
PARALLEL GENETIC PROGRAMMING ON A NETWORK OF
TRANSPUTERS

David Andre
Visiting Scholar, Computer Science Department

Stanford University
860 Live Oak Ave, Apt #4, Menlo Park, CA 94025

andre@flamingo.stanford.edu
Phone: 415-326-5113

John R. Koza
Computer Science Department

Stanford University
Stanford, CA 94305-2140 USA

Koza@CS.Stanford.Edu
Phone: 415-941-0336

ABSTRACT

This paper describes the parallel implementation of genetic programming in the C
programming language using a PC 486 type computer running Windows acting as a host
and a network of transputers acting as processing nodes. Using this approach, researchers
of genetic algorithms and genetic programming can acquire computing power that is
intermediate between the power of currently available workstations and that of
supercomputers at a cost that is intermediate between the two.

A comparison is made of the computational effort required to solve the problem of
symbolic regression of the Boolean even-5-parity function with different migration rates.
Genetic programming required the least computational effort with migration rate at 5%;
however, there was little difference in performance for migration rates between 1% and
8%. Moreover, this computational effort required for these migration rates was less than
that required for solving the problem with a serial computer and a panmictic population of
the same size. That is, apart from the nearly linear speed-up in executing a fixed amount
of code inherent in the parallel implementation of genetic programming, parallelization
delivered more than linear speed-up in solving the problem using genetic programming.

1. Introduction
Amenability to parallelization is an appealing feature of genetic algorithms, evolutionary
programming, evolution strategies, classifier systems, and genetic programming (Holland 1975,
Tanese 1989, Goldberg 1989a, Stender 1993).

The probability of success in applying the genetic algorithm to a particular problem often
depends on the adequacy of the size of the population in relation to the difficulty of the problem.
Although many moderately sized problems can be solved by the genetic algorithm using
currently available workstations, more substantial problems usually require larger population

sizes. Since the computational burden of the genetic algorithm is directly proportional to the
population, more computing power is required to solve more substantial problems.

Increases in computing power can be realized by either increasing the speed of computation or
by parallelizing the application. Fast serial supercomputers and current parallel supercomputers
are, of course, expensive and may not be accessible. Therefore, we focus our attention on less
expensive methods of parallelization.

Section 2 of this paper describes our search for a practical option that provides computing
power that is intermediate between that of workstations and supercomputers at a price (in terms
of both money and programming effort) that is intermediate between that of workstations and
supercomputers.

Section 3 then describes the successful parallel implementation of genetic programming in the
C programming language using a PC 486 type computer (running Windows) and a network of
transputers.

Section 4 compares the computational effort required to solve a problem using the parallel
computer system with semi-isolated subpopulations and a serial computer using panmictic
selection (i.e., where the individual to be selected to participate in a genetic operation can be
from anywhere in the population).

Section 5 is the conclusion.

2. Selection of Machinery to Implement Parallel Genetic
Programming

This section describes our search for a practical method for implementing parallel genetic
programming.

2.1 Time and Memory Demands of Genetic Algorithms
The genetic operations (such as reproduction, crossover, and mutation) employed in the genetic
algorithm and other methods of evolutionary computation can be rapidly performed on a
computer and do not consume large amounts of computer time. Thus, for almost any practical
problem, the dominant consideration as to computer time for the genetic algorithm is the
evaluation of the fitness (whether explicit or implicit) of each individual in the population.

Fitness measurement is time-consuming for many reasons, including the time required to
decode and interpret each individual in the population, the necessity of computing fitness over
numerous separate fitness (environmental) cases, the necessity of conducting lengthy simulations
involving numerous incremental time steps (or other finite elements), the time required to make
complicated state transition calculations for the simulations, the time-consuming nature of the
primitive functions of the problem, and the time required to compute reasonably accurate
averages of performance over different initial conditions or different probabilistic scenarios.
Fortunately, these time-consuming fitness evaluations can be performed independently for each
individual in the population.

The dominant consideration as to memory is the storage of the population of individuals (since
the population typically involves large numbers of individuals for non-trivial problems). Storage
of the population does not constitute a major demand as to computer memory for the genetic
algorithm operating on fixed-length character strings; however, memory usage is an important
consideration when the individuals in the population are large program trees of varying sizes and
shapes (as is the case in genetic programming).

2.2 The Island Model of Parallelization
There are several distinct ways to parallelize genetic algorithms, including parallelization on the
basis of individuals in the population, fitness cases, or independent runs (Goldberg 1989a,
1989b; Koza 1992). Parallelization on the basis of individuals in the population is discussed
below.

In a fine-grained parallel computer (e.g., the MasPar machines or the CM-2 with 65,536
processors), each individual in the population can be mapped onto one processor (as described in
Robertson 1987 for genetic classifier systems).

In a coarse-grained or medium-grained parallel computer, larger subpopulations can be
situated at the separate processing nodes. This approach is called the distributed genetic
algorithm (Tanese 1989) or the island model for parallelization. The subpopulations are often
called demes (after Wright 1943).

When a run begins, each processing node locally creates its own initial random subpopulation.
Each processing node then measures the fitness of all of the individuals in its local
subpopulation. Individuals from the local subpopulation are then probabilistically selected based
on fitness to participate in genetic operations (such as reproduction, crossover, and perhaps
mutation) based on their fitness. The offspring resulting from the genetic operations are then
measured for fitness and this iterative process continues. Because the time-consuming
measurement of fitness is performed independently at each separate processing node, this
approach to parallelization delivers an overall increase in performance that is nearly linear with
the number of independent processing nodes (Tanese 1989).

