and one product; it has correctly identified enzyme
EC3.1.1.3 as the catalyst for this final reaction; it has correctly determined
the rate of this final reaction as 1.45; and it has correctly identified the
externally supplied substance, fatty acid (C00162), as one of the two sub-
strates for this final reaction. None of this information was supplied a pri-
ori to genetic programming.

Of course, genetic programming has no way of knowing that bio-
chemists call the intermediate substance (INT 2) by the name Monoacyl-
glycerol (C01885) (as indicated in Figure 1.1). It has, however, correctly
determined that an intermediate substance is needed as one of the two
substrates of the network’s final reaction and that this intermediate sub-
stance should, in turn, be produced by a particular other reaction (de-
scribed next).

In the best-of-run network from generation 225, the rate of production
and consumption of the intermediate substance INT 2 is given by

19 Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.58 (1.95)

Glycerol
kinase

Glycerol

Glycerol-1-
phosphatase

INT-2C00162

C00116

INT-1

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K =1.45 (1.45)

EC3.1.3.21
K = 1.61 (1.19)

EC2.7.1.30
K = 1.07 (1.69)

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

Figure 1.6 Best of generation 25

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.73(1.95)

Glycerol
kinase

Glycerol

Glycerol-1-
phosphatase

INT-2C00162

C00116

INT-1

C00116C00162

C00165
Cell Membrane

EC3.1.1.3
K =1.36 (1.45)

EC3.1.3.21
K = 1.34 (1.19)

EC2.7.1.30
K = 1.46 (1.69)

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

ATP

C00002

Figure 1.7 Best of generation 120

d[I NT2]

dt
= 1.95[C00162][C00116][EC3.1.1.23]

−1.45[C00162][I NT2][EC3.1.1.3] (1.3)

Again, genetic programming has correctly determined that the reac-
tion that produces the intermediate substance (INT 2) has two substrates
and one product; it has correctly identified enzyme EC3.1.1.23 as the cat-
alyst for this reaction; it has correctly determined the rate of this reaction
as 1.95; it has correctly identified two externally supplied substances, fatty
acid (C00162) and glycerol (C00116), as the two substrates for this reaction.

In the best-of-run network from generation 225, the rate of production

20 John R.Koza, et al.

and consumption of the intermediate substance INT 1 in the internal
feedback loop is given by

d[I NT1]

dt
= 1.69[C00116][C00002][EC2.7.1.30] − 1.17[I NT1][EC3.1.3.21]

(1.4)
Note that the numerical rate constant of 1.17 in the above equation is

slightly different from the correct rate (as shown in Figure 1.1).
Here again, genetic programming has correctly determined that the

reaction that produces the intermediate substance (INT 1) has two sub-
strates and one product; it has correctly identified enzyme EC2.7.1.30 as
the catalyst for this reaction; it has almost correctly determined the rate of
this reaction to be 1.17 (whereas the correct rate is 1.19. as shown in Figure
1.1); it has correctly identified two externally supplied substances, glyc-
erol (C00116) and the cofactor ATP (C00002), as the two substrates for this
reaction.

Genetic programming has no way of knowing that biochemists call
the intermediate substance (INT 1) by the name sn-Glycerol-3-Phosphate
(C00093) (as indicated in Figure 1.1). Genetic programming has, how-
ever, correctly determined that an intermediate substance is needed as
the single substrate of the reaction catalyzed by Glycerol-1-phosphatase
(EC3.1.3.21) and that this intermediate substance should, in turn, be pro-
duced by the reaction catalyzed by Glycerol kinase (EC2.7.1.30).

In the best-of-run network from generation 225, the rate of supply and
consumption of ATP (C00002) is

d[AT P]

dt
= 1.5 − 1.69[C00116][C00002][EC2.7.1.30] (1.5)

The rate of supply and consumption of fatty acid (C00162) in the best-
of-run network is

d[C00162]

dt
= 1.2 − 1.95[C00162][C00116][EC3.1.1.23]

−1.45[C00162][I NT2][EC3.1.1.3] (1.6)

The rate of supply, consumption, and production of glycerol (C00116)
in the best-of-run network is

d[C00116]

dt
= 0.5 + 1.17[I NT1][EC3.1.3.21]

−1.69[C00116][C00002][EC2.7.1.30]

−1.95[C00162][C00116][EC3.1.1.23] (1.7)

Again, note that the numerical rate constant of 1.17 in the above equa-
tion is slightly different from the correct rate (as shown in Figure 1.1).