Upon completion of a generation involving a certain designated number of genetic operations,
a certain number of the individuals in each subpopulation are probabilistically selected for
emigration to a designated (e.g., adjacent) node within the topology (e.g., toroidal) of processing
nodes. When the immigrants arrive at their destination, a like number of individuals are selected
for deletion from the destination processor. The interprocessor communication requirements of
these migrations are low because only a small number of individuals migrate from one
subpopulation to another and because the migration occurs only after completion of the time-
consuming fitness evaluation.

There are, of course, numerous variations in this overall approach. For example, the selection
of emigrants may be based on fitness or at random using a uniform probability distribution. The
selection of individuals to be deleted may be based on unfitness or at random (or the individuals
to be deleted may simply replace that node's recently departed emigrants). In the so-called
steady-state approach, the generation consists of only one genetic operation; however, in the
so-called generational approach, the generation consists of a large number of genetic operations
(typically of the order of the population size). The generations may be synchronized or not. The
amount of migration may be small (thereby potentially creating distinct subspecies within the
overall population) or large (thereby approximating, for all practical purposes, a panmictic
population).

When any individual in any subpopulation satisfies the success predicate of the problem, this
fact is reported to the supervisory process that controls all the processing nodes in the parallel
system; the entire process is then stopped; and the satisfactory individual is designated as the
result of the overall run. Runs may also stop when a specified targeted maximum number of
generations have been run.

The distributed genetic algorithm is well suited to loosely coupled, low bandwidth, parallel
computation.

2.3 Design Considerations for Parallel Genetic Programming
The largest of the programs evolved in Genetic Programming (Koza 1992) and Genetic
Programming II (Koza 1994a) contained only a few hundred points (i.e., the number of functions
and terminals actually appearing in the work-performing bodies of the various branches of the
overall program).

The system for the parallel implementation of genetic programming described herein was
specifically designed for problems requiring evolved programs that are considerably larger than
those described in the two books and whose fitness evaluations are considerably more time-
consuming than those described in the two books. For design purposes, we hypothesized multi-
branch programs that would contain at most 2,500 points.

Multi-branch computer programs of the type that are evolved with genetic programming can
usually be conveniently and economically stored in memory using only one byte of storage per
point. In this representation, each point represents either a terminal or a function (with a known
arity). One byte of storage can represent 256 possibilities. One byte can therefore accommodate
several dozen functions (i.e., both primitive functions and automatically defined functions),
several dozen terminals (i.e., actual variables of the problem and zero-argument functions), while
still leaving room for around 150 to 200 different random constants (if the problem happens to
employ random constants). Thus, a population of 1,000 2,500-point programs can be
accommodated in 2.5 megabytes of storage with this one-byte representation. In the event that
the population is architecturally diverse (as described in Koza 1994a, 1994b), the actual memory
requirements approach 3 megabytes.

We further hypothesized, for purposes of design, a measurement of fitness requiring one
second of computer time for each 2,500-point individual in the population. With this
assumption, the evaluation of 1,000 such individuals would require about 15 minutes and 50
such generations could be run in about a half day, 100 such generations would occupy about a
day, and 200 such generations would occupy two days.

Since problems obviously vary considerably as to the size of the evolved programs in the
population, the amount of time required to measure fitness, the population size required to
efficiently solve the problem, and the number of generations per run, we also considered variants
of the above design criteria (e.g., 5,000 500-point programs) including smaller programs and
various shorter and longer times for the measurement of fitness of a single individual of the
population.

Thus, our design criteria were centered on a parallel system with
• a one-second fitness evaluation per program,
• 1,000 2,500-point programs per processing node, and
• one-day runs consisting of 100 generations.
Our selection criteria was the overall price-to-performance ratio.
"Performance" was measured (or estimated) for the system executing our application involving

genetic programming, not generic benchmarks (although the results were usually similar).
"Price" includes not only the obvious costs of the computing machinery and vendor-supplied

software, but also includes our estimate of the likely cost, in both time and money, required for
the initial implementation of the approach, the ongoing management and maintenance of the
system, and the programming of a succession of new problems in the area of genetic
programming. The price of initial implementation, of course, depends on the overlap between
the expertise required to implement a particular approach and our own particular existing

capabilities. The price of ongoing management and maintenance included our estimate of how
much time and money would be expended in keeping the hardware and software of the system
operational. In other words, our selection criteria reflected our desire to actually do research in
the area of genetic programming (and not to do research in parallel computation, not to do
research in electrical engineering, not to become enmeshed in major problems of system
management and maintenance, and not to expend significant effort in programming each new
problem).

Using the above design and selection criteria and our price-to-performance ratio as a guide, we
examined serial supercomputers, parallel supercomputers, networks of single-board computers,
workstation clusters, special-purpose microprocessors, and transputers.

Since we had previously been using a serial computer, a extremely fast, well priced serial
supercomputer would optimally satisfy our criteria as to the cost of initial implementation,
ongoing management and maintenance, and programming of new problems. Current extremely
fast serial supercomputers (e.g., Cray machines) attain their very high speeds by vectorization or
pipelining. We believed (and Min 1994 verified) that these machines would not prove to deliver
particularly good performance on genetic programming applications because of the disorderly
sequence of conditionals and other operations in the program trees of the individuals in the
population. Moreover, fast serial supercomputers are very expensive.

Although a serial solution would have been ideal, we believe that greater gains in computing
power for doing experimental work on large problems in the field of genetic programming will
come, in the next decade or two, from parallelization (rather than increased computer speed) and
that parallelization is going to prove to be a necessary step to take.

The fine-grained SIMD ("Single Instruction, Multiple Data") supercomputers (such as
Thinking Machine's CM-2 and MasPar's machines) are generally inappropriate for genetic
programming since the individual programs in the population are generally of different sizes and
shapes and contain numerous conditional branches. While most of the comments in this paper
apply to both genetic programming and genetic algorithms operating on fixed-length character
strings, note that a fine-grained SIMD machine may be very suitable for applications of the
genetic algorithm since this objection may not apply to the genetic algorithm operating on fixed-
length character strings. It should also be noted that it may, in fact, be possible to efficiently use
a fine-grained SIMD machine for an application (such as genetic programming) that seemingly
requires a MIMD machine (Dietz and Cohen 1992, Dietz 1992). However, successful practical
implementation of this approach appeared to require substantial expertise in areas outside our
existing capabilities. It is not clear whether this concept would deliver any net benefit on any
existing machine for programs containing a large number of primitive functions. Moreover, each
new problem undertaken in genetic programming would require extensive customizing of the
details of parallelization so that there would be high ongoing price of programming new
problems in such a system.

The coarse-grained and medium-grained MIMD ("Multiple Instruction, Multiple Data")
supercomputers (such as Thinking Machine's CM-5, Intel's Paragon, the NCUBE machines, and
the Kendall Research machines) do not appear to be a cost-effective way to do genetic
programming because they are usually designed to deliver a large bandwidth of inter-processor
communication at the expense of computational power. The price of each processing node of a
typical supercomputer was in the low to middle five-figure range while the microprocessor at
each node was usually equivalent to that of a single ordinary workstation. In some cases (e.g.,
Thinking Machine's CM-5), processing could be accelerated by additional SIMD capability at
each node, but most genetic programming applications cannot take advantage of this particular

capability. The fact is that when one buys any of these coarse-grained and medium-grained
MIMD machines, one is primarily buying high bandwidth inter-processor communication, rather
than raw computational power.

We also considered the idea of networks of workstations or networks of single-board
computers (each containing an on-board Ethernet adapter); however, these approaches present
formidable practical issues involving the ongoing management and maintenance of the
independent processes on an unruly collection of machines. Although it is possible to use
independent computers in this manner (Singleton 1993), these computers (and most of the
supporting software) were designed for independent operation of the machines.

Printer controller boards are inexpensive, have substantial on-board memory, have on-board
Ethernet connectivity, and have very high processing capabilities (often being more powerful
than the computer they serve). However, these devices are typically programmed once (at
considerable effort) for an unchanging application and there is insufficient high-level software
for writing and debugging new software for a constant stream of new problems.

Solutions involving the Intel i860 microprocessor were avoided because the disorderly
sequence of conditional and other operations in program trees in genetic programming interferes
with the pipelining that gives this device its high performance.

We will not recount all the details of the process by which various alternatives were dismissed
for our particular application involving genetic programming. We now turn to a detailed
description of the approach that was eventually chosen.

2.4 Transputers
A transputer is a single VLSI device containing an on-chip processor, on-chip memory, and
several independent serial bi-directional physical on-chip communication links.

Manufactured by INMOS (a division of SGS-Thomson Microelectronics), the transputer was
the first microprocessor that was specifically designed to support multiprocessing. The
transputer was also one of the first 32-bit microprocessors. Transputers are designed to operate
in parallel and their on-chip communication links and multiprocessing capabilities were
specifically designed to facilitate parallel supercomputing.

Transputers are typically mounted on small boards, called TRAMs, with up to 16 megabytes of
additional RAM memory above and beyond the on-chip memory. One currently popular model
of TRAM (occupying approximately the volume of a pile of a half dozen credit cards) has four
megabytes of RAM memory and an INMOS T-805 transputer featuring a 30 MHz 32-bit
floating-point processor, four kilobytes of on-chip memory, and four communication links.
TRAMs and other transputer-based products are manufactured by companies such as Transtech
of Ithaca, New York (our source); Microway of Kingston, Massachusetts; Alta of Sandy, Utah;
Parsytec of West Chicago, Illinois; Alex of Montreal; and others.

Expansion boards housing a number of TRAMs are available for PC types of computers and
Sun workstations. For example, the INMOS B008 board is a standard PC type of expansion
board that houses up to 10 INMOS T-805 4-megabyte TRAMs. Additional TRAMs may be
housed on INMOS B014 motherboards mounted in a VME box, on additional B008 expansion
boards within the PC computer (if it has adequate power supply and ventilation), or on additional
B008 expansion boards in a PC expansion box.

One important reason for considering the transputer was that it was designed to support
parallel computation involving multiple inter-communicating processes on each processor as
well as inter-processor communication. The transputer was designed so that the connectivity of
the network was straightforward to specify, so that processes could be easily loaded onto all the
processing nodes of a network, so that the processes on each node can be easily started up, so
that messages can be easily sent and received between two processes on the same or different
processing nodes, so that messages can be easily sent and received between one processing node
and a central supervisory program, so that messages can be easily sent and received by host
computer from the central supervisory program, and so that the processes on each node could be
easily stopped. Moreover, debugging tools exist.