21 Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

Notice the internal feedback loop in which C00116 is both consumed
and produced.

In summary, driven only by the time-domain concentration values of
the final product C00165 (diacyl-glycerol), genetic programming created
both the topology and sizing for an entire metabolic pathway whose time-
domain behavior closely matches that of the naturally occurring pathway,
including

• the total number of reactions in the network,
• the number of substrate(s) consumed by each reaction,
• the number of product(s) produced by each reaction,
• an indication of which enzyme (if any) acts as a catalyst for each reac-
tion,
• the pathways supplying the substrate(s) (either from external sources
or other reactions in the network) to each reaction,
• the pathways dispersing each reaction’s product(s) (either to other re-
actions or external outputs),
• the number of intermediate substances in the network,
• emergent topological features such as

–internal feedback loops,

–bifurcation points,

–accumulation points, and

• numerical rates (sizing) for all reactions.

Genetic programming did this using only the 270 time-domain con-
centration values of the final product C00165 (diacyl-glycerol).

For additional details, see (Koza et al., 2000b).

22 John R.Koza, et al.

CONCLUSION

Genetic programming automatically created a metabolic pathway involv-
ing four chemical reactions that took in glycerol and fatty acid as input,
used ATP as a cofactor, and produced diacyl-glycerol as its final prod-
uct. The metabolic pathway was created from 270 data points. The auto-
matically created metabolic pathway contains three key topological fea-
tures, including an internal feedback loop, a bifurcation point where one
substance is distributed to two different reactions, and an accumulation
point where one substance is accumulated from two sources. This exam-
ple demonstrates the principle that it is possible to reverse engineer a
metabolic pathway from observed data concerning the concentration val-
ues of its final product substance.

FUTURE WORK

Numerous directions for future work are suggested by the work described
herein.

Improved Program Tree Representation

Although the representation used herein yielded the desired results, the
authors believe that alternative representations for the program tree (i.e.,
the function set, terminal set, and constrained syntactic structure) would
significantly improve efficiency of the search. The authors are currently
contemplating a developmental approach.

Minimum Amount of Data Needed

The work in this chapter has not addressed the important question of the
minimal number of data points necessary to automatically create a correct
metabolic pathway or the question whether the requisite amount of data
is available in practical situations.

Opportunities to Use Knowledge

There are numerous opportunities to incorporate and exploit preexisting
knowledge about chemistry and biology in the application of the methods
described in this chapter.

The chemical reactions functions used in this chapter (i.e., CR 1 1,
CR 1 2, CR 2 1, CR 2 2) are intentionally open-ended in the sense that
they permit great flexibility and variety in the networks that can be cre-
ated by the evolutionary process. However, there is a price, in terms of
efficiency of the run, that is paid for this flexibility and generality. Alter-
native chemical reaction functions that advantageously incorporate pre-

23 Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

existing knowledge might be defined and included in the function set.
For example, a particular substrate, a particular product, or both might

be made part of the definition of a new chemical reaction function. For ex-
ample, a variant of the CR 2 2 chemical reaction function might be defined
in which ATP is hard-wired as one of the substrates and ADP is hard-
wired as one of products. This new chemical reaction function would have
only one free substrate argument and one free product argument. This
new chemical reaction function might be included in the function set in
addition to (and conceivably in lieu of) the more general and open-ended
CR 2 2 chemical reaction function. This new chemical reaction function
would exploit the well-known fact that there are a number of biologically
important and biologically common reactions that employ ATP as one of
its two substrates and produce ADP as one of its products.