When the transputer was introduced in 1985, the transputer's 32-bit architecture, its
multiprocessing capabilities, and it orientation to parallel supercomputing were ahead of its time.
However, the transputer was originally conceived and presented as "an OCCAM machine." This
strong association with a nonstandard proprietary programming language caused the transputer
to encounter considerable resistance to widespread adoption (a history similar to that of other
specialized machines, such as the LISP machines). Today, mainstream programming languages
(notably C) are usually used for programming transputers and mainstream computers (such as
PC type computers and Sun workstations) are usually used as the front-end computers for
networks of transputers. Curiously, although several hundred parallel supercomputers
containing 100 to 1,000 and more transputers have been assembled, the transputer achieved
commercial viability and success as embedded processors involving only a single transputer
(because of their multiprocessing and communication capabilities and the fact that an entire
small computer was on a single chip).

As it happens, there are a considerable number of successful applications of networks of
transputers in the parallel implementation of genetic algorithms operating on fixed length
character strings (Abramson, Mills, and Perkins 1994, Bianchini and Brown 1993, Cui and
Fogarty 1992, Kroger, Schwenderling, and Vornberger 1992, Schwehm 1992, Tout, Ribeiro-
Filho, Mignot, and Idlebi 1994; Juric, Potter and Plaksin 1995).

2.5 Suitability of a Transputers for Parallel Genetic Programming
The transputer was then considered in detail in light of its interprocessor communication
capability, speed, memory, and cost.

The communication capabilities of the transputer are more than sufficient for implementing the
island model of genetic programming. The bi-directional communication capacity of the
INMOS T-805 transputer is 20 megabits per second simultaneously in all four directions. If 1%
of the individuals at each processing node are selected as emigrants in each of four directions,
each of these four boatloads of emigrants would contain 10 2,500-byte individuals (or 50 500-
byte individuals). If 8% of the individuals at each processing node are selected as emigrants in
each of four directions, each of these four boatloads of emigrants would contain 80 2,500-byte
individuals (or 400 500-byte individuals). The communication capability of 20 megabits per
second is obviously more than sufficient to handle 25,000 or 200,000 bytes every 15 minutes.

Our tests indicate that a single INMOS T-805 30-MHz microprocessor is approximately
equivalent to an Intel 486/33 microprocessor for a run of genetic programming written in the C
programming language. The transputer is thus about half as fast as an Intel 486/66 chip.
Although a single 486/33 is obviously currently not the fastest microprocessor, this
microprocessor is capable of doing a considerable amount of computation in one second. One
second of 486/33 computation per fitness evaluation seems to be a good match for the general
category of problems that we were envisioning.

As previously mentioned, 1,000 2,500-point programs (or 5,000 500-point programs) can be
stored in 2.5 megabytes of memory (or about 3.0 megabytes, if the population happens to be
architecturally diverse). On a 4-megabyte TRAM, there is, therefore, about 1 to 1.5 megabytes
of memory remains after accommodating the population. This remaining amount of memory is
sufficient for storing the program for genetic programming, the communication buffers, the
stack, and other purposes while leaving some space remaining for possible problem-specific uses
(e.g., special databases of fitness cases). Thus, a TRAM with the INMOS T-805 30-MHz
processor with 4 megabytes of RAM memory satisfies our requirements for storage. Note that
we did not select TRAMs with 8 or 16 megabytes because the one processor would then have to
service a much larger subpopulation (thereby increasing the time required for the fitness
evaluation of the entire population).

TRAMs cost considerably less than $1,000 each in quantity. Thus, the cost of a parallel
system capable of handling a population of 64,000 2,500-point programs (or 320,000 500-point
programs) with the computational power of 64 486/33 processors can be acquired for a total cost
that is intermediate between the cost of a single fast workstation and the cost of a mini-
supercomputer or a supercomputer. Moreover, a system with slightly greater or lesser capability
could be acquired for a slightly greater or less cost.

Moreover, the likely amount of time and money required for initial implementation, ongoing
management and maintenance, and programming of new problems seemed to be (and has proved
to be) low.

3. Implementation of Parallel Genetic Programming Using A
Network of Transputers

This section describes our implementation of parallel genetic programming in the C
programming language using a PC 486 type computer running Windows as a host and a network
of INMOS transputers.

3.1 The Physical System
A network of 66 TRAMs and one PC 486/66 type computer are arranged in the overall system as
follows:

(1) the host computer consisting of a keyboard, a video display monitor, and a large disk
memory,

(2) a transputer running the debugger,
(3) a transputer containing the central supervisory process, (the Boss process), and
(4) the 64 transputers of the network, each running its own Monitor process, a Breeder

process, an Exporter process, and Importer Process.
The PC computer is the host and acts as the file server for the overall system. Two TRAMs are

physically housed on a B008 expansion board within the host computer. The first TRAM is
dedicated to the INMOS debugger. The second TRAM (called the "Boss Node") contains the
central supervisory process (called the "Boss") for running genetic programming. The Host
computer is physically linked to the transputer containing the Debugger process (the Debugger
node). The Debugger node is, in turn, physically linked to the transputer containing the Boss
process (the Boss node).

The remaining 64 TRAMs (the processing nodes) are physically housed on 8 boards in two
VME boxes. The 64 processing nodes are arranged in a toroidal network in which 62 of the 64
processing nodes are physically connected to four neighbors (in the N, E, W, and S directions) in
the network. Two of the 64 nodes of the network are exceptional in that they are physically
connected to the Boss Node and only three neighbors. The Boss Node is physically linked to
only two transputers of the network.

The communication between processes on different transputers is by means of one-way, point-
to-point, unbuffered, synchronized channels. The channels are laid out along physical links
using a virtual router provided by the manufacturer.

Figure 1 shows the various elements of the overall system for implementing the island model
of genetic programming. The boxes in the figure denote the various computers, including the
host computer (a PC 486 type machine), the Debugger Node (a transputer), the Boss Node (a
transputer), and the network of processing nodes (transputers). For simplicity, the figure shows
only nine of the 64 processing nodes. The ovals denote the various files (all on the host
computer), including the one input file for each run (containing the parameters for controlling
the run) and two output files (one containing the intermediate and final results of the run and one
containing summary information needed by a monitoring process written in Visual Basic). The
rounded boxes denote the input-output devices of the host computer, including its keyboard and
video display monitor. The diamond denotes the Visual Basic monitoring process that displays
information about the run on the video display monitor of the host computer. Heavy unbroken
lines are used to show the physical linkage between the various elements of the system. Heavy
broken lines show the lines of virtual communication between the Boss node and the processing

nodes. Light unbroken lines show the lines of virtual communication connecting each of the
processing nodes with their four neighbors.

The host 486 computer uses Windows as its operating system. No operating system is required
for the transputers since they do not access files or input-output devices and all priority
scheduling and communications are handled by the hardware of the transputer itself.

3.2 The Inter-Communicating Processes
Transputers are programmed using inter-communicating processes connected by channels.

The Host computer runs two processes. The Host process on the Host computer receives input
from the keyboard, reads an input file containing the parameters for controlling the run, writes
the two output files, and communicates with the remainder of the system. The second process on
the Host computer is the Visual Basic monitoring process.

The TRAM with the Debugger runs only one process, the INMOS-supplied Debugger process.
The TRAM with the Boss runs only one process, the Boss.
Each of the 64 TRAMs in the toroidal network concurrently runs the following four processes:

(1) The Importer,
(2) The Exporter,
(3) The Breeder, and
(4) The Monitor.

Figure 2 shows the four processes at each of the 64 processing nodes (as ovals).

3.3 The Boss Process
The Boss process is responsible for communicating with the PC Host process, for sending initial
start messages to each of the processors in the network, for tabulating information sent up from
each processor at the end of each generation, for sending information to file for the Visual Basic
monitoring process on the host, and for handling error conditions.

At the beginning of a run of genetic programming, the Boss process initializes various data
structures, creates the set of fitness cases either functionally or by obtaining information from a
file on the Host, creates a different random seed for each processor, pings each processor to be
sure it is ready, and reads in a set of parameters from a file on the host that control genetic
programming. Then, the Boss sends a Start-Up message to each Monitor process (which will in
turn send it along to the Breeder process). This message contains the following:

(1) the size of the subpopulation that is to be created at the processing node,
(2) the control parameters for creating the initial random subpopulation at that processing

node, including the method of generation and the maximum size for the initial random
individuals (and each function-defining and result-producing branch thereof),

(3) the common, network-wide table of random constants for the problem (if any),
(4) the control parameters specifying the number of each genetic operation (e.g.,

reproduction, crossover, etc.) to be performed for each generation,
(5) a node-specific seed for the randomizer ,
(6) one of the following:

(a) the actual fitness cases for the problem, if the fitness cases are being supplied from
an outside database (e.g., protein sequences or economic data),

(b) the common network-wide randomizer seed for creating fitness cases for the run, if
the fitness cases for the problem are being randomly created at the processing node,

(c) nothing, if the fitness cases for the problem are being created programatically at the
processing node (e.g., all 2k fitness cases for a problem of symbolic regression of a
k-argument Boolean function).

(7) the number of primed individuals (and, if there are any, the primed individuals
themselves).

After sending the Start-up message, the Boss enters a loop where it handles the various
messages that each Monitor sends until an error condition occurs, a solution is found, or all
processors have either crashed or completed a number of generations specified in a parameter
file.

VB
PROCESS

DEBUGGER
(Tram)

BOSS
(Tram)

VB
FILE

HOST
(Pentium PC)

OUTPUT
FILE

CONTROL
PARAMETER

FILE

VIDEO
DISPLAY

KEYBOARD

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

Figure 1 Overview of the parallel system.

BREEDER

MONITOR

EXPORTER IMPORTER

Buffer Buffer

From Boss

To Boss

From North

From East
To North

From South
From West

To East

To South
To West

N
S
E
W

N
S
E
W

Figure 2 The four processes on each of the 64 processing nodes.

3.4 The Monitor Process
The Monitor process of each processing node is continually awaiting messages from both the
Boss process of the Boss node as well as from the Breeder process of its processing node. It
serves as a buffer between the Boss and the Breeder process preventing any deadlocks or
slowdowns on the Breeder due to the bottleneck of having a single Boss for many Breeders.

Upon receipt of a Start-Up message from the Boss, the Monitor process passes this message
along to the Breeder process on its node.

The Monitor process also passes the following messages from the Breeder process of its node
along to the Boss:

(1) End-of-Generation: The end-of-generation message contains the best-of-generation
individual for the current subpopulation on the processing node and statistics about that
individual such as its fitness and number of hits. This message also contains the fitness
(and hits) for the worst-of-generation individual of the processing node, the average
fitness (and hits) for the subpopulation as a whole, and the variance of the fitness (and
hits) of the subpopulation as a whole.