Similarly, a particular enzyme might be made part of the definition of a
new chemical reaction function. That is, a chemical reaction function with
k substrates and j products might be defined in which a particular enzyme
is hard-wired. This new chemical reaction function would not possess an
argument for specifying the enzyme. This new chemical reaction function
would exploit knowledge of the arity of reactions catalyzed by a particular
enzyme.

Also, a known rate might be made part of the definition of a new
chemical reaction function. This approach might be particularly useful in
combination with other alternatives mentioned above.

Designing Alternative Metabolisms

Mittenthal et al. (1998) have presented a method for generating alterna-
tive biochemical pathways. They illustrated their method by generating
diverse alternatives to the non-oxidative stage of the pentose phosphate
pathway. They observed that the naturally occurring pathway is espe-
cially favorable in several respects to the alternatives that they generated.
Specifically, the naturally occurring pathway has a comparatively small
number of steps, does not use any reducing or oxidizing compounds, re-
quires only one ATP in one direction of flux, and does not depend on
recurrent inputs.

Mendes and Kell (1998) have also suggested that novel metabolic
pathways might be artificially constructed.

It would appear that genetic programming could also be used to gen-
erate diverse alternatives to naturally occurring pathways. Conceivably,
realizable alternative metabolisms might emerge from such evolutionary
runs.

In one approach, the fitness measure in a run of genetic programming
might be oriented toward duplicating the final output(s) of the naturally
occurring pathway (as was done in this chapter). However, instead of
harvesting only the individual from the population with the very best

24 John R.Koza, et al.

value of fitness, individuals that achieve a slightly poorer value of fitness
could be examined to see if they simultaneously possess other desirable
characteristics.

In a second approach, the fitness measure in a run of genetic program-
ming might be specifically oriented to factors such as the pathway’s effi-
ciency or use or non-use of certain specified reactants or enzymes.

In a third approach, the fitness measure in a run of genetic program-
ming might be specifically oriented toward achieving novelty. Genetic
programming has previously been used as an invention machine by em-
ploying a two-part fitness measure that incorporates both the degree to
which an individual in the population satisfies the certain performance
requirements and the degree to which the individual does not possess the
key characteristics of previously known solutions (Koza et al., 1999a,c).

ACKNOWLEDGEMENTS

Douglas B. Kell of the University of Wales made helpful comments on a
draft of this material.

25 Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

26 John R.Koza, et al.

References

Arkin, A., Peidong, S., and Ross, J. (1997). A test case of correlation
metric construction of a reaction pathway from measurements. Science
277:1275–1279.

Banzhaf, W., Nordin, P., Keller, R.E., and Francone, F.D. (1998). Genetic
Programming – An Introduction. San Francisco, CA: Morgan Kaufmann
and Heidelberg: dpunkt.

Comisky, W., and Yu, J., and Koza, J. (2000). Automatic synthesis of a wire
antenna using genetic programming. Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference, Las Vegas, Nevada.

D’haeseleer, P., Wen, X., Fuhrman, S., and Somogyi, R. (1999). Linear mod-
eling of mRNA expression levels during CNS development and injury.
Proc. Paficic Symposium on Biocomputing’99 pp.41–52.

Holland, J.H. (1992) Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial Intel-
ligence. Ann Arbor, MI: University of Michigan Press 1975. Second edi-
tion. Cambridge, MA: The MIT Press 1992.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press.

Koza, J.R. (1994a). Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press.

Koza, J.R. (1994b). Genetic Programming II Videotape: The Next Generation.
MIT Press.

Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B.,
Garzon, M.H., Goldberg, D.E., Iba, H., and Riolo, R. (editors). (1998).
Genetic Programming 1998: Proceedings of the Third Annual Conference. San
Francisco, CA: Morgan Kaufmann.

Koza, J.R., Bennett III, F.H, Andre, D, and Keane, M.A. (1999a). Genetic
Programming III: Darwinian Invention and Problem Solving. San Francisco,
CA: Morgan Kaufmann.

Koza, J.R., Bennett III, F.H, Andre, D., Keane, M.A., and Brave, S. (1999b).
Genetic Programming III Videotape: Human-Competitive Machine Intelli-
gence. San Francisco, CA: Morgan Kaufmann.

Koza, J.R., Keane, M.A., Yu, J., Bennett III, F.H., Mydlowec, W., and Stiffel-
man, O. (1999c). Automatic synthesis of both the topology and parame-
ters for a robust controller for a non-minimal phase plant and a three-lag
plant by means of genetic programming. Proceedings of 1999 IEEE Con-
ference on Decision and Control pp.5292–5300.

Koza, J.R., Keane, M.A., Yu, J., Bennett III, F.H., and Mydlowec, W. (2000a).
Automatic creation of human-competitive programs and controllers by
means of genetic programming. Genetic Programming and Evolvable Ma-
chines 1:121–164.

Koza, J.R., Mydlowec, W., Lanza, G., Yu, J., and Keane, M.A. (2000b).
Reverse Engineering and Automatic Synthesis of Metabolic Pathways from
Observed Data Using Genetic Programming. Stanford Medical Informatics
Technical Report SMI-2000-0851.

Koza, J.R. and Rice, J.P. (1992). Genetic Programming: The Movie. Cam-
bridge, MA: MIT Press.

Liang, S., Fuhrman, S., and Somogyi, R. (1998). REVEAL: A general re-
verse engineering algorithm for inference of genetic network architec-
ture. Proc. Pacific Symposium on Biocomputing ’98 pp.18-29.

Langdon, W.B. (1998). Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming! Amsterdam:
Kluwer.

Loomis, W.F. and Sternberg, P.W. (1995). Genetic networks. Science 269:649.

McAdams, H.H. and Shapiro, L. (1995). Circuit simulation of genetic net-
works. Science 269:650-656.

Mendes, P. and Kell, D.B. (1998). Non-linear optimization of biochemical
pathways: Applications to metabolic engineering and parameter esti-
mation. Bioinformatics 14(10):869–883.

Mittenthal, J.E., Ao, Y., Bertrand C., and Scheeline, A. (1998). Designing
metabolism: Alternative connectivities for the pentose phosphate path-
way. Bulletin of Mathematical Biology 60:815–856.

Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., and Fogarty,
T.C. (2000). Genetic Programming: European Conference, EuroGP 2000, Ed-
inburgh, Scotland, UK, April 2000, Proceedings. Lecture Notes in Com-
puter Science. Volume 1802. Berlin, Germany: Springer-Verlag.

28 References

Ptashne, M. (1992). A Genetic Switch: Phage λ and Higher Organisms. Second
Edition. Cambridge, MA: Cell Press and Blackwell Scientific Publica-
tions.

Quarles, T., Newton, A.R., Pederson, D.O., and Sangiovanni-Vincentelli,
A. (1994). SPICE 3 Version 3F5 User’s Manual. Department of Electrical
Engineering and Computer Science, University of California. Berkeley,
CA.

Spector, Lee, Langdon, William B., O’Reilly, Una-May, and Angeline, Peter
(editors). (1999). Advances in Genetic Programming 3. Cambridge, MA:
The MIT Press.

Sterling, T.L., Salmon, J., and Becker, D.J., and Savarese, D.F. (1999). How to
Build a Beowulf: A Guide to Implementation and Application of PC Clusters.
Cambridge, MA: MIT Press.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y.,
Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J.C., Hutchison, C.A.
(1999). E-CELL: Software environment for whole cell simulation. Bioin-
formatics 15(1):72–84.

Voit, E.O. (2000). Computational Analysis of Biochemical Systems. Cambridge:
Cambridge University Press.

Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., and Beyer,
H.-G. (editors). (2000). GECCO-2000: Proceedings of the Genetic and Evolu-
tionary Computation Conference, July 10 - 12, 2000, Las Vegas, Nevada. San
Francisco: Morgan Kaufmann Publishers.

Yuh, C.-H., Bolouri, H., and Davidson, E.H. (1998). Genomic cis-
regulatory logic: Experimental and computational analysis of a sea
urchin gene. Science 279:1896–1902.

29 References

30 References