(2) Eureka: The eureka message announces that the processing node has just created an
individual in its subpopulation that satisfies the success criterion of the problem and
contains the just-created best-of-run individual and statistics about it.

(3) Trace: The trace message announces that the Breeder process has reached certain
milestones in its code (e.g., received its start-up message, completed creation of the
initial random subpopulation for the node).

(4) Error: The error message announces that the Breeder process has encountered certain
anticipatable error conditions.

3.5 The Breeder Process
After the Breeder process of a processing node receives the Start-up message send by the

Monitor process on the same processing node, it performs the following steps in connection with
generation 0:

(1) Creates the initial random subpopulation of individuals for the node.
(2) Create the fitness cases for the problem at the processing node (unless the fitness cases

are transmitted from the Boss process).
In the main generational loop, the Breeder process of a processing node iteratively performs

the following steps:
(1) Evaluates the fitness of every individual in the subpopulation at the node.
(2) Selects, probabilistically, based on fitness, a small number of individuals to be emigrants

(except on generation 0) and sends them to a buffer in the Exporter process of the node.
(3) Assimilates the immigrants currently waiting in the buffers of the Importer process of the

processing node (except on generation 0). Note that the fitness of an individual is part
of the data structure associated with that individual so that the fitness of an immigrant
need not be recomputed upon its arrival at its destination.

(5) Creates an end-of-generation report for the subpopulation at this node for this generation.
(6) Perform the genetic operations on the subpopulation at the processing node.

The amount of computer time required to evaluate individuals in genetic programming usually
varies considerably among small subpopulations. The presence of just one or a few time-
consuming programs in a particular subpopulation can dramatically affect the amount of
computer time required to run one generation. Any attempt to synchronize the activities of the
algorithm at the various processing nodes would require slowing every processing node to the
speed of the slowest. Therefore, each processing node operates asynchronously from all other
processing nodes; and, after a few generations, the various processing nodes of the system will
typically be working on different generations.

This variation arises from numerous factors, including the different sizes of the individual
programs, the mix of faster and slower primitive functions in the programs, and, most
importantly, the number, nature, and content of the function-defining branches of the overall
program. Each invocation in a calling branch of an automatically defined function requires
execution of the body of that automatically defined function, so that the effective size of the
overall program at the time of execution is considerably larger than the visible number of points
(i.e., functions and terminals) actually appearing in the overall program. Moreover, when one
automatically defined function can hierarchically refer to another, the effective size (and the
execution time) of the program may be an exponential function of the visible number of points
actually appearing in the overall program.

In addition, if the programs in the population are architecturally diverse (Koza 1994a),
additional variation is introduced. This variation is further magnified if the architecture of a
program changes during the run as a result of architecture-altering operations (Koza 1994b). For
problems involving a simulation of behavior over many time steps, many separate experiments,
or many probabilistic scenarios, some programs may finish the simulation considerably earlier or
later than others. Indeed, for some problems (e.g., time-optimal control problems), variation in
program duration is the very objective of the problem.

The breeder process runs until one individual is created that satisfies the success predicate of
the problem or until it is stopped by the Boss process. A processing node that reaches the
originally targeted maximum number of generations before all the other nodes have reached that
originally targeted generation is permitted to continue running up to an absolute maximum
number of generations (usually 120% of the originally targeted maximum number).

It is inadvisable in a parallel system to attempt to check globally for the accidental creation of
duplicates at the initial random generation.

3.6 The Exporter Process
The Exporter process periodically interacts with the Breeder process of its processing node as
part of the Breeder's main generational loop for each generation (except generation 0). At that
time, the Breeder sends four boatloads of emigrants to a buffer of the Exporter process.

The Exporter process then sends one boatload of emigrants to the Importer process of each of
the four neighboring processing nodes of the network.

3.7 The Importer Process
The purpose of the Importer is to store incoming boatloads of emigrants until the Breeder is
ready to incorporate them into the subpopulation. When a boatload of immigrants arrives via
any one of the four channels connecting the Importer process to its four neighboring Exporter
processes, the Importer consumes the immigrants from that channel and places the immigrants
into the buffer associated with that channel.

When the Breeder process of a particular processing node is ready to assimilate immigrants,
zero, one, two, three, or four of the four buffers associated with its Importer process may contain
new immigrants. If all four buffers are full, the four boatloads of immigrants replace the
emigrants that were just dispatched by the Breeder process to the Exporter process of the node.
If less than four buffers are full, the new immigrants replace as many of the just-dispatched
emigrants as possible. The result is that a small number of the just-dispatched emigrants may
become duplicated and exist in both this processing node and a neighboring node.

It is also possible that one of the neighbors of a particular processing node may complete
processing of two generations while the given processing node completes only one generation.
That neighbor will therefore have sent two boatloads of immigrants to the given node. Inasmuch
as these later emigrants are the product of additional evolution at the sending node, the latest
immigrants from a particular neighbor overwrite the previous immigrants from that neighbor.

3.8 The Visual Basic Monitoring Process on Host Computer
A monitoring process (written in Visual Basic) on the Host computer displays information about
the run on the video display monitor of the Host computer.

One window of this display consists of a multi-color grid displaying information about the last
reporting generation for each of the 64 processing nodes. The number of hits for the best-of-
generation individual is shown for each node; the nodes with the best and worst number of hits
are highlighted. Each processing node is colored green, yellow, red, and gray depending on the
amount of time since the last end-of-generation report from that node (based on problem-specific
timing parameters). Green indicates that a report was received reasonably recently based on our
expectations; yellow indicates that the processing node is slower than our expectations; red
indicates that the processing node is very tardy; and black indicates that the node is dead. The
fastest and slowest nodes are highlighted.

A second window shows, by generation, the best fitness and best number of hits for the system
as a whole. A third window shows a histogram of the number of hits.

4. Comparison of Computational Effort for Different
Migration Rates

The problem of symbolic regression of the Boolean even-5-parity function will be used to
illustrate the operation of the parallel system and for purposes of comparing the computational
effort associated with different migration rates between the processing nodes.

The Boolean even-5-parity function takes five Boolean arguments and returns T if an even
number of its arguments are T, but otherwise returns NIL. The terminal set, Tadf, for this
problem is {D0, D1, D2, D3, D4}. The function set, Fadf, is {AND, OR, NAND, NOR} when
automatically defined functions are not used. The standardized fitness of a program measures
the sum, over the 32 fitness cases consisting of all combinations of the five Boolean inputs, of
the Hamming-distance errors between the program and the correct Boolean value of the even-5-
parity problem.

Numerous runs of this problem with a total population size of 32,000 were made using ten
different approaches. This particular population size (which is much smaller than the population
size that can be supported on the parallel system) was chosen because it was possible for us to
run this size of population on a single serial computer (a Pentium) with panmictic selection (i.e.,
where the individual to be selected to participate in a genetic operation can be from anywhere in
the population) and thereby compare serial versus parallel processing using a common
population size of 32,000. The ten approaches are as follows:

(1) runs on a single serial processor with a single panmictic population of size M = 32,000,
(2) runs on the parallel system with D = 64 demes, a population size of Q = 500 per deme, and

a migration rate (boatload size) of B = 12% (in each of four directions on each generation of each
deme),

(3) runs as in (2) with B = 8%,
(4) runs as in (2) with B = 6%,
(5) runs as in (2) with B = 5%,
(6) runs as in (2) with B = 4%,
(7) runs as in (2) with B = 3%,
(8) runs as in (2) with B = 2%,
(9) runs as in (2) with B = 1%, and
(10) runs as in (2) with B = 0%.
The maximum targeted number of generations, G, was set to 76. The size of the individual

programs at the time of creation of the initial random population was limited to 500 points.
Other minor parameters for the runs were selected as in Koza 1994a.

A run of this problem is considered successful when it creates a program that achieves a
standardized fitness of zero (i.e., finds a program that mimics the even-5-parity function for
every combination of inputs).

A probabilistic algorithm may or may not produce a successful result on a given run. Since
some runs may have infinite (or unmeasurably large) duration, it is not possible to use a simple
arithmetic average to compute the expected number of fitness evaluations required to solve a
given problem. One way to measure the performance of a probabilistic algorithm is to measure
the computational effort required to solve the problem with a certain specified probability (say,
99%) (Koza, 1992).

The methodology for calculating the computational effort for runs on a parallel computing
system in which the processing nodes operate asychronously differs somewhat from the
methodology for runs with panmictic selection.

For the panmictic population on a single serial processor, the number of fitness evaluations, x,
that are performed on a particular run is simply x = M(i+1), where M is the population size and i
is the generation number on which the solution emerged. However, in a parallel computing
system in which the processing nodes operate asychronously, the number of fitness evaluations
is

x = Q Σ (i(d) + 1),
where the summation index d runs over the D processing nodes, where Q = 500 is the
subpopulation (deme) size, and where i(d) is the number of the last reporting generation from
processor d at the time when a program that satisfied the success criterion of the problem
emerged at one processor.

 P(M,x) represents the experimentally observed cumulative probability of success of solving
the problem after making x fitness evaluations. The computational effort is denoted by J(M,x,z),
and is derived from the experimentally observed values of P(M,x) as the product of the number
of fitness evaluations, x, and the number of independent runs, R(z), necessary to yield a solution
to the problem with a required probability, z, after making x fitness evaluations. In turn, R(z) is
given by

R(z) =
log(1 − z)

log(1 − P (M , x))
.

 The required probability, z, will be 99% herein.
It should be noted that J(M,x,z) differs from the measures of computational effort used in

previous work (Koza, 1992, 1994), in that the value of R(z) is not rounded to the nearest larger
interger, but rather is kept as a fractional value. The term I(M,x,z) is replaced by J(M,x,z) to
signify this change.

Table 1 shows the computation effort for each of the ten approaches to solving this problem.

Table 1 Comparison of ten approaches.
 Approach Migration rate B Computational effort J(M,x,z)
1 Panmictic NA 5,929,442
2 Parallel 12% 7,072,500
3 Parallel 8% 3,822,500
4 Parallel 6% 3,078,551
5 Parallel 5% 2,716,081
6 Parallel 4% 3,667,221
7 Parallel 3% 3,101,285
8 Parallel 2% 2,744,679
9 Parallel 1% 3,426,878

10 Parallel 0% 16,898,000

As can be seen, the computational effort, E, is smallest for a migration rate of B = 5%.
 The computational effort for all of the parallel runs except for those runs with an extreme (0%

or 12%) migration rate is less than the computational effort required with the panmictic
population. In other words, creating semi-isolated demes produced the bonus of also improving
the performance of genetic programming for these migration rates for this problem. That is,

apart from the nearly linear speed-up in executing a fixed amount of code inherent in the island
model of genetic programming, parallelization delivered more than linear speed-up in solving
the problem using genetic programming. This result is consistent with the analysis of Sewell
Wright (1943) regarding demes of biological populations.

5. Conclusions
Parallel genetic programming was successfully implemented in the C programming language on
a host PC 486 computer (running Windows) and a network of 64 transputers.

Genetic programming required the least computational effort to solve the problem of symbolic
regression of the Boolean even-5-parity function with an 5% migration rate. More importantly,
parallel genetic programming with migration rates between 1% and 8% required less
computational effort to solve this problem than that required for a panmictic population of the
same size. That is, apart from the nearly linear speed-up in executing a fixed amount of code
inherent in the island model of genetic programming, parallelization delivered more than linear
speed-up in solving the problem using genetic programming.

6. Acknowledgements
James P. Rice helped develop the design criteria and design for the parallel computer system
described herein. Walter Alden Tackett did the early design work on the various programming
processes. Hugh Thomas of SGS-Thompson Microelectronics wrote configuration scripts and
assisted in debugging the program and systems. Simon Handley made numerous helpful
comments on this paper.

7. Bibliography
Abramson, David, Mills, Graham, and Perkins, Sonya. 1994. Parallelisation of a genetic

algorithm for the computation of efficient train schedules. In Arnold, David, Christie, Ruth,
Day, John, and Roe, Paul (editors). Parallel Computing and Transputers. Amsterdam: IOS
Press. Pages 139–149.

Bianchini, Ricardo and Brown, Christopher. 1993. Parallel genetic algorithms on distributed-
memory architectures. In Atkins, S. and Wagner, A. S. (editors). Transputer Research and
Applications 6. Amsterdam: IOS Press. Pages 67–82.

Cui, J. and Fogarty, T. C. 1992. Optimization by using a parallel genetic algorithm on a
transputer computing surface. In Valero, M, Onate, E., Jane, M., Larriba, J. L., Suarez, B.
(editors). Parallel Computing and Transputer Applications. Amsterdam: IOS Press. Pages
246–254.

Dietz, H. G. 1992. Common subexpression induction. Parallel Processing Laboratory
Technical Report TR-EE-92-5. School of Electrical Engineering. Purdue University.

Dietz, H. G. and Cohen, W. E. 1992. A Massively parallel MIND implemented by SIMD
hardware. Parallel Processing Laboratory Technical Report TR-EE-92-4. School of Electrical
Engineering. Purdue University.

Goldberg, David E. l989a. Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley.

Goldberg, David E. 1989b. Sizing populations for serial and parallel genetic algorithms. In
Schaffer, J. D. (editor). Proceedings of the Third International Conference on Genetic
Algorithms. San Mateo, CA: Morgan Kaufmann Publishers Inc. Pages 70-79.

Holland, John. H. 1975. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor, MI:
University of Michigan Press. Also Cambridge, MA: The MIT Press 1992.

Juric, M., Potter, W. D., and Plaksin, M. 1995. Using the parallel virtual machine for hunting
snake-in-the-box codes. In Arabnia, Hamid R. (editor) Transputer Research and Applications
7. Amsterdam: IOS Press.

Kinnear, Kenneth. E. Jr. (editor). 1994. Advances in Genetic Programming. Cambridge, MA:
The MIT Press.

Koza, John. R. 1992. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: The MIT Press.

Koza, John. R. 1994a. Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA: The MIT Press.

Koza, John R. 1994b. Architecture-altering operations for evolving the architecture of a multi-
part program in genetic programming. Stanford University Computer Science Department
technical report STAN-CS-TR-94-1528. October 21, 1994.

Kroger, Berthold, Schwenderling, Peter, and Vornberger, Oliver. 1992. Massive parallel
genetic packing. In Reijns, G. L. and Luo, J. (editors). Transputing in Numerical and Neural
Network Applications. Amsterdam: IOS Press. Pages 214-230.

Min, Shermann L. 1994. Feasibility of evolving self-learned pattern recognition applied toward
the solution of a constrained system using genetic programming. In Koza, John R. (editor).
Genetic Algorithms at Stanford 1994. Stanford, CA: Stanford University Bookstore. ISBN 0-
18-187263-3.

Robertson, George. l987. Parallel implementation of genetic algorithms in a classifier system.
In Davis, L. (editor). Genetic Algorithms and Simulated Annealing. London: Pittman.

Schwehm, M. Implementation of genetic algorithms on various interconneciton networks. In
Valero, M, Onate, E., Jane, M., Larriba, J. L., Suarez, B. (editors). 1992. Parallel Computing
and Transputer Applications. Amsterdam: IOS Press. Pages 195-203.

Singleton, Andrew. 1994. Personal communication.
Stender, Joachim (editor). 1993. Parallel Genetic Algorithms. Amsterdam: IOS Publishing.
Tanese, Reiko. 1989. Distributed Genetic Algorithm for Function Optimization. PhD.

dissertation. Department of Electrical Engineering and Computer Science. University of
Michigan.

Tout, K. Ribeiro-Filho, B, Mignot, B, and Idlebi, N. A. 1994. cross-platform parallel genetic
algorithms programming environment. Transputer Applications and Systems '94. Amsterdam:
IOS Press. 1994. Pages 79–90.

Wright, Sewall. 1943. Genetics 28. Page 114.

